Subject: Industrial Eng. الموضوع: هندسة صناعية

Weekly Hours :Theoretical: 2

الساعات الاسبوعية: نظري:2 مناقشة: عملي: عدد الوحدات:4 Tutorial: Experimental: UNITS: 4

<u>week</u>	<u>Contents</u>	المحتويات	الاسبوع
1.	Concepts and objectives of Industrial Engineering	مفاهيم واهداف الهندسة الصناعية	1.
2.	Feasibility studies.	الدراسات الفنية والاقتصادية للمشاريع الصناعية (دراسة الجدوى)	2.
3.	Internal plant layout	التخطيط الداخلي للمصنع	3.
4.	Using operational Research in production	استخدام بحوث العمليات في الانتاج	.4
5.	(linear programming – Max-Min)	البرمجة خطية	.5
6. 7	Assignment	التخصيص التنا	.6
7. 8.	Transportation	النقل النتابع	.7 .8
o. 9.	Sequencing Network Analysis	اللتابع تحليل المخططات الشبكية	.o .9
9. 10.	Production Cost and cost controlling	تحليل المخصصات السبدية تكاليف الانتاج وطرق حسابها والسيطرة عليها	.9 .10
10.	techniques	سيد ١٠٠٠ و حرن سبه وسيد	.10
11.	Quality Control	السيطرة النوعية	.11
12.	Statistical quality control charts	لوحات السيطرة النوعية الاحصائية	.12
13.	Charts for variables and attributes	لوحات للمتغيرات وللمميزات	.13
14.	Lot –by-lot- acceptance sampling plans	خطط الفحص بالعينات	
15.	Sampling plans (single Double and Multiple)	الاحادية والثنائية والمتعددة	.15
16.	Engineering Reliaility	المعولية	.16
17.	Quality assurance and Quality assurance systems	توكيد النوعية وانظمة توكيد النوعية العالمية	.17
18.	=	=	.18
19.	Quality management system – TQ M and ISO	نظم ادارة الجودة وادارة الجودة الشاملة الايزو	.19
20.	Work study	دراسة العمل	20.
21. 22.	Assembly line balance (ALB) Line of Balance(LOB)	موازنة خطوط التجميع موازنة خط دفعات الانتاج	.21 .22
22. 23.	Inventory Control	موارث حصد تعات الالتاج السيطرة على الخزين	.23
24.	=	يسرد سي اسرين =	.24
25.	Material Requirement planning (M.R.P) – MR.P1-MR.P2	تخطيط الاحتياجات من المواد	.25
26.	Maintenance and replacement of parts	الصيانة والاستبدال	.26
27.	Evaluation of establishment performance	تقيييم الاداء الصناعي	.27
28.	Productivity- productivity measurement	الانتاجية – طرق قياسها	.28
29.	Factors Influencing Productivity	العوامل المؤثرة في الانتاجية	.29
30.	Research and Developments (R and D)	البحث والتطوير	.30

الموضوع: الهندسة الصناعية مدرس المادة: د. نبيل جورج ناسى عدد الوحدات: 4

الكتب المنهجية: 1) د. عادل عبد المالك " الهندسة الصناعبة "_ دار الكتب للطباعة والنشر - جامعة البصرة - الطبعة الأولى 2000.

2) د. خليل العانى ، د. إسماعيل إبراهيم القزاز ، د. عادل عبد المالك كوريال " إدارة الجودة الشاملة ومتطلبات الأيزو 2000:9001 " الطبعة الأولى 2001 ، مطبعة الأشقر- بغداد.

- 3) Hamdy A. Taha "Operations Research: an introduction" 6th edition (1997), Prentice-Hall.
- 4) Prem Kumar Gupta and D.S. Hira '' Operations Research: an introduction'' 2nd edition (1989) S. Chand & Company LTD, NewDelhi.
- 5) Charles E. Ebeling "An Introduction to Reliability and Maintainability Engineering" (1997), McGraw-Hill.

الكتب المساعدة: 1) د. مازن بكر عادل وأخرون " بحوث العمليات للإدارة الهندسية " جامعة الموصل 1986.

2) Phillips, D.T.; Ravindran, A.; Solberg, J. "Operations Research: Principles and Practice" (1976) John Wiley.

الساعات الإسبوعية: النظرى: 2 العملى: __ مناقشة: ___.

مختصر المحاضرة	عنوان المحاضرة	الفصل	الصفحة	الإسبوع
تعريفية بمفهوم الهندسة الصناعية كفرع من الإدارة الهندسية وأهدافها.	مفاهيم وأهداف الهندسة الصناعية.	الأول	7-1	1
تتضمن دراسة تكاليف الإنتاج (المتغيرة والثابتة) وإستخدام النسبة المئوية لربحية المشروع	الدراسات الفنية والإقتصادية لجدوى	الثاثي	12 – 8	2
وحجم وقيمة نقطة التعادل والنسبة المنوية لحد الأمان ومدة أطفاء (إسترداد) المشروع	المشاريع الصناعية.			
للرأسمال المستثمر.				
تحليل نقطة التعادل والعلاقة بين الكلفة والربح وحجم الإنتاج .	تكاليف الإنتاج.	الثاثي	<i>16 – 12</i>	3
أنواع الإنتاجية وطرق قياسها (طريقة معامل التحويل والطريقة النقدية) وأساليب زيادتها.	الإنتاجية.	الثاثي	20 – 17	4
فوائد دراسة العمل وخطواتها الرئيسية و قياس محتوى العمل وتحديد الوقت القياسي.	دراسة العمل .	الثاثي	25 – 21	5
أنواع التنظيمات والمستويات الإدارية المناظرة و التنظيم التكنولوجي وأنواعه ودورة الإنتاج.	التنظيم اإداري والتكنولوجي لمنشأة	الثالث	36 – 29	6
	صناعية.			
ني و الثالث) مع إختبار .	ليما يخص الباب الأول (الفصول الأول والثا	قدم من قبل الطلبة ف	مناقشة تقارير ت	7
المستلزمات الأساسية للبرمجة الخطية وصيغها (العامة ، القانونية والقياسية) وكيفية التحويل	إستخدام بحوث العمليات في ألإنتاج /	الرابع	46 – 38	8
بينهما وكيفية صياغة النموذج رياضياً و حل النموذج رياضياً.	البرمجة الخطية .			
حل النموذج الرياضي بالطرق Simplex و M- technique و 2- phase.		الرابع	<i>52 – 47</i>	9
تعريف المشكلة كحالة خاصة من نماذج البرمجة الخطية وكيفية إيجاد الحل الأولي بإستخدام	نموذج مشكلة النقل	الخامس	<i>58 - 56</i>	10
طرق الركن الشمالي الغربي، الأقل كلفة ، VAM و RAM .				
إختبار وتحسين الحل الأولي بإحدى الطريقتين: Stepping stone أو Multipliers للوصول		الخامس	67 - 59	11
للحل الأمثل .				
تعريف المشكلة كحالة خاصة من نماذج البرمجة الخطية وكيفية إيجاد الحل الأمثل في حالتي	مشكلة التخصيص	الخامس	<i>74 – 68</i>	12
تعظيم الربح أوالإيراد أو تقليل الكلفة أو الزمن.				

	*			
تعريف بالمخططات الشبكية وكيفية رسمها وإيجاد المسار الحرج. C.P. والوقت الحرج وأسلوب	المخططات الشبكية	السادس	<i>81 – 75</i>	<i>13</i>
تقييم ومراجعة البرامج PERT .				
تعجيل وتبطيء المخططات الشبكية (إيجاد أقل زمن وكلفة ممكنتين لتنفيذ المشروع) .		السادس	<i>88 – 81</i>	<i>14</i>
S.P.T. تعريف نماذج التتابع وإنجاز n من المهام على ماكنة واحدة ، وإيجاد أقصر وقت تشغيل	نماذج التتابع	السايع	94 - 89	15
وكذلك أطول وقت تشغيل $L.P.T.$ ، وإنجاز n من المهام على ماكنتين ، و إنجاز n من المهام				
على ثلاثة مكائن .				
انجاز n من المهام على m من المكانن، وإنجاز n من المهام على ماكنتين في ورشة ذات		السايع	99 – 94	16
مسالك تكنولوجية مختلفة (عشوائية ألإنسياب).				
دراسة كلف الصيانة والتشغيل لإيجاد وقت إستبدال الماكنة مع دراسة معدل الكلفة الفردية	نماذج الصيانة والإستبدال	الثامن	104 – 100	17
لإستبدال الوحدات العاطلة ومعدل الكلفة الجماعية لإستبدال جميع الوحدات لتحديد سياسة				
الإستبدال المثلى .				
نموذج الصيانة مع حل تمارين الفصل.		الثامن	108 – 104	18
الجودة و إدارة الجودة الشاملة (مرتكزاتها الأولية ومباديئها).	إدارة الجودة الشاملة TQM والأيزو	التاسع	114 – 110	19
إدارة الجودة الشاملة (عناصرها و مراحل تطبيقها و فوائدها) .	. ISO	التاسع	117 – 115	20
مفهوم الأيزو ISO 9000 (مواصفاته و إسلوب إنجاز الأعمال التقنية ومبادئه).		التاسع	121 – 117	21
مفهوم الأيزو ISO 9000 (فوائده و مجموعة مواصفاته ومراحل تطبيقه) .		التاسع	126 – 121	22
تعريف بالسيطرة النوعية وأسلوب الفحص الشامل والعينات ومخططات السيطرة النوعية للوسط	السيطرة النوعية	العاشر	131 – 127	23
الحسابي والمدى .		-		
مخططات السيطرة النوعية للإنحراف المعياري ولنسبة الوحدات المعابة .		العاشر	138 – 131	24
مستوى الجودة ، والفحص بالعينات (الأحادية والثنائية والمتعددة) .		العاشر	146 – 138	25
تعريف بالمعولية ، ودالة العطل والإحتمالات ومتوسط زمن العطل MTTF والتباين ، دالة نسبة	المعولية	الحادي عشر	152 – 149	26
المخاطرة .				
دالة المعولية الشرطية ودالة المعولية الأسية وتوزيع ويبل Weibul للمعولية.		الحادي عشر	155 – 152	27
ربط المنظومة على التوالي (في حالة التوزيع الأسي وتوزيع ويبل) ، الربط على التوازي (في		الحادي عشر	162 – 155	28
حَالَة التوزيع الأسي) والرَّبطُ الْمختلط (تُوازي وتوالِّي) .		•		
فائض بمستويين عال وواطىء مع حل تمارين خارجية .		الحادي عشر	170 – 162	29
	فيما يخص الباب الثالث (الفصل التاسع) م	قدم من قبل الطلبة ا		30

: - / " " .

.2000

() () : -1 () -2 . (

-3 1776 . (1832 . (" **1886** .(1911 . 1898

1913

1916 "	"	-	-	
:				
17	u .	-	- 1922	
1923 "		-	-	
		_	_	
. " "	1935	_	-	
1922 "	и	-	-	
11	. "	-	-	
		-	-	
-1939			-	
			1945	
1945	: <u>(</u>)	

:		
- Linear Programming	: -	-1
Dynamic Programming	-	
Sequencing	-	
	:	-2
- Decision Making theory	-	
-Game theory	-	
-Queuing theory ()	_	
-Network analysis	: _	-3
-Input-Output analysis -	-	
Markov analysis	-	
- Benefit-Cost analysis -	-	
•	:	-4
-Transportation models	-	
-Inventory models	-	

•

-Replacement models

.(

-1 -2 -3 -4) -5 -6 -7

%100 * = -8

= **-9**

=

- 1

% *100* * =

= () -10

% 25

<u>1-</u> -1

-2
-2
-4-0.5

5850000 -

-3

585000 -

² 15000 -

5850000 + 585000 + 2250000 = 8685000

: - 4

6600000 -

234 – –

: 400500

8400	7	4800	1	
3240	3	36000	10	
9180	9	72000	30	
135000	125	1800	1	
4800	5	1200	1	
34560	24	9600	8	
65520		10080	7	
400500	234	4320	3	

: *79500* – –

57000 3500

19000

6600000 + 400500 + 79500 = 7080000 : - - -

: - -

%10 -

5850000 * *0.10* = *585000*

```
%5
                         5850000 * 0.05 = 292500
                                      %5
                         2250000 * 0.05 = 112500
                                     %2
                          2250000 * 0.02 = 45000
                       %0.5
                          5850000 * 0.005 = 29250
                           %8
            (5850000 + 2250000 + 585000) * 0.08 = 694800
585000 + 292500 + 112500 + 45000 + 29250 + 694800 = 1759050
                                    6600000
                400500
                                     79500
                               7080000 =
                         1759050 + 7080000 = 8839050
                                                             -6
               8839050 = 177
                            225
        50000 * 225 = 11250000
   11250000 - 8839050 = 2410950
                                                               -7
+ (585000+112500=697500) + (400500)
                   4233000 = (2410950) + (724050)
 4233000 - 697500 = 3535500
                   \frac{2410950}{}*100\% = 31.4\%
                                                              -8
                   7685000
                     1759050
                                                              -9
                               = 4745638
                       7080000
```

$$\frac{1759050}{225 - \frac{7080000}{50000}} = 21092 \qquad :$$

$$\frac{11250000 - 4745638}{11250000} * 100\% = 58\% \qquad :$$

$$\frac{8685000}{2410950 + 697500} = 2.79 \cong 3 \qquad :() \qquad -10$$

$$4 \qquad \%25$$

:______-2-2

: -1

-2

-3 . -4

> -5 -6

: : -1

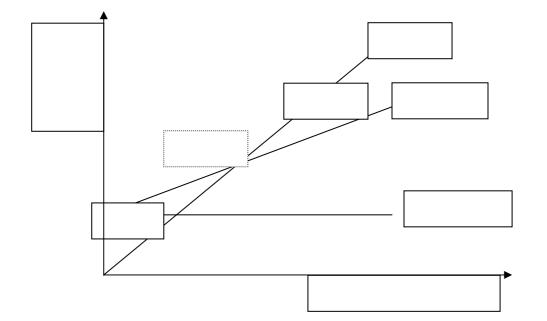
· : -2

· : -3

· : : : -1

. . . -1

: : -2 : -


: -

•

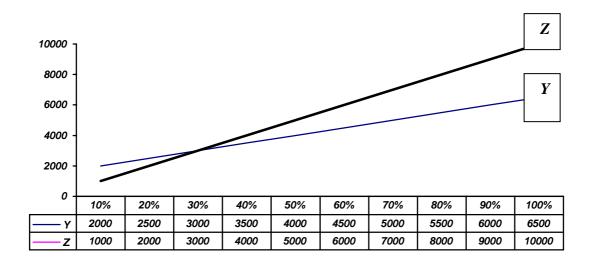
:______--1-2-2

() .

. ()

.

- 1


$$P.O.E. = \frac{1500}{1 - \frac{3500}{7000}} = 3000$$

%80 .

$$\frac{7000}{70} * 80 = 8000$$

$$\frac{3500}{70} * 80 = 4000$$

%

3000 %30

. **Z** Y

. -

=

-3

 $L.O.S. = \frac{7000 - 3000}{7000} * 100\% = 57\%$

: %90 Profit = 9000 - (1500 + 4500) = 3000

. -1

. -2

:_____-2-2-2

()

(

Q	1	2	3	4	5	6	7	8
V.C.	18	30	40	55	70	90	120	150

Q	P	T.R.	T.C.	M.R.	<i>M.C.</i>	V
1	20	20	18			2
2	20	40	30	20	12	10
3	20	60	40	20	10	20
4	20	80	55	20	15	25
5	20	100	70	20	15	30
6	20	120	90	20	20	30
7	20	140	120	20	30	20
8	20	160	150	20	30	10

Q = 6
. 30 \$

() (-1) (

1000

: *1150*

$$\frac{1150 - 1000}{1000} * 100\% = 15\%$$

:_____-2-3-2

:_____-1

=

. P:

. $m{i}$

. i C_i

. $m{i}$

. N

$$P = \frac{\sum_{i=1}^{N} Q_i.C_i}{\sum_{i=1}^{N} T_i}$$
:

: <u>4-</u>

. **40** =

. =

. (A)

	A	В	C	D
()	750	400	300	1000
()	4	3	6	2

. :

 \boldsymbol{B}

$$= (C_2) A B$$

 \boldsymbol{A}

$$C_2 = \frac{3}{4} = 0.75$$
, $C_3 = \frac{6}{4} = 1.5$ and $C_4 = \frac{2}{4} = 0.5$

$$\sum_{i=1}^{4} Q_i . C_i = 750 * 1 + 400 * 0.75 + 300 * 1.5 + 1000 * 0.5 = 2000$$
 tons

$$\sum_{i=1}^{4} T_i = 40 * 250 * 1 * 8 = 80000 \quad worker s.hours$$

$$P = \frac{2000}{80000} = 0.025$$
 tons / wor ker .hour

: _____-2

$$P_L = \frac{\sum_{i=1}^{N} Q_i . P_i}{\sum_{i=1}^{N} W_i}$$

. i

 P_i :

 W_i

. *i*

	X		
		1991	1992
\boldsymbol{A}	200	50000	25000
В	250	40000	100000
C	1000	25000	25000

	Y		
		1991	1992
\boldsymbol{A}	300	50000	60000
В	500	30000	50000

7

500

$$P_L = \frac{\sum_{i=1}^{N} Q_i.P_i}{\sum_{i=1}^{N} W_i}$$

$$P_{1991} = \frac{50000 * 200 + 40000 * 250 + 25000 * 1000 + 50000 * 300 + 30000 * 500}{500 * 300 * 7} = 71.43$$

$$P_{1992} = \frac{25000 * 200 + 100000 * 250 + 25000 * 1000 + 60000 * 300 + 50000 * 500}{500 * 300 * 7} = 93.33$$

. 1992	93.33	1991	71.43					
					:			3-3-2
()		-1
								-2
•					•			_
							:	-3
						•		: -4
							:	-5
				٠			:	-6
								: -7
						:		-8
				•	:			-9

: -10
.
: -11

· : -12

: -4-2

: -.

: -1

. -2 . -3 . -4

-5 -6 . -7 -8

> : ______ -1-4-2 : -1

: . -. - . --

: -2 -

: -3 : -

: **-4** :

--

· · : -5

. : -6

: -7 ·

•

: -

-8 . *%90*

	()											
	1	2	3	4	5	6	7	8	9	10		R
A	50	60	55	55	55	55	50	50	60	60	55	10
В	<i>36</i>	<i>34</i>	25	25	<i>30</i>	25	25	30	30	<i>30</i>	29	11
C	125	115	115	115	115	120	120	125	125	125	120	10
D	40	35	36	36	36	35	35	35	36	36	36	5
E	30	30	30	25	25	35	35	28	32	30	30	10

$$55 + 29 + 120 + 36 + 30 = 270$$
 seconds = 4.5 minutes

$$m = \left(\frac{\alpha \sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}}{\sum_{i=1}^{n} X_{i}}\right)^{2}$$

= m:

$$\alpha = 20$$
 %90

$$\alpha = 40$$
 %95

$$= X_i$$

$$\sum_{i=1}^{10} X_i = 290 \quad and \quad \sum_{i=1}^{10} X_i^2 = 8552 \quad : \qquad \qquad R = 11$$

$$m = \left(\frac{20 * \sqrt{10 * 8552 - (290)^2}}{290}\right)^2 = 6.75 \cong 7 < n = 10$$

%100

%100 =

%20

$$4.5*\frac{120}{100} = 5.4 \, min \, . \tag{:}$$

:

$$4.5*\frac{80}{100} = 3.6 \, min$$
.

•

%15

.

$$4.5 + 4.5 * \frac{15}{100} = 5.175 \, min$$
.

$$5.4 + 4.5 * \frac{15}{100} = 6.075 \, min$$
.

$$3.6 + 4.5 * \frac{15}{100} = 4.275 \, min$$
.

-1 *1250000 500*

:

100000 -

.

. %10 -

² 1750 -

. *75*

_

500

600 . 35000

: -

100	1	500	1	
450	1	150	2	
180	10	200	1	
120	8	120	1	
90	5	100	1	

. 15240 () -

. %5 %10 -

. %2 %5

. %**0.5** -

. %8 -

. *0.200* -

(

```
(ans.: 191995, 175082.5, 38%, 402121, 68%, 2.2, yes)
```

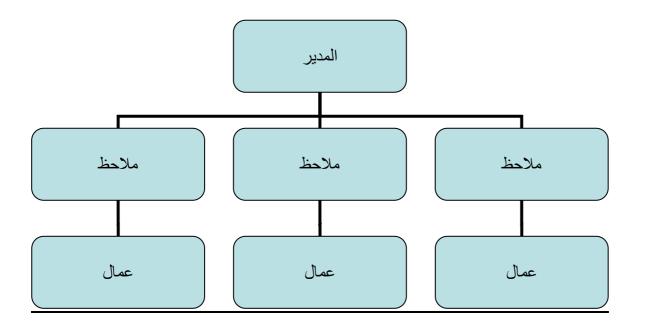
-2 8) ² 2000 $(^{2} 150)$ (² 250) (² 600) *%5 %10* %2 %5 *%0.5* **%8** ()

(ans.: 137220, 129020, 74%, 198, 80%, 1.23, yes)

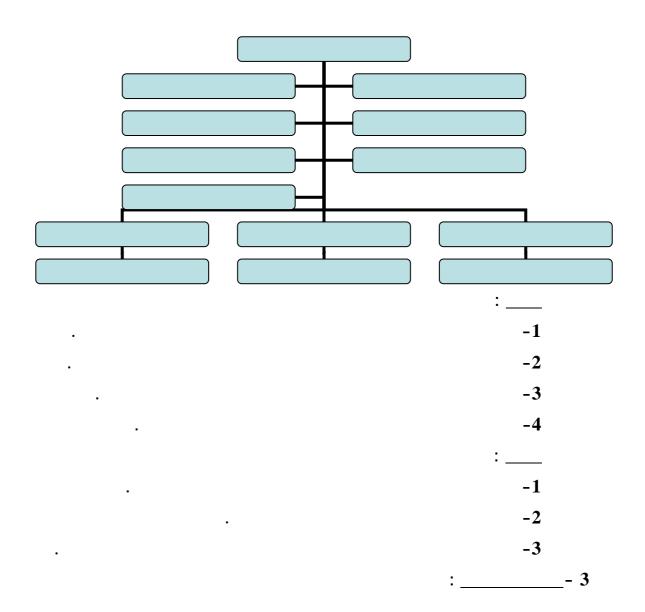
```
5000
                                                                        -3
                                                         %50
                       :
                                            %100
       150
                             950
                                                     1650
                             150
       150
                                                      350
                              50 (
        50
                                                     2400
                                       )
                                     . 3600
 (ans.: 2500)
       60 $
                                                                        -4
40$
 (
                                        250000$
   (ans.: 750000, 12500)
16 $
                                                                        -5
             . 500000 $
                                          14 $
                                                           %5
(ans.: 4000000, 250000; 4000000, 238095)
                                                                        -6
        300
                                                  33
                8
                                          X_1
                                                      X_3
                                                X_2
                                                             X_4
                                          500
                                                350
                                                      200
                                                             600
                                                   3
               X_1
                                 )
                          (
                                                              . (
                                                                      )
   (ans.: 0.0172)
```

-1 -2 -3

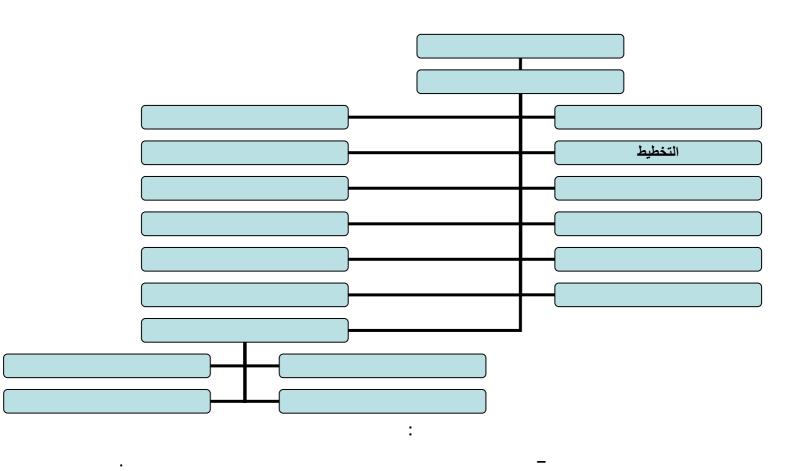
. -4 -5


-6

1000 .


. 10

:_______--1-3


: <u>() -1</u>

:

:

12-10

6-1

. 7 72
:____
. -1
. ____
. ____

. -1 . -2

:______-2-3

-

· : -

· : -

· : -

: . --

. - - - - : .

· : -3

•

.

 $: T_{I}$ -1

 $: T_2 \qquad -2$ $T = T_1 + T_2 \qquad : \qquad T$

$$\frac{T}{T_2} = 1$$

:

: -1

: -2

: -3

-1-

-<u>1-</u>

()		
		7	1
		4	2
		8	3
		5	4
		6	5

.

: (7+4+8+5+6)*4 = 120 min.

7 7 4 8 8 8 8 5 6

7 + 4 + 8 + 8 + 8 + 8 + 5 + 6 = 54 min.

*

4-1=3:

T = 120 - (4 + 4 + 5 + 5) * 3 = 66

: ______ -4-3 - -1

: . -

. . -. . -

--

- -2

· · · · · ·

· -

- -3

- () -4

. ...

Operations Research

[1] Hamdy A. Taha "Operations Research: an introduction" 6th edition (1997), Prentice-Hall.

^[2] Prem Kumar Gupta and D.S. Hira "Operations Research: an introduction" 2nd edition (1989) S. Chand & Company LTD, NewDelhi.

		_
Linear Pro	gramming	

Operations research

1885

-1

-2

-3

-4

-5

Linear programming

1947 1873

Simplex method

-1 -2 -5 : <u>General form</u> -1 max.or min. $Z = \sum_{j=1}^{n} C_{j} X_{j}$ Objective function $S.t. \qquad \sum_{j=1}^{n} a_{ij} X_{j} \begin{cases} \leq \\ \geq \\ - \end{cases} b_{i} \qquad Constraint s$ $S.t. \qquad \sum_{j=1}^{n} a_{ij} X_{j} \begin{cases} \leq \\ \geq \\ = \end{cases} b_{i}$ i = 1, 2, ..., mj = 1, 2, ..., n C_i . Decision variables X_i . Technical coefficients a_{ij} . Availability amounts b_i : Canonical form $max. \quad Z = \sum_{j=1}^{n} C_{j} X_{j}$ Objective function S.t. $\sum_{j=1}^{n} a_{ij} X_{j} \le b_{i}$ Constraint s $X_{j} \ge 0$ nonnegative constraint s $(X_i \ge 0)$ -1

.(≤)

-2

-3

maximized

```
maximized
                                                                                               minimized
                                                                                                                                                            -1
                                            max. Z = min. (-Z) :

    بضرب المتباینة فی

                                                                                                                                                           -2
                                                        \sum a_{ij}X_{j} \geq b_{i} \Leftrightarrow -\sum a_{ij}X_{j} \leq b_{i} : نُبِي إِنْ (-1)
                            \leq
                                                                                                                                                            -3
                                        \sum a_{ij} X_j = b_i \quad \Leftrightarrow \quad \left\{ \sum_{i=1}^{n} a_{ij} X_j \leq b_i \\ -\sum_{i=1}^{n} a_{ij} X_j \leq -b_i \right\}
                                                                 absolute value
                                                                                                                                                            -4
                                                                                                                                           \leq
                                \begin{aligned} \left| \sum a_{ij} X_{j} \right| \leq b_{i} & \Leftrightarrow & \left\{ \sum a_{ij} X_{j} \leq b_{i} \\ -\sum a_{ij} X_{j} \leq b_{i} \right\} \end{aligned}
or & \left| \sum a_{ij} X_{j} \right| \geq b_{i} & \Leftrightarrow & \left\{ \sum a_{ij} X_{j} \leq -b_{i} \\ \sum a_{ij} X_{j} \leq -b_{i} \right\}
                                                                                                                                                             -5
                                         unrestricted sign
                                          X_{i} = X_{i}^{'} - X_{i}^{''} and X_{i}^{'}, X_{i}^{''} \ge 0
                                                                                                     : Standard form
                                                     (=)
                                                                                                                                                               -1
               . (X_i \ge 0)
                                                                                                                                 nonnegative
                                                      . ( b_i \geq 0
                                                                                                                                                               -2
                                                                                                                                                               -3
                                                                  . max.
                                                                                                 min.
                                                 \sum a_{ij} X_{j} \leq b_{i} \Leftrightarrow \sum a_{ij} X_{j} + S_{i} = b_{i}\sum a_{ij} X_{j} \geq b_{i} \Leftrightarrow \sum a_{ij} X_{i} - S_{i} = b_{i}
     )
                                                                              Slack variables
                                                                                                                                                       S_i
                                                                                                                                             S_i \geq 0
                                                                                                                                                                : 1-
                                      min .
                                                 Z = 2X_1 + 3X_2 + 5X_3
                                                           X_1 + X_2 - X_3 \ge -5
                                       s.t.
                                                         -6X_1 + 7X_2 - 9X_3 = 15
                                                        |19X_1 - 7X_2 + 5X_3| \le 13
```

 $X_1, X_2 \ge 0, X_3$ unrestricted

$$X_3 = X_3' - X_3''$$
 : :____

: -

$$\begin{aligned} & \min. \quad Z = -2X_1 - 3X_2 - 5(X_3^{'} - X_3^{''}) \\ & s.t. \qquad -X_1 - X_2 + (X_3^{'} - X_3^{''}) \leq 5 \\ & -6X_1 + 7X_2 - 9(X_3^{'} - X_3^{''}) \leq 15 \\ & 6X_1 - 7X_2 + 9(X_3^{'} - X_3^{''}) \leq -15 \\ & 19X_1 - 7X_2 + 5(X_3^{'} - X_3^{''}) \leq 13 \\ & -19X_1 + 7X_2 - 5(X_3^{'} - X_3^{''}) \leq 13 \\ & X_1, X_2, X_3^{'}, X_3^{''} \geq 0 \end{aligned}$$

: -

$$\begin{array}{ll} \max. & Z = 2X_1 + 3X_2 + 5(X_3^{'} - X_3^{''}) \\ s.t. & -X_1 - X_2 + (X_3^{'} - X^{''}) + S_1 = 5 \\ & -6X_1 + 7X_2 - 9(X_3^{'} - X_3^{''}) = 15 \\ \\ & 19X_1 - 7X_2 + 5(X_3^{'} - X_3^{''}) + S_3 = 13 \\ & -19X_1 + 7X_2 - 5(X_3^{'} - X_3^{''}) + S_4 = 13 \\ & X_1, X_2, X_3^{'}, X_3^{''}, S_1, S_2, S_3, S_4 \geq 0 \\ \end{array}$$

: Formulation of the model

-2-4

:

	()		
	\boldsymbol{A}	В	C	
I	1	2	1	430
II	3	0	2	460
III	1	4	0	420
	3	2	5	

.

3) (1 5

6

10

 \boldsymbol{A}

C B. *0.4*

 \boldsymbol{C} X_3 X_2 X_1 \boldsymbol{B} \boldsymbol{A}

 $max. \quad Z = 3X_1 + 2X_2 + 5X_3$ $X_1 + 2X_2 + X_3 \le 430$ $3X_1 + 2X_3 \le 460$ $X_1 + 4X_2 \le 420$ $X_1, X_2, X_3 \geq 0$

 $max. \quad Z = 3X_1 + 2X_2 + 5X_3 + 6X_4$ $X_1 + 2X_2 + X_3 + 3X_4 \le 430$ $3X_1 + 2X_3 + 5X_4 \le 460$ $X_1 + 4X_2 + X_4 = 420$ $X_1, X_2, X_3, X_4 \geq 0$

 $430 - (X_1 + 2X_2 + X_3) + 460 - (3X_1 + 2X_3) + 420 - (X_1 + 4X_2) \le 10$ $\rightarrow 5X_1 + 6X_2 + 3X_3 \ge 1300$

لذا فالنموذج الرياضي سيكون:

 $Z = 3X_1 + 2X_2 + 5X_3$ $X_1 + 2X_2 + X_3 \le 430$ s.t. $3X_1 + 2X_3 \le 460$ $X_{1} + 4X_{2} \le 420$ $5X_{1} + 6X_{2} + 3X_{3} \ge 1300$ $X_1, X_2, X_3 \ge 0$

 $\frac{X_1}{X_2 + X_3} \ge 0.4 \Rightarrow X_1 - 0.4X_2 - 0.4X_3 \ge 0$

$$\begin{aligned} \textit{max}. & Z = 3X_1 + 2X_2 + 5X_3 \\ \textit{s.t.} & X_1 + 2X_2 + X_3 \leq 430 \\ & 3X_1 + 2X_3 \leq 460 \\ & X_1 + 4X_2 \leq 420 \\ & X_1 - 0.4X_2 - 0.4X_3 \geq 0 \\ & X_1, X_2, X_3 \geq 0 \end{aligned}$$

-3-4

:

: <u>Graphical method</u> -1

Feasible Solutions

Extreme Points

Region (F.S.R.)

Optimal values

. Simplex method

: : <u>3-</u>

$$max. \quad Z = 120X + 100Y$$

$$s.t. \quad 2X + 2.5Y \le 1000$$

$$3X + 1.5Y \le 1200$$

$$1.5X + 4Y \le 1200$$

$$X,Y \ge 0$$

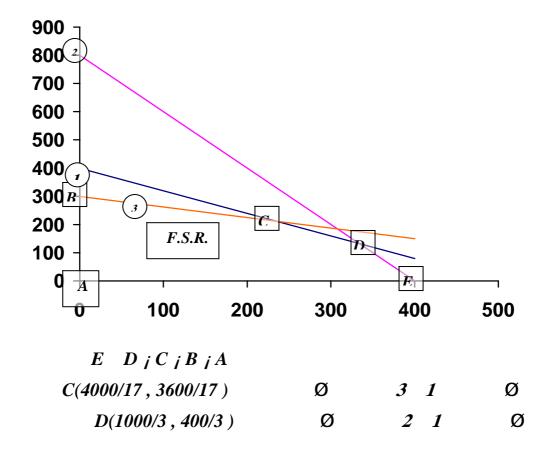
:

1.
$$2X + 2.5Y = 100$$
 if $X = 0$ then $Y = 400 \implies (0,400)$

if
$$Y = 0$$
 then $X = 500 \Rightarrow (500.0)$

2
$$3X + 1.5Y = 1200$$
 if $X = 0$ then $Y = 800 \implies (0.800)$

if
$$Y = 0$$
 then $X = 400 \Rightarrow (400,0)$


3.
$$1.5X + 4Y = 1200$$
 if $X = 0$ then $Y = 300 \implies (0,300)$

if
$$Y = 0$$
 then $X = 800 \Rightarrow (800,0)$

$$4. X=0$$

5.
$$Y=0$$

. (F.S.R.)

Points	Z = 120 X + 100 Y
A (0,0)	Z = 0 + 0 = 0
B(0,300)	Z = 0 + 100 * 300 = 30000
C(4000/17, 3600/17)	Z=120*(4000/17)+100*(3600/17)=840000/17
D(1000/3,400/3)	$Z=120*(1000/3)+100*(400/3)=160000/3 \rightarrow max.$
E(400,0)	Z = 120*400 + 0 = 48000

$$Z = 4X + 5Y$$

$$s.t. \quad 2X + Y \le 6$$

$$X + 2Y \le 5$$

$$X - 2Y \le 2$$

$$-X + Y \le 2$$

$$X + Y \ge 1$$

$$X, Y \ge 0$$

Ø

1.
$$2X + Y = 6$$
 if $X = 0$ then $Y = 6 \Rightarrow (0,6)$

if
$$Y = 0$$
 then $X = 3 \Rightarrow (3,0)$

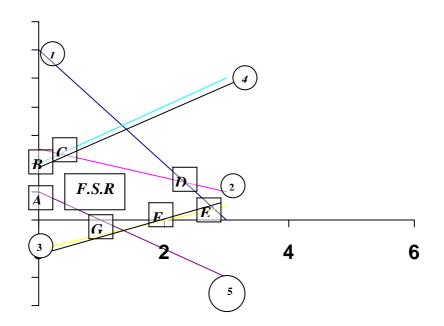
2.
$$X + 2Y = 5$$
 if $X = 0$ then $Y = 2.5 \implies (0,2.5)$

if
$$Y = 0$$
 then $X = 5 \Rightarrow (5,0)$

3.
$$X-2Y=2$$
 if $X=0$ then $Y=-1 \Rightarrow (0,-1)$

if
$$Y = 0$$
 then $X = 2 \Rightarrow (2,0)$

4.
$$-X+Y=2$$
 if $X=0$ then $Y=2$ \Rightarrow $(0,2)$


if
$$Y = 0$$
 then $X = -2 \Rightarrow (-2,0)$

5.
$$X + Y = 1$$
 if $X = 0$ then $Y = 1 \Rightarrow (0,1)$

if
$$Y = 0$$
 then $X = 1 \Rightarrow (1,0)$

6.
$$X = 0$$

7.
$$Y = 0$$

C(1/3,7/3)

1 2

D(7/3,4/3)

2 1

Ø

Ø

E(14/5, 2/5)

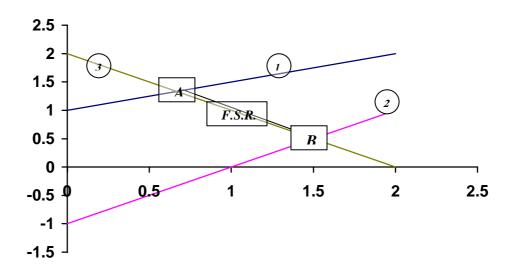
3 1

Ø

Points	Z = 4X + 5Y
A(0,1)	0+5=5
B(0,2)	0 + 10 = 10
C(1/3,7/3)	4/3 +35/3 = 13
D(7/3,4/3)	$28/3 + 20/3 = 16 \rightarrow max.$
E(14/5, 2/5)	56/5 + 10/5 = 66/5
F(2,0)	8 + 0 = 8
G(1,0)	$4+0=4\rightarrow min.$

$$max. \quad Z = 2X + 4Y + 8$$

$$s.t. \quad -X + 2Y \le 2$$


$$X - Y \le 1$$

$$X + Y = 2$$

$$X, Y \ge 0$$

1. -X + 2Y = 2 if X = 0 then $Y = 1 \Rightarrow (0,1)$ if Y = 0 then $X = -2 \Rightarrow (-2,0)$ 2 X - Y = 1 if X = 0 then $Y = -1 \Rightarrow (0,-1)$ if Y = 0 then $X = 1 \Rightarrow (1,0)$ 3. X + Y = 2 if X = 0 then $Y = 2 \Rightarrow (0,2)$ if Y = 0 then $X = 2 \Rightarrow (2,0)$

4.
$$X = 0$$

5. $Y = 0$

AB	AB			
A(2/3,4/3)	á	3 1	Ø	
B(3/2,1/2)	Ø	3 2	Ø	

Points	Z = 2X + 4Y + 8
A(2/3,4/3)	$4/3 + 16/3 + 8 = 44/3 \rightarrow max.$
B(3/2,1/2)	3+2+8=13

$$Z = 44/3$$
 $Y = 4/3$ $X = 2/3$ Ø

: Simplex method

-2

$$S_i > 0$$
 $S_i = 0$. $S_i = 0$

 (\geq) بشرط $b_i \geq 0$ ، ماعدا قید عدم السالبیة إذ یبقی أكبر من أو یساوي (\leq).

:

Starting Basic Feasible Solution(S.B.F.S.)

-2

-1

:

		C_1	C_2	 C_n	0	0	 0	0
<i>B.C.</i>	B.V.	X_1	X_2	 X_n	S_{I}	S_2	 S_m	R.H.S.
0	S_1	<i>a</i> ₁₁	<i>a</i> ₁₂	 a_{1n}	1	0	 0	b_1
0	S_2	a_{21}	a_{22}	 a_{2n}	0	1	 0	b_2
:	:	:	:	 :	:	:	 :	:
0	S_m	a_{m1}	a_{m2}	 a_{mn}	0	0	 1	b_m
Z_j -	- C_j	- C ₁	- C ₂	 $-C_n$	0	0	 0	0

-3

() $Z_j - C_j$

Optimality) min.

max.

.(*R.H.S.*

condition

Leaving Variable

Entering R.H.S.

(Feasibility condition) Variable

. Pivot element

-4

47

$$Z_j - C_j$$
 -5 min. max.

. Simplex method 3- : 6-

		120	100	0	0	0	0	
<i>B.C.</i>	B.V.	X	Y	S_{I}	S_2	S_3	R.H.S.	Ratio
0	S_{I}	2	2.5	1	0	0	1000	500
$\leftarrow \theta$	S_2	3	1.5	0	1	0	1200	$400 \rightarrow min.$
0	S_3	1.5	4	0	0	1	1200	800
Z_j -	$-C_j$	-120 7	-100	0	0	0	0	
$\leftarrow \theta$	S_1	0	1.5	1	-2/3	0	200	<i>133.3</i> → <i>min</i> .
120	X	1	0.5	0	1/3	0	400	800
0	S_3	0	3.25	0	-0.5	1	600	184.6
Z_j –	- C_j	0	-40↑	0	40	0	48000	
100	Y	0	1	2/3	-4/9	0	400/3	
120	X	1	0	-1/3	5/9	0	1000/3	
0	S_3	0	0	-13/6	17/18	1	500/3	
Z_j -	- C_j	0	0	80/3	200/9	0	160000/3	

max.

:

Z = 160000/3

 $Z_j - C_j$

Y = 400/3

X = 1000/3

. 3-

```
\mathbf{Z}_j - \mathbf{C}_j
                 \boldsymbol{X}
                                                                           -120
                                                          S_2
  . 3
               S_2
                                   \boldsymbol{X}
                                                                                   400
                                                           S_3
                                                                 S_{I}
                             :
          \boldsymbol{X}
                       -2
                                  -1
                                               0
                                                         -2/3
                                                                      0
                                                                                -800
-2*
     S_1
                                                           0
                        2
                                   2.5
                                               1
                                                                                1000
                                                                       0
     S_1
                         0
                                   1.5
                                                1
                                                          -2/3
                                                                        0
                                                                                  200
-1.5*
                       -1.5
                                   -0.75
                                                0
                                                          -0.5
                                                                       0
                                                                                 -600
             \boldsymbol{X}
                        1.5
                                    4
                                                           0
                                                 0
                                                                        1
                                                                                 1200
     S_3
     S_3
                        0
                                    3.25
                                                 0
                                                           -0.5
                                                                        1
                                                                                   600
                         (≥)
          ( = )
Penalty method
                                               : (M- technique) M - -1
                                                        b_i \geq \theta بشرط (\leq)
               :
                   Artificial variables (R_i)
                                     ( = )
                                                    (≥)
                                                     (
                                                             )
                             (≤)
     . S_i
                             (≥)
               S_i
                                                                       R_i
                         . R_i
                                            (=)
           (-M)
                                      R_i
                                           min.
                                                        (+M)
                                                                     max.
                     M
                                                         S_i
```

$$R_i$$
 . ($S.B.F.S.$)

M

•

min. $Z = 5X_1 - 6X_2 - 7X_3 + MR_1 + MR_2$ s.t. $X_1 + 5X_2 - 3X_3 - S_1 + R_1 = 15$ $5X_1 - 6X_2 + 10X_3 + S_2 = 20$ $X_1 + X_2 + X_3 + R_2 = 5$ $X_1, X_2, X_3, S_1, S_2, R_1, R_2 \ge 0$

		5	-6	-7	0	0	M	M		D 4:
B.C.	B.V.	X_1	\mathbf{X}_2	X ₃	S_1	S_2	R_1	\mathbf{R}_2	R.H.S.	Ratio
← M	R ₁	1	5	-3	-1	0	1	0	15	3min.
0	S_2	5	-6	10	0	1	0	0	20	
M	$\mathbf{R_2}$	1	1	1	0	0	0	1	5	5
Z_j –	- C_j	2M-5	6M+6↑	-2M+7	-M	0	0	0	20M	
-6	\mathbf{X}_2	1/5	1	-3/5	-1/5	0	1/5	0	3	
0	S_2	31/5	0	32/5	-6/5	1	6/5	0	38	5.9
← M	R ₃	4/5	0	8/5	1/5	0	-1/5	1	2	1.25min
Z_j -	- <i>C_j</i>	4/5M-31/5	0	8/5M+53/5↑	1/5M+6/5	0	-6/5M-6/5	0	2M-18	
-6	\mathbf{X}_2	1/2	1	0	-1/8	0	1/8	3/8	15/4	
0	S_2	3	0	0	-2	1	2	-4	30	
-7	X ₃	1/2	0	1	1/8	0	-1/8	5/8	5/4	
Z_j -	- C_j	-23/2	0	0	-1/8	0	-M+1/8	-M-53/8	-125/4	

$$(Z_{j}-C_{j})$$
 $X_{3}=5/4$
 $X_{2}=15/4$
 $X_{I}=0$
 $Z=-125/4$

	: <u>T</u>	wo- Phase	<u>e technique</u>		2
	. (≤	()			
	:		: <u>Phase - I</u>		
				.1	
<i>min.</i> $R = \sum R_i$:				.2	
			R_i		
R=0		•		.3	
		R_i			
	(R≠0)			
	:		: <u>Phase-II</u>		
			R_i	.1	
	•			.2	
			7-	: <u>8-</u>	
$\underline{Phase-I}$:					
min.		$= R_1 + R_2$	15		
s.t.		$3X_3 - S_1 + I$			
		$S_2 + 10X_3 + S_2$ $S_2 + X_3 + R_2 =$			
	-	S_1, S_2, R_1, R_2			

		0	0	0	0	0	1	1		
<i>B.C.</i>	B.V.	X_{I}	X_2	X_3	S_{I}	S_2	R_1	R_2	R.H.S.	Ratio
←1	R_1	1	5	-3	-1	0	1	0	15	3→min.
0	S_2	5	-6	10	0	1	0	0	20	
1	R_2	1	1	1	0	0	0	1	5	5
R_j -	- C_j	2	67	-2	-1	0	0	0	20	
0	X_2	1/5	1	-3/5	-1/5	0	1/5	0	3	
0	S_2	31/5	0	32/5	-6/5	1	6/5	0	38	5.9
←1	R_3	4/5	0	8/5	1/5	0	-1/5	1	2	1.25→min
R_j -	- C_j	4/5	0	8/5 7	1/5	0	-6/5	0	2	
0	X_2	1/2	1	0	-1/8	0	1/8	3/8	15/4	
0	S_2	3	0	0	-2	1	2	-4	30	
0	X_3	1/2	0	1	1/8	0	-1/8	5/8	5/4	
R_j -	- C_j	0	0	0	0	0	- 1	-1	0	

R=0 () R_2 R_1 : R_2 R_1

Phase-II:

		5	-6	-7	0	0	
B.C.	B.V.	X_1	\mathbf{X}_2	X_3	S_1	S_2	R.H.S.
-6	X_2	1/2	1	0	-1/8	0	15/4
0	S_2	3	0	0	-2	1	30
-7	X_3	1/2	0	1	1/8	0	5/4
Z_j -	- C_j	-23/2	0	0	-1/8	0	-125/4

min.

 $X_3 = 5/4$ $X_2 = 15/4$ $X_1 = 0$: Z = -125/4

1) max.
$$Z = X_1 - 3X_2$$
s.t.
$$-X_1 + 2X_2 \le 5$$

$$X_1 + 3X_2 = 10$$

$$X_1, X_2 \text{ unrestricted in sign}$$

2) min.
$$Z = 3X_1 - 3X_2 + 7X_3$$

s.t. $X_1 + X_2 + 3X_3 \le 40$
 $X_1 + 9X_2 - 7X_3 \ge 50$
 $2X_1 + 3X_2 = 20$
 $|5X_2 + 8X_3| \le 100$
 $X_1, X_2 \ge 0$, X_3 unrest.

3) min.
$$Z = -3X_1 + 4X_2 - 2X_3 + 5X_4$$
s.t.
$$4X_1 - X_2 + 2X_3 - X_4 = -2$$

$$X_1 + X_2 + 3X_3 - X_4 \le 14$$

$$2X_1 + 3X_2 - X_3 + 2X_4 \ge 2$$

$$X_1, X_2 \ge 0 \quad , \quad X_3 \le 0 \quad , \quad X_4 unrest.$$

$$M_2$$
, M_1 D , C , B , A -2

•

machines	Time per unit (hours/unit)		Cost	Availability		
	\boldsymbol{A}	В	C	\boldsymbol{D}	(I.D./hour)	hours
M_{I}	2	3	4	2	10	500
M_2	3	2	1	2	15	380
Sales price	65	70	55	45		
(I.D./unit)						

· :

. .

(/) -3 **Operation Cost Products** (I.D./day)machines II 2000 I 5 2200 6 3 II *1800* 7 III 8 *1600* IV/ *60 75* -4 *500 150 5000* 8000 *250* (ans.: 125, 250, 2250000) D, C, B, A-5 : \overline{C} В \boldsymbol{D} Raw material-I 8 *10* 14 6 Raw material-II 2 4 Labor time (hours) *800* 400 RM-I RM-II / 4000 2000 *150* 1000

(ans.: 65, 20, 0, 0, 1210000)

45000 63000 60000 40000

· -6

1)
$$max$$
. $Z = 4X + 3Y$
 $s.t$. $2X + 3Y \le 6$
 $-3X + 2Y \le 3$
 $2Y \le 5$
 $2X + Y \le 4$
 $X,Y \ge 0$

2)
$$max$$
. $Z = 3X + 2Y$
 $s.t$. $|Y - X| \le 2$
 $X + Y \ge 1$
 $X \le 4$
 $Y \le 3$
 $X, Y \ge 0$

3) min.
$$Z = 8X + 5Y$$

s.t. $X + 2Y \le 10$
 $X \ge 5$
 $Y \le 2$
 $X, Y \ge 0$

4) min.
$$Z = 2X + 3Y$$

s.t. $X + Y \le 15$
 $X + 2Y \ge 10$
 $X, Y \ge 0$

(ans.: (X,Y,Z): 1)(3/2,1,9), 2)(4,3,18), 3)(5,0,40), 4)(0,5,15)

: -7

1)
$$max$$
. $Z = 2X_1 + X_2 - 3X_3 + 5X_4$
 $s.t$. $X_1 + 7X_2 + 3X_3 + 7X_4 \le 46$
 $3X_1 - X_2 + X_3 + 2X_4 \le 8$
 $2X_1 + 3X_2 - X_3 + X_4 \le 10$
 $X_1, X_2, X_3, X_4 \ge 0$

2) min.
$$Z = X_1 - 3X_2 - 2X_3$$

 $3X_1 - X_2 + 2X_3 \le 7$
 $-2X_1 + 4X_2 \le 12$
 $-4X_1 + 3X_2 + 8X_3 \le 10$
 $X_1, X_2, X_3 \ge 0$

(ans.: 1) (0,12/7,0,34/7; 26) , 2) (78/25,114/25,11/10; -319/25))

$$X_6, X_5, X_4$$
 -8

: (S.B.F.S.)

max.
$$Z = 3X_1 + X_2 + 2X_3$$

s.t. $4X_1 + X_2 + 2X_3 + X_4 = 3$
 $8X_1 + X_2 - 4X_3 + 2X_5 = 10$ (ans.: $(0,0,3/2,0,7/2,0;3)$)
 $3X_1 - X_6 = 0$
 $X_1, X_2, X_3, X_4, X_5, X_6 \ge 0$

: -9

1) min.
$$Z = 4X_1 + X_2$$

s.t. $3X_1 + X_2 = 3$
 $4X_1 + 3X_2 \ge 6$
 $X_1 + 2X_2 \le 3$
 $X_1, X_2 \ge 0$

2)
$$max.$$
 $Z = X_1 + 5X_2 + 3X_3$
s.t. $X_1 + 2X_2 + X_3 = 3$
 $2X_1 - X_2 = 4$
 $X_1, X_2, X_3 \ge 0$

(ans.: 1) (3/5,6/5;18/5), 2) (2,0,1;5)).

: <u>Transportation Model</u> -1-5))) (*1941 1947* 1951 1963 Modify Distribution method (MODI) . 1954 Stepping Stone Assignment problem 1955 1957 R.A.M.V.A.M.1958 . *1968* : The least cost transportation problem -2-1-5 n m . i S_i D_j . **j** (i,j) C_{ij} i . **j** X_{ij} $\cdot j$

56

min.
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} X_{ij}$$

s.t. $\sum_{j=1}^{n} X_{ij} = a_{i}$
 $\sum_{i=1}^{m} X_{ij} = b_{j}$
 $X_{ij} \ge 0$

unbalanced : $\sum_{j} b_{j} - \sum_{i} a_{i}$ -2 $\sum_{i} a_{i} - \sum_{j} b_{j}$. S.B.F.S. -1 -2) -3 :*S.B.F.S.* : Northwest corner method) X_{11} () X_{11} =min. (a_1,b_1) ()) : Least cost method -2 ()

: Vogel's Approximation Method (V.A.M.) . (.2 () .3 . (() : Russel's Approximation Method (R.A.M.)) . ($\overline{b_j}$) ($\overline{a_i}$) . $\Delta_{ij} = C_{ij} - \overline{a_i} - \overline{b_j}$: ونعطي لمتغيرها أكبر كمية ممكنة والتي $\Delta_{
m ij}$. $min.(a_i\,,\,b_j\,)$ تساوي () () .1 -() . () .2

()

: Optimal Solution -3-1-5 *S.B.F.S.* m+n-1n m : Stepping Stone method \overline{C}_{ij} . () : Multipliers method Modified Distribution method (MODI) . Duality theory V_j U_i \boldsymbol{j} i X_{ij} $U_i + V_j = C_{ij}$ 59

```
(m+n-1) ) (m+n-1)
(m+n) (
                                                 ( U_I=0
                                                                   )
             : X_{pq}
                                           \overline{C}_{pq}
                         \overline{C}_{pq} = C_{pq} ( U_p + V_q)
 \overline{C}_{pq}
                                                (
                                                                             )
      )
                                                   . (
                          25 20 15
                                                 S_3, S_2, S_1
                                                                           : <u>1-</u>
                         15 12 10 8
                                                   C_4, C_3, C_2, C_1
                  (
                                                                  (
                                                                               )
                                            C_2
                                                     C_3
                                    C_1
                                                            C_4
                                                             5
                            S_1
                                             3
                                                     4
                            S_2
                                     3
                                                     5
                                                             2
                                             2
                            S_3
                        (25+20+15=60)
                                  C_5
                                                           (8+10+12+15=45)
                                                     (60-45=15)
                                                   - S.B.F.S.
                   :
                                                                              -1
                                                                 Supply
                                                   C_4
                                                           C_5
                                           C_3
                              2
                                      3
                                                             0
                 S_1
                          8
                                  7
                                                                    15
                                              5
                                      2
                                                             0
                 S_2
                                         12
                                                                    20
                                                             0
                 S_3
                                                 10
                                                         15
                                                                    25
              Demand
                           8
                                   10
                                           12
                                                   15
                                                           15
                                                                    60
```

T.T.C. = 2*8 + 3*7 + 2*3 + 5*12 + 2*5 + 3*10 + 0*15 = 143

				•		
	C_1	C_2	C_3	C_4	C_5	Supply
S_{I}	0	3	4	5	<i>0 15</i>	15
S_2	5	2	5	15 2	0	20
S_3	3	10	12	3	0	25
Demand	8	10	12	15	15	60

T.T.C. = 2*0 + 0*15 + 3*5 + 2*15 + 4*3 + 1*10 + 2*12 = 91

: *VAM* -

	C_1	C_2	C_3	C_4	C_5	Supply	P.C.
S_{I}	0	3	4	5	<i>0 15</i>	15	<u>2</u> 1 1 <u>3</u>
S_2	5	2	5	15	0	20	2 0 0 1 1
S_3	3	10	12	3	0	25	1 1 2 11
Demand	8	10	12	15	15	60	
P.C.	1 1 1 1	1 1 1	2 2 2	1 1 1 1	0		

T.T.C. = 2*0 + 0*15 + 3*5 + 2*15 + 4*3 + 1*10 + 2*12 = 91

: *RAM*

	C_1	C_2	C_3	C_4	C_5	Supply
S_{I}	8	3	4	5	7	15
S_2	3	2	5	15	5	20
S_3	4	10	12	3	3	25
Demand	8	10	12	15	15	60

•

	C_1	C_2	C_3	C_4	C_5
S_1	-7	-5	-6	-5	-5
S_2	-6	-6	-5	<u>-8</u>	-5
S_3	-4	-6	-7	-6	-4

 $: C_4 X_{24}$

	C_{I}	C_2	C_3	C_5
S_1	-6	-4	-5	-4
S_2	-6	-6	-5	-5
S_3	-4	-6	<u>-7</u>	-4

 $: C_3 X_{33}$

	C_1	C_2	C_5
S_1	-5	-3	-3
S_2	-4	-4	-3
S_3	-4	-6	-4

 $: C_2 X_{32}$

	C_{I}	C_5
S_1	-4	-2
S_2	-4	-3
S_3	-4	<u>-4</u>

 $: S_3 X_{35}$

	C_1	C_5
S_1	-3	-2
S_2	-3	-3

 X_{15} ,

 S_2 X_{25}

 X_{II}

T.T.C. = 2*8 + 0*7 + 2*15 + 0*5 + 1*10 + 2*12 + 0*3 = 80

 $RAM \qquad < (91) \ VAM \qquad \leq (91) \qquad < (143) \qquad \qquad . \ (80)$

. VAM RAM
) VAM S.B.F.S.
RAM

No. of basic cells = m+n-1 = 5+3-1=7

: Optimal solution

-2

(

: Stepping stone

 \overline{C}_{ii}

	C_{I}	C_2	C_3	C_4	C_5	Supply
S_I	0	3	4	5	15	15
S_2	5	2	5	15	0	20
S_3	3	10	12	3	0	25
Demand	8	10	12	15	15	60

entering variable

 \overline{C}_{35}

leaving variable

 X_{25}

 X_{ij}

 $X_{35}^{+} \to X_{15}^{-} \to X_{11}^{+} \to X_{31}^{-}$:

 X_{31}

	C_1	C_2	C_3	C_4	C_5	Supply
S_{I}	3	3	4	5	12	15
S_2	5	2	5	15	0	20
S_3	4	10	12	3	3	25
Demand	8	10	12	15	15	60

T.T.C. = 6 + 0 + 15 + 30 + 10 + 24 + 0 = 85

No. of basic cells = 5 + 3 - 1 = 7

$$X_{12} \to X_{32} \to X_{35} \to X_{15} \qquad : \qquad \overline{C}_{12} = 3 - 1 + 0 - 0 = 2$$

$$X_{13} \to X_{33} \to X_{35} \to X_{15} \qquad : \qquad \overline{C}_{13} = 4 - 2 + 0 - 0 = 2$$

$$X_{14} \to X_{24} \to X_{21} \to X_{11} \qquad : \qquad \overline{C}_{14} = 5 - 2 + 3 - 2 = 4$$

$$X_{22} \to X_{32} \to X_{35} \to X_{15} \to X_{11} \to X_{21} \qquad : \qquad \overline{C}_{22} = 2 - 1 + 0 - 0 + 2 - 3 = 0$$

$$X_{23} \to X_{33} \to X_{35} \to X_{15} \to X_{11} \to X_{21} \qquad : \qquad \overline{C}_{23} = 5 - 2 + 0 - 0 + 2 - 3 = 2$$

$$X_{25} \to X_{21} \to X_{11} \to X_{15} \qquad : \qquad \overline{C}_{25} = 0 - 3 + 2 - 0 = -1 \qquad \text{negative}$$

$$X_{31} \to X_{11} \to X_{15} \to X_{35} \qquad : \qquad \overline{C}_{31} = 4 - 2 + 0 - 0 = 2$$

$$X_{34} \to X_{24} \to X_{21} \to X_{11} \to X_{15} \to X_{35} \qquad : \qquad \overline{C}_{34} = 3 - 2 + 3 - 2 + 0 - 0 = 2$$

 X_{21} X_{25}

	C_{I}	C_2	C_3	C_4	C_5	Supply
S_{I}	8	3	4	5	7	15
S_2	3	2	5	15	5	20
S_3	4	10	12	3	3	25
Demand	8	10	12	15	15	60

T.T.C. = 16 + 0 + 30 + 0 + 10 + 24 + 0 = 80

No. of basic cells = 7

: \overline{C}_{ij}

15

12 10

 V_j , U_i : Multipliers method -2

 $U_i = 0$: $U_i + V_j = C_{ij}$:

VAM

	C_{I}	C_2	C_3	C_4	C_5	Supply
S_1	0	3	4	5	<i>θ</i> 15	15
S_2	5	2	5	15 2	0	20
S_3	3	10	12	3	0	25
Demand	8	10	12	15	15	60

T.T.C. = 91 and no. of basic cells = 7

$$C_{11} = U_1 + V_1 = 2 \Rightarrow V_1 = 2$$

$$C_{15} = U_1 + V_5 = 0 \Rightarrow V_5 = 0$$

$$C_{21} = U_2 + V_1 = 3 \Rightarrow U_2 = 1$$

$$C_{24} = U_2 + V_4 = 2 \Rightarrow V_4 = 1$$

$$C_{31} = U_3 + V_1 = 4 \Rightarrow U_3 = 2$$

$$C_{32} = U_3 + V_2 = 1 \Rightarrow V_2 = -1$$

$$C_{33} = U_3 + V_3 = 2 \Rightarrow V_3 = 0$$

$$\begin{array}{l} \vdots & \overline{C}_{ij} = C_{ij} - (U_i + V_j) & \overline{C}_{ij} \\ \overline{C}_{12} = C_{12} - (U_1 + V_2) = 3 - (0 + (-1)) = 4 \\ \overline{C}_{13} = C_{13} - (U_1 + V_3) = 4 - (0 + 0) = 4 \\ \overline{C}_{14} = C_{14} - (U_1 + V_4) = 5 - (0 + 1) = 4 \\ \overline{C}_{22} = C_{22} - (U_2 + V_2) = 2 - (0 - 1) = 2 \\ \overline{C}_{23} = C_{23} - (U_2 + V_3) = 5 - (1 + 0) = 4 \\ \overline{C}_{25} = C_{25} - (U_2 + V_5) = 0 - (1 + 0) = -1 \\ \overline{C}_{34} = C_{34} - (U_3 + V_4) = 3 - (2 + 1) = 0 \\ \overline{C}_{35} = C_{35} - (U_3 + V_5) = 0 - (2 + 0) = -2 \ most \quad negative \end{array}$$

 $X_{35} \longrightarrow \overline{C}_{ij}$ $X_{35}^{+} \longrightarrow \overline{X}_{15}^{-} \longrightarrow \overline{X}_{11}^{+} \longrightarrow \overline{X}_{31}^{-}$ $\vdots \qquad X_{31}$

Supply C_3 C_5 C_2 S_1 <u>12</u> S_2 S_3 Demand

T.T.C. = 6 + 0 + 15 + 30 + 10 + 24 + 0 = 85No. of basic cells = m + n - 1 = 3 + 5 - 1 = 7 \overline{C}_{ij}

		$V_1 = 1$	2	1	V ₂ =	1	V	/3=	2	Ţ	/4=	1	V_5	=0	
		C_1			C_2			C_3			C_4		(5	Supply
$U_1=0$	S_{I}		2			3			4			5		0	
		3		2			2			4			1	2	<i>15</i>
$U_2=1$	S_2		3			2			5			2		0	
		5		0			2				<i>15</i>		-1		<i>20</i>
$U_3=0$	S_3		4			1			2			3		0	
		2			<i>10</i>			<i>12</i>		2				3	25
Dema	nd	8			<i>10</i>			<i>12</i>			<i>15</i>		1	5	60

 X_{21} \overline{C}_{ij} X_{25}

:

		$V_1=2$		$V_2=1$		$V_3=2$		V ₄ =2		$V_5=0$		Supply				
			C_1			C_2			C_3			C_4		C_5		
$U_1=0$	S_1			2			3			4			5		0	
			8		2			2			3			7		<i>15</i>
U_2 =0	S_2			3			2			5			2		0	
		1			1			3				<i>15</i>		5		<i>20</i>
U_3 =0	S_3			4			1			2			3		0	
		2				<i>10</i>			<i>12</i>		1			3		25
Dema	nd		8			<i>10</i>			<i>12</i>			<i>15</i>		15		60

		: <u>Assign</u>	ment model	2-5
	Jobs () n		
	m	(machines)	
=)			
(n < m)		(m-n)	m = n	(
		. (n>m)		(n-m)
		:		
		:	: <u>minimized</u>	
				.1
		•		.2
				.3
		()		
				•
		()		.4
	`			
	,			(
			(2)	.5
			: <u>maximized</u>	_

: <u>2-</u>

jobs		machines										
	<i>M1</i>	M1 M2 M3 M4										
J1	10	11	4	2	8							
<i>J</i> 2	7	11	10	14	12							
<i>J</i> 3	5	6	9	12	14							
<i>J4</i>	13	15	11	10	7							

	M1	<i>M</i> 2	<i>M3</i>	<i>M4</i>	<i>M5</i>
J1	10	11	4	2	8
<i>J</i> 2	7	11	10	14	12
<i>J</i> 3	5	6	9	12	14
J4	13	15	11	10	7
J 5	0	0	0	0	0

	<i>M1</i>	<i>M</i> 2	<i>M3</i>	<i>M4</i>	<i>M</i> 5
J1	8	9	2	0	6
<i>J2</i>	0	4	3	7	5
<i>J</i> 3	0	1	4	7	9
J4	6	8	4	3	0
<i>J</i> 5	0	0	0	0	0

() > 4 = (1) . 5 =

: .

<i>5</i> = =		<i>M1</i>	<i>M2</i>	<i>M3</i>	<i>M4</i>	<i>M5</i>
	J1	9	9	2	0	7
	J2	0	3	2	6	5
	<i>J</i> 3	0	0	3	6	9
	J4	6	7	3	2	0
	7.5	-	•	•		-

:

Jobs	Machines
J1	M4
<i>J</i> 2	<i>M1</i>
<i>J3</i>	M1, M2
<i>J4</i>	M5
J 5	M2, M3, M4

. 22

: <u>3-</u>

	Machines										
Jobs	M1	M1 M2 M3 M4									
J1	10	3	2	4							
<i>J</i> 2	9	4	1	3							
<i>J3</i>	8	5	1	5							
J4	7	6	2	6							

(*10*) : ___

		Mack	nines				Maci	hines
Jobs	<i>M1</i>	<i>M2</i>	<i>M3</i>	<i>M4</i>	Jobs	<i>M1</i>	<i>M</i> 2	<i>M3</i>
J1	0	7	8	6	J1	0	7	8
J 2	1	6	9	7	J 2	0	5	8
J3	2	5	9	5	 J 3	0	3	7
J4	3	4	8	4	J4	0	1	5

Machines **Jobs** *M1 M2 M3 M4 J1 J2 J*3 **J**4

4= () > *2*=

		Machines									
Jobs	<i>M1</i>	<i>M2</i>	<i>M3</i>	<i>M4</i>							
J1	0	4	1	3							
<i>J</i> 2	0	2	1	3							
<i>J</i> 3	•	0	0	0							
J4	2	0	0	_0_							

1 4=() > 3=

	Machines									
Jobs	<i>M1</i>	<i>M</i> 2	<i>M3</i>	<i>M4</i>						
J1	0	3	0	2						
J2	0	1	0	2						
<i>J3</i>	1	0	0	0						
J4	3	0	0	_0_						
4 = ()		=							

Jobs	Machines
J1	M1, M3
<i>J</i> 2	M1, M3
<i>J3</i>	M2, M3, M4
<i>J4</i>	M2, M3, M4

Jobs	Mach.	profit		Jo.	Ma.	Pr.		Jo.	Ma.	Pr.		Jo.	Mach.	Pr.
J1	M1	<i>10</i>		<i>J1</i>	<i>M1</i>	10		<i>J1</i>	<i>M3</i>	2		J1	<i>M3</i>	2
<i>J2</i>	<i>M3</i>	1		<i>J</i> 2	<i>M3</i>	1		<i>J2</i>	M1	9		<i>J2</i>	M1	9
<i>J</i> 3	<i>M2</i>	5	or	<i>J</i> 3	<i>M4</i>	5	or	<i>J</i> 3	<i>M</i> 2	5	or	<i>J</i> 3	<i>M4</i>	5
<i>J4</i>	<i>M4</i>	6		J4	<i>M</i> 2	6		J4	<i>M4</i>	6		J4	<i>M</i> 2	6
	\sum	22			\sum	22			\sum	22			\sum	22

: -1

a)		Des	tinati	Supply	
	Sources	D1	D2	<i>D3</i>	
	<i>S1</i>	1	2	6	7
	S2	0	4	2	12
	<i>S3</i>	3	1	5	11
	Demand	10	10	10	30

	Des	tinati	Supply	
Sources	D1	D2	<i>D3</i>	
S1	5	1	8	12
S2	2	4	0	14
<i>S3</i>	3	6	7	4
Demand	9	10	11	30

		Sup.		
Sou.	<i>D1</i>	D2	<i>D3</i>	
S1	5	1	7	10
<i>S2</i>	6	4	6	80
<i>S3</i>	3	2	2	15
Dem.	75	20	50	

		Dest.				
Sou.	D1	D2	<i>D3</i>	D4		
S1	10	20	5	7	10	
<i>S2</i>	13	9	<i>12</i>	8	20	
<i>S3</i>	4	15	7	9	30	
<i>S4</i>	14	7	1	0	40	
<i>S</i> 5	3	12	5	19	50	
Dem.	60	60	20	10	150	

 $(ans.:a)(7,0,0,2,0,10,1,10,0;40)\ ,\ b)(2,10,0,3,\overline{0,11,4,0,0;38})\ ,\ c)(0,10,0,35,10,35,0,0,15,40,0,0;500)\ ,\ d)(0,0,10,0,0,20,0,0,30,0,0,0,30,0,10,30,10,10,0;820))$

.

Warehouses	Markets				
	M1	<i>M2</i>	<i>M3</i>	M4	<i>M5</i>
W1	7	6	5	4	2
W2	9	7	3	6	3
W3	8	8	7	3	1
W4	4	3	1	2	1

(ans.: (30,0,0,40,0,0,0,30,0,10,0,0,0,20,40,10,20,0,0,0;690))

: S4 D1 -3

	De			
Sources	D1	D2	D3	Supply
<i>S1</i>	5	1	0	20
S2	3	2	4	10
<i>S3</i>	7	5	2	15
S4	9	6	0	15
Demand	5	10	15	

(ans.: (0,10,5,5,5,0,0,0,10,0,0,0,15,5,0,10,0;55))

-4

20 20

30 20 30 25

M4

. *25 10 30*

: . **J4**

	Job s				
machines	J1	<i>J</i> 2	<i>J3</i>	J4	J 5
<i>M1</i>	<i>10</i>	2	3	<i>15</i>	9
<i>M</i> 2	5	<i>10</i>	15	2	4
<i>M3</i>	15	5	14	7	15
<i>M4</i>	20	15	13		8

(ans.:(0,0,25,0,0,20,0,0,10,0,0,20,0,0,0,0,0,5,0,25;560))

-5

		machines					
a)	Jobs	<i>M1</i>	<i>M2</i>	<i>M3</i>	<i>M4</i>		
	J1	10	5	5	2		
	<i>J2</i>	9	8	4	3		
	J3	7	7	6	4		
	J4	8	7	5	5		

		Machines					
b)	Jobs	M1	<i>M2</i>	<i>M3</i>	<i>M4</i>	<i>M</i> 5	
	J1	3	8	2	<i>10</i>	3	
	<i>J</i> 2	8	7	2	9	7	
	<i>J3</i>	6	4	2	7	5	
	J4	8	4	2	3	5	
	J 5	9	10	6	9	10	

(ans.:a) 1-2,2-4,3-1,4-3 or 1-4,2-3,3-1,4-2;20, b) 1-5, 2-3, 3-2, 4-4, 5-1;21)

-6

	Machines					
Jobs	<i>M1</i>	<i>M</i> 2	<i>M3</i>	<i>M4</i>	<i>M</i> 5	
J1	3	9	2	3	7	
J 2	6	1	5	6	6	
<i>J</i> 3	9	4	7	10	3	
J4	2	5	4	2	1	
J5	9	6	2	4	6	

(ans.:1-2, 2-5, 3-4, 4-3, 5-1;38)

P1 -7

: *M4 P3 M3*

	machines				
Processes	<i>M1</i>	<i>M2</i>	<i>M3</i>	<i>M4</i>	
P1	5	5		2	
P2	7	4	2	3	
Р3	9	3	5		
P4	7	2	6	7	

(ans.: 1-4, 2-3, 3-2, 4-1; 14)

-8

	Lines				
Engineering	L1	L2	L3	<i>L4</i>	
E1	8	9	6	4	
E2	5	7	7	8	
<i>E3</i>	10	11	6	8	
E4	3	9	5	7	

.

. L4 E1

(ans.: a)1-4, 2-2, 3-3, 4-1;20, b)1-3, 2-2, 3-4, 4-1; 24; 4)

Network planning

	<u> </u>		
		: Critical Path	-1-6
		. Criticai I ain	1-0
			:
		•	Event -
		•	
			•
		: <u>A</u>	<u>ctivity </u>
Duration			
		:	: <u>Path</u> -
		Critical Path ((C.P.)
	:	C.P.time	
	Forward p	ass –	
Earliest time			
		:	(ES_j)
	$ES_{j} = \max_{i} . \{ES_{j} + L$	O_{ij} $\forall (i,j)$ activities	
	(i,j)	D_{ij} $ES_I = 0$	

$$\hat{O}$$
 \hat{O} \hat{O} Backward pass

Latest time (LC_i)

time (LC_i)
$$LC_{i} = \min_{j} \left\{ LC_{i} - D_{ij} \right\} \quad \forall (i,j) \text{activities}$$

$$\emptyset \qquad \qquad \text{i} \quad LC_{n} = ES_{n}$$

$$(i,j) \qquad \emptyset$$

Ø

c)

$$ES_j - ES_i = LC_j - LC_i = D_{ij}$$

Ø Free Float Time (F.F.)

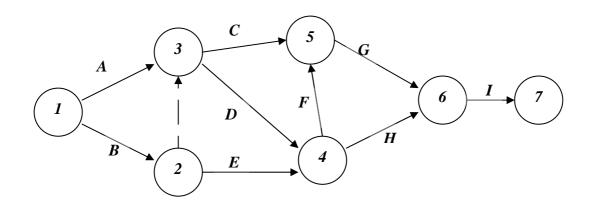
$$FF_{ij} = ES_j - ES_i - D_{ij}$$

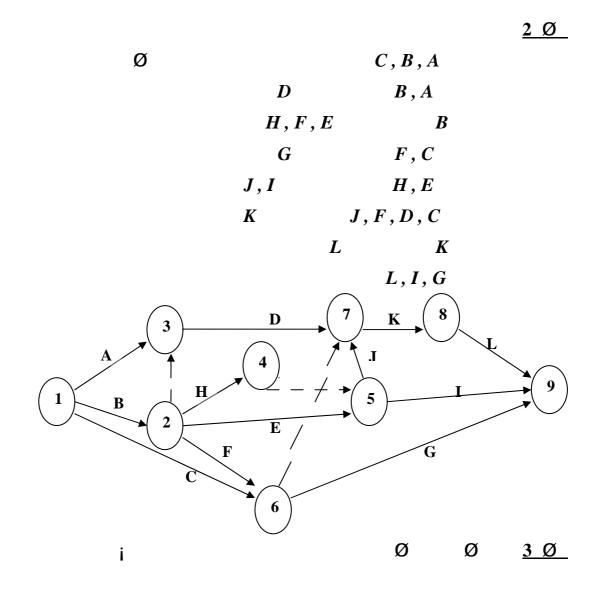
Act. Pre-act.

A ---
B ---
C A,B

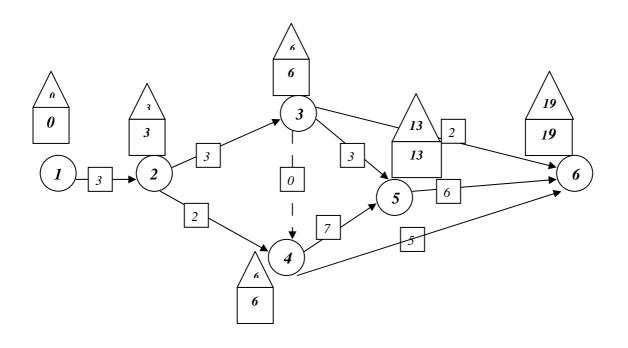
D A

E C,D


Ø


b)	Act.	Pre-act.
	A	
	В	A
	C	A
	D	В
	E	В,С
	F	D,E

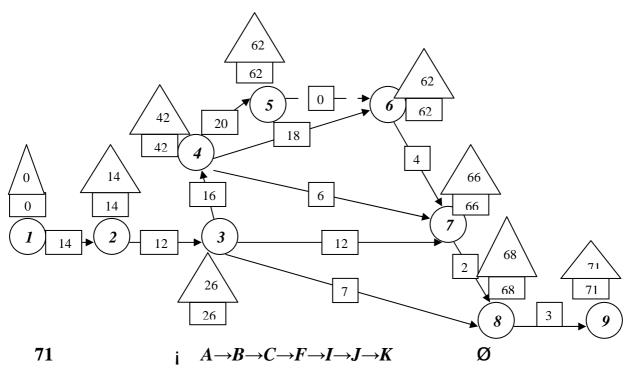
Act.	Pre-act.
A	
В	
C	A,B
D	A,B
E	В
F	D,E
G	C,F
H	D,E
Ι	G,H


1 Ø

a) $A \qquad 2 \qquad D \qquad 4 \qquad E \qquad 5$ b) $A \qquad 2 \qquad B \qquad 3 \qquad D \qquad 5 \qquad F \qquad 6$ $C \qquad 4 \qquad E \qquad 5$

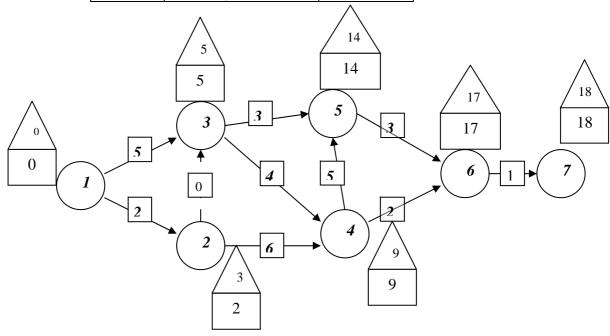
activity	1-2	2-3	2-4	3-4	3-5	3-6	4-5	4-6	5-6
D_{ij}	3	3	2	0	3	2	7	5	6

Forward pass	Backward pass
$ES_1 = 0$	$LC_6 = 19$
$ES_2 = 0 + 3 = 3$	$LC_5 = 19 - 6 = 13$
$ES_3 = 3 + 3 = 6$	$LC_4 = min. \{ 13-7, 19-5 \} = 6$
$ES_4 = max. \{3+2,6+0\} = 6$	$LC_3 = min. \{ 6-0, 13-3, 19-2 \} = 6$
$ES_5 = max. \{ 6+3, 6+7 \} = 13$	$LC_2 = min. \{ 6-3, 6-2 \} = 3$
$ES_6 = max. \{ 6+2, 6+5, 13+6 \} = 19$	$LC_1 = 3 - 3 = 0$


1-2-3-4-5-6 :

. 19 Critical time

(1,2), (2,3), (3,4), (4,5), (5,6)


: <u>4-</u>

activity	Preceding activity	Duration
\boldsymbol{A}		14
В	A	12
\boldsymbol{C}	В	16
\boldsymbol{D}	В	7
\boldsymbol{E}	В	12
F	C	20
G	\boldsymbol{C}	18
H	\boldsymbol{C}	6
I	F,G	4
J	E, H, I	2
K	D,J	3

<u>5 Ø</u>

activity	Preceding activity	Duration
\boldsymbol{A}		5
В		2
\boldsymbol{C}	A, B	3
D	A, B	4
\boldsymbol{E}	В	6
$\boldsymbol{\mathit{F}}$	D, E	5
\boldsymbol{G}	C, F	3
Н	D, E	2
I	G,H	1

. C.T.= 18 I, G, F, D, A:

Program Evaluation and Review

-2-6

: Technique (PERT)

PERT

Optimistic time (a)

Pestimistic time (b)

Most likely time (m)

$$(i,j)$$
 Expected time (\overline{D})

$$\overline{D} = \frac{a+b+4m}{6}$$

Variance (V)

$$V = \left(\frac{b-a}{6}\right)^2$$

$$V = \left(\frac{b-a}{6}\right)^{2}$$

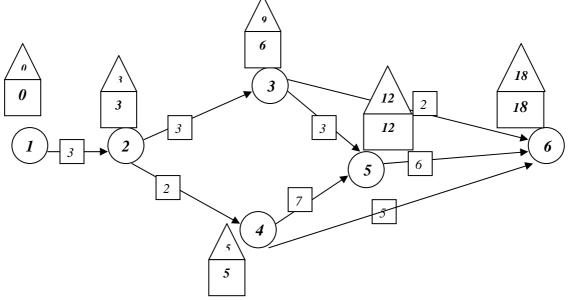
$$\vdots$$

$$Pr\left(Z \le \frac{ST_{i} - CT_{i}}{\sqrt{V(\mu_{i})}}\right)$$

 ST_i

 CT_i

یمثل $V(\mu)$


20

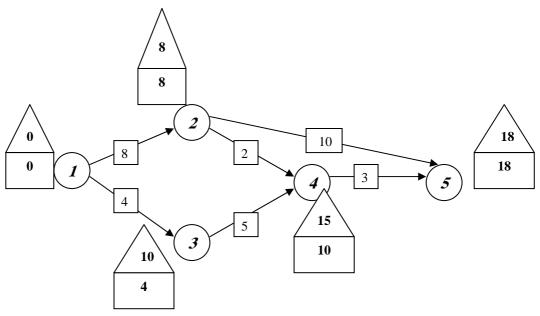
: <u>6-</u>

80

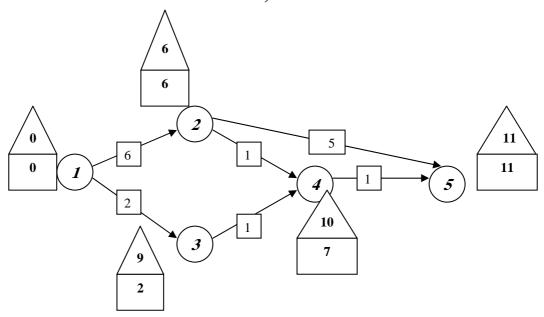
activity	a	b	m
1,2	2	8	2
2,3	1	11	1.5
2,4	0.5	7.5	1
3,5	1	7	2.5
3,6	1	3	2
4,5	6	8	7
4,6	3	11	4
5,6	4	8	6

activity	\overline{D}	V
1,2	3	1
2,3	3	
2,4	2	1.36
3,5	3	
3,6	2	
4,5	7	0.11
4,6	5	
5,6	6	0.44
	V(μ)	2.91

20


(5,6), (4,5), (2,4), (1,2): .CT = 18: $Pr\left(Z_{i} \le \frac{20-18}{\sqrt{2.91}}\right) = Pr\left(Z \le 1.17\right) = 0.879$ **%88**

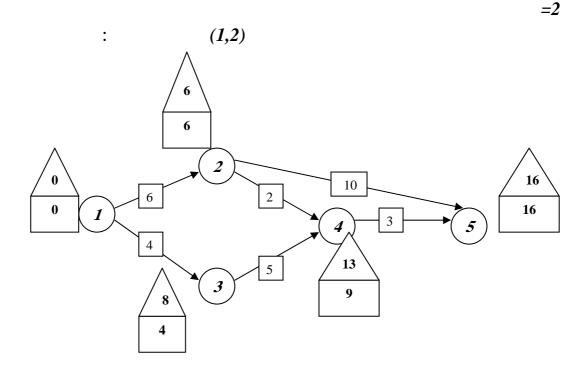
-3-6


```
Normal (
    C_n D_n
                                                                 -1
                            Crash (
     C_c D_c
                                                                  -2
  . ( CTN )
                                                                 -1
                                                                 -2
                                                  . ( CTC )
                        . \quad T = CTN - CTC
                                                                 -3
                                                  Slope
                                                                 -4
                                  Free Float (FF)
                                                                 -5
                         FF_{ij} = ES_j - ES_i - D_{ij}
                                                      FF
                          D_c
                                         D_n
                                                                  -6
×
                                                                  -7
                                (2
                                                  ) ( CTC )
    6 5
                       (
                            ) ()
                                                               : <u>7-</u>
```

	no	rmai	C	usn
activity	D_n	C_n	D_c	C_c
1,2	8	100	6	200
1,3	4	<i>150</i>	2	350
2,4	2	50	1	90
2,5	<i>10</i>	100	5	400
3,4	5	100	1	200
1 =	2	0.0	7	100

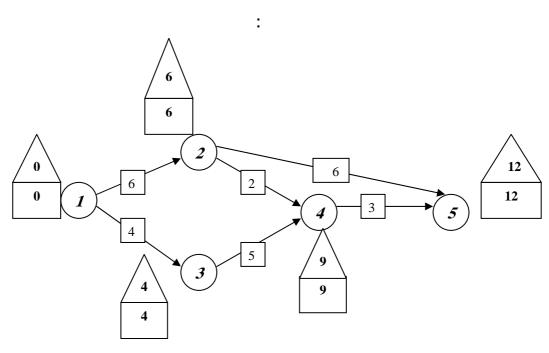
--- | 580 | --- | 1340 | : ___

CTN = 18 , $Total\ Cost = 580$



CTC = 11 , $Total\ Cost = 1340$ CTN - CTC = 18 - 11 = 7. 7

:

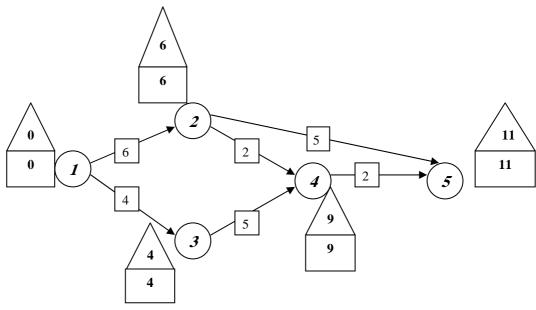

activity	slope	F.F.
1,2	50 *	
1,3	100	4 - 0 - 4 = 0
2,4	40	10 - 8 - 2 = 0
2,5	60 *	
3,4	25	10 - 4 - 5 = 1
4,5	10	18 - 10 - 5 = 5 max.

min. { 5, 8-6}: () (1,2)

Critical Path C.P. is : (1, 2), (2, 5) and Total Cost T.C.= 580+2*50=680

 $min.{4, 10-5} = 4$ (2,5)

C.P. is: (1,2), (2,5) and (1,3), (3,4), (4,5) T.C. = 680 + 4 * 60 = 920 (2,5)


5

(2,5)

:

activity	Slope		
(2,5), (1,3)	60 + 100 = 160		
(2,5), (3,4)	60 + 25 = 85		
(2,5), (4,5)	60 + 10 = 70 min.		

(4,5), (2,5)

C.P. is (1,2), (2,5) and (1,3), (3,4), (4,5)T.C. = 920 + 1 * 70 = 990

990 580

11 18

. 1340

-1 C, B, AF, E, D \boldsymbol{A} . **D**, **B** \boldsymbol{G} . \boldsymbol{I} G, C \boldsymbol{H} L, K. **I** .H,E \boldsymbol{J} .H,E \boldsymbol{F} N, M.I,M0 .0, L, JP P, N, K

-2

Pre. Act. activity Pre. Act. **Duration** activity **Duration** *24* C, BR \boldsymbol{D} 6 \boldsymbol{C} 8 \boldsymbol{E} R *16* \boldsymbol{A} \boldsymbol{G} \boldsymbol{H} В \boldsymbol{A} *16 16* P, Q, U, S8 \boldsymbol{U} \boldsymbol{F} N8 8 L, KQ \boldsymbol{E} *12* M *16* R \boldsymbol{H} K \boldsymbol{A} *16* E, D*36* \boldsymbol{F} R *40* S T, M \boldsymbol{G} *16* R *24* \boldsymbol{L} 24 T \boldsymbol{G} \boldsymbol{H}

(ans.: R, G, H, L, M, S, N; 120)

: -3

activity	Pre. Act.	Duration	Activity	Pre. Act.	Duration
\boldsymbol{A}		10	J	F	5
В		28	K	E,G,H	1
\boldsymbol{C}	\boldsymbol{A}	2	$oldsymbol{L}$	I, J	6
\boldsymbol{D}	C	1	M	J,L	2
\boldsymbol{E}	D	2	N	K, M	1
F	D	30	0	K, M	4
\boldsymbol{G}	D	45	P	N	1
Н	B, D	1	Q	N, O	1
I	E, H	6	R	P, Q	1

(ans.: A, C, D, G, K, O, Q, R; 65)

39 -4

: *1.9*

Act.	\boldsymbol{A}	В	C	D	E	F	G	H	I
Pre.act.			\boldsymbol{A}	<i>A,B</i>	A,B	C,D	\boldsymbol{A}	C,D,G	E,F,H
Duration	5	7	6	8	7	5	6	9	10

(ans.: 99.6%)

: -5

Act.	A	В	C	D	E	F	G	Н	I
Pre.act.			<i>A,B</i>	A,B	\boldsymbol{B}	D,E	C,F	D,E	G,H
Duration	6	5	7	8	4	6	7	4	X

Z = 1.5 I X -:

. **2** = **34**

25 H -

. *16*

6 50000

7 5 C -

25000

. *30000*

(ans.: a) 4; b) 600000; c)-300000)

: -6

Act.	(a,b,m)	Act.	(a,b,m)
1,2	5,7,6	3,6	3,5,4
1,4	1,5,3	4,6	4,9,8
1,5	2,6,4	4,7	4,8,6
2,3	4,6,5	5,6	9,14,10
2,5	6,10,8	5,7	4,8,6
2,6	8,13,9	6,7	3,5,4
3 4	5 10 9		

34

(ans.: 98.9%)

· -7

	No	rmal	cr	ash	sh normal		crash			
Act.	D_n	C_n	D_c	C_c		Act.	D_n	C_n	D_c	C_c
1,2	4	100	1	400		3,7	14	120	<i>12</i>	140
1,4	9	120	6	180		4,5	15	500	10	750
1,3	8	400	5	640		4,7	10	200	6	220
1,6	3	20	1	60		5,6	11	160	8	240
2,3	5	60	3	100		5,7	8	70	5	110
2,5	9	210	7	270		6,7	10	100	2	180
3,4	<i>12</i>	400	8	800		\sum		2460		4090

(ans.: 33; 3750)

-8

	no	ormal	c	rash
Act.	D_n	C_n	D_c	C_c
1,2	5	1000	4	1400
1,3	9	2000	7	3000
2,3	7	2500	4	3400
2,4	9	2800	7	3400
3,5	5	2500	2	4600
3,6	11	4000	7	7200
4, 6	6	3000	4	4200
5,6	8	800	6	1400
\sum		18600		28600

(ans.: 16; 24600)

Sequencing models [2]

	Seque	encing mode	els ()	
(m=1,2,3,)	m			
idle time ()				
`	•				
				·	
	•				-1
			•		
	•				-2
	•				-3
		•			-4
	•				-5
	•				-6
					-7
	•				
		:			
: Processing n	obs through 1 m	achine			<u>n</u> -1-7
:			n		
					_
	Shortest proce	essing time	(S.p.t.)		_
		<i>g</i>	(1		
	Largest pro	cossina timo	(I, nt)		_
	Laigest pro-		(L.p.u.)		
	()	•			: 1-
:	()				. <u>1-</u>
	Jobs A		$D \mid E$	F	
	Time 8	6 2	7 10	4	
	; I ==4		(C4	,
	. Lpt		(,	Spt	(

			Proc	essing
sequence	jobs	time	Start	Finish
1	C	2	0	2
2	F	4	2	6
3	В	6	6	12
4	\boldsymbol{D}	7	12	19
5	\boldsymbol{A}	8	19	27
6	E	10	27	37
\sum				103

 $Spt = 103/6 = 17.16 \ hrs.$

: (

			Proc	essing
Sequence	jobs	time	Start	Finish
1	E	10	0	10
2	A	8	10	18
3	D	7	18	25
4	В	6	25	31
5	F	4	31	35
6	C	2	35	37
\sum_{i}				156

$$Lpt = 156/6 = 26 \ hrs$$

:____

 W_i t_i

: **(**)

Jobs	\boldsymbol{A}	В	\boldsymbol{C}	\boldsymbol{D}	E	F
Time t _i	10	6	5	4	2	8
Weight W _i	5	10	5	1	3	5

 $\vdots \quad \bar{t} \qquad \vdots \underline{\hspace{1cm}}$

\bar{t}	Jobs
10/5 = 2	A
6/10 = 0.6	В
5/5 = 1	C
4/1 = 4	D
2/3 = 0.67	E
8/5 = 1.6	F

$$. B - \overline{E - C - F - A - D} :$$

-2-7

. -1 -2 (

-3 .(

-4 -5

. -6

idle time () -7

 $B \quad A \qquad \qquad B, A \qquad \qquad : \underline{3}$

Jobs	1	2	3	4	5	6
Mach. A	3	<i>12</i>	5	2	9	11
Mach. B	8	10	9	6	3	1

:__

	1	2		3		4		5	6
2	<u>3</u>	12	3	<u>5</u>	1	2		9	11
	8	4 <u>10</u>		9		6	5	<u>3</u>	6 <u>1</u>

The optimal sequencing is: 4-1-3-2-5-6

		Mach.	4	Mach. B					
jobs	Time	Start	Finish	time	Start	Finish	Idle		
4	2	0	2	6	2	8	2		
1	3	2	5	8	8	16	0		
3	5	5	10	9	<i>16</i>	25	0		
2	12	10	22	10	25	35	0		
5	9	22	31	3	35	38	0		
6	11	31	42	1	42	43	4		
Σ							6		

43

43 - 42 = 1 hr. : A

6 hrs. : B

: () B A

jobs	1	2	3	4	5	6	7
Mach. A	3	12	15	6	10	11	9
Mach. B	8	10	10	6	12	1	3

: <u>4-</u>

1		2		3		4		5		6		7
1 3		12		15	2	6	3	<u>10</u>		11		9
8	5	<u>10</u>	4	<u>10</u>		6		12	7	1	6	3

The optimal sequencing is : 1-4-5-3-2-7-6

		Mach.	\boldsymbol{A}	Mach. B						
jobs	time	Start	finish	time	Start	finish	idle			
1	3	0	3	8	3	11	3			
4	6	3	9	6	11	<i>17</i>	0			
5	10	9	19	12	19	31	2			
3	15	19	34	10	34	44	3			
2	12	34	46	10	46	<i>56</i>	2			
7	9	46	55	3	56	59	0			
6	11	55	66	1	66	67	7			
\sum							17			

67

. 67 - 66 = 1 hr. : A

. 17 hrs : B

:

$$\ge$$
 أكبر وقت على الماكنة الثانية \ge

$$\ge$$
 أكبر وقت على الماكنة الثانية \ge

:

:
$$G, H$$
 .1

$$H_i = B_i + C_i$$
 , $G_i = A_i + B_i$. H , G . 2

.3

n

·

.**4**

: **B** - ()

. *ABC*

: <u>5-</u>

: ()

Jobs	1	2	3	4	5	6
Mach. A	3	<i>12</i>	5	2	9	11
Mach. B	8	6	4	6	3	1
Mach. C	13	14	9	12	8	13

:

$$H_i = B_i + C_i \quad , \quad G_i = A_i + B_i$$

jobs	1	2	3	4	5	6
Mach. G	<u>11</u> 3	<u>18</u> 5	<u>9</u> 2	<u>8</u> 1	<i>12</i>	<u>12</u> 4
Mach. H	21	20	13	18	<u>11</u> 6	14

The optimal sequencing is : 4-3-1-6-2-5

	M	lach.	\overline{A}		Ma	ich. B	Mach. C					
jobs	t.	S.	F.	t.	S.	F.	I.	t.	S.	F.	I.	
4	2	0	2	6	2	8	2	<i>12</i>	8	20	8	
3	5	2	7	4	8	12	0	9	20	29	0	
1	3	7	10	8	12	20	0	13	29	42	0	
6	11	10	21	1	21	22	1	13	42	55	0	
2	<i>12</i>	21	33	6	33	39	11	14	55	69	0	
5	9	33	42	3	42	45	3	8	69	77	0	
Σ							17				8	

. 77 hrs. :

$$.77 - 42 = 35 hrs.$$
 : A

$$. 77 - 45 + 17 = 49 hrs$$
 : B

		machines						
jobs	\boldsymbol{A}	B	\boldsymbol{C}	D	\boldsymbol{E}			
1	7	5	2	3	9			
2	6	6	4	5	10			
3	5	4	5	6	8			
4	8	3	3	2	6			

ABCDE

: :<u>___</u>

$$Min. \{E\} = 6 \ge max. \{B, C, D\} = 6$$

$$G_i = A_i + B_i + C_i + D_i$$
 and $H_i = B_i + C_i + D_i + E_i$

$$G_i = A_i + B_i + C_i + D_i$$

$$G_i = A_i + B_i + C_i + D_i$$

$$G_i = A_i + B_i + C_i + D_i$$

$$G_i = A_i + B_i + C_i + D_i$$

$$G_i = A_i + B_i + C_i + D_i$$

$$G_i = A_i + B_i + C_i + D_i$$

$$G_i = A_i + B_i + C_i + D_i$$

2	,	<u>21</u>	3	25	
3	}	<u>20</u>	2	23	
4	!	<i>16</i>	•	<u>14</u>	4

The optimal sequencing is: 1-3-2-4

				<u> </u>		· · · · ·													
		Mach	. A		Ma	ch. B	3		Mac	$h. \overline{C}$			Mac	ch. D			Mac	h. E	
Job	t.	S.	F.	t.	S.	F.	I.	t.	S.	F.	I.	t.	S.	F.	I.	t.	S.	F.	I.
1	7	0	7	5	7	12	7	2	12	14	12	3	14	17	14	9	17	26	17
3	5	7	12	4	12	16	0	5	16	21	2	6	21	27	4	8	27	35	1
2	6	12	18	6	18	24	2	4	24	28	3	5	28	33	1	10	35	45	0
4	8	18	26	3	26	29	2	3	29	32	1	2	33	35	0	6	45	51	0
\sum_{i}							11				18				19				18

. 51 hrs. :

$$.51 - 26 = 15$$
 hrs. : A

$$.51 - 29 + 11 = 33$$
 hrs. : B

$$.51 - 32 + 18 = 37$$
 hrs. : C

$$.51 - 35 + 19 = 35$$
 hrs. : D

:

: () *ABCD* : <u>7-</u>

		mack	hines	
job	\boldsymbol{A}	B	\boldsymbol{C}	\boldsymbol{D}
1	58	14	14	<i>48</i>
2	30	10	18	32
3	28	12	<i>16</i>	44
4	64	16	12	42

.

:

Min. $\{A\} = 28 \ge \max\{B, C\} = 18$ and $\min\{D\} = 32 \ge \max\{B, C\} = 18$

 $B_1 + C_1 = B_2 + C_2 = B_3 + C_3 = B_4 + C_4 = 28$

 $: \quad D \qquad \quad A$

	mach	ines
job	\boldsymbol{A}	D
1	58	<u>48</u> 3
2	<u>30</u> 2	32
3	<u>28</u> 1	44
4	64	<u>42</u> 4

The optimal sequencing is: 3-2-1-4

	Ì	Mach.	4		Mach. B			Mach. C					Mach. D			
job	t.	S.	F.	t.	S.	F.	I.	t.	S.	F.	I.	t.	S.	F.	I.	
3	28	0	28	12	28	40	28	16	40	56	40	44	56	100	56	
2	30	28	58	10	58	68	18	18	68	86	12	32	100	132	0	
1	<i>58</i>	58	116	14	116	130	48	14	130	144	144	48	144	192	12	
4	64	116	180	16	180	196	50	12	196	208	52	42	208	250	16	
Σ							144				148				84	

. 250 hrs.:

$$.250 - 180 = 70 \text{ hrs.}$$
 : A

$$.250 - 196 + 144 = 198 \ hrs. : B$$

$$.250 - 208 + 148 = 190 \text{ hrs.}$$
 : C

:

. A -

B -

. AB -

. BA -

: <u>8-</u>

:

jobs		1	2	3	4	5	6	7	8	9	10
Operating	1	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}	B	В	B	B	B	\boldsymbol{A}
order	2	В			B	\boldsymbol{A}		\boldsymbol{A}		\boldsymbol{A}	В
Operating	1	4	3	4	5	1	1	7	3	6	2
Time	2	6			2	2		8		7	4

.

jobs	A		I	3
1	2	4		6
4		5	3	2
10	1	2		4

 $\{5,7,9\}$ A B

7 9 5

jobs	В	}	\boldsymbol{A}
5	<u>1</u>	1	2
7	<u>7</u>	3	8
9	<u>6</u>	2	7

 $: \qquad BA \quad A \quad AB$

 \boldsymbol{A}

10 - 1 - 4 - 2 - 3 - 5 - 9 - 7

 $: \qquad AB \quad B \quad BA$

В

5-9-7-6-8-10-1-4

					,	,	•	, ,		•
	Mad	ch. A			Mac	ch. B				Idle time
job	t.	S.	F.	job	t.	S.	F.		job	
10	2	0	2	5	1	0	1		1	2 + 22 - 6 = 18
1	4	2	6	9	6	1	7		2	11
4	5	6	11	7	7	7	14		3	14
2	3	11	14	6	1	14	15		4	28 - 11 + 6 = 23
3	4	14	18	8	3	<i>15</i>	18		5	18 – 1 = 17
5	2	18	20	10	4	<i>18</i>	22		6	14
9	7	20	27	1	6	22	28		7	27 - 14 + 7 = 20
7	8	27	35	4	2	28	30		8	15
•		•							9	20 - 7 + 1 = 14
									10	<i>18 - 2 = 16</i>

. A

. 35 - 30 = 5 : B

-1 Spt . Lpt (ans.: 10, 14) \boldsymbol{A} -2 Job Mach. A 5 3 *10* Mach. B (ans.: 2-4-3-5-1, 2, 3) : () -3 Job Mach. A Mach. B **5** 5 6 1 (ans.: 5-3-4-1-2, 2, 4) () \boldsymbol{B} : \boldsymbol{A} \boldsymbol{C} -4 Job Mach. A Mach. B 3 5 Mach. C (ans.: 4-1-5-2-3; 17, 29, 7)

(ans.: 4-1-3-5-2-8-7-6; 26, 44, 7) .

()

 $\boldsymbol{\mathcal{C}}$

Job

Mach. A

Mach. B

Mach. C

 \boldsymbol{B}

6

1

5

4

8

 \boldsymbol{A}

3

5

3

-5

8

11

2

15

() \boldsymbol{C} \boldsymbol{B} \boldsymbol{A} **Job** 1 **2** 3 **5** Mach. A **5** 8 5 7 Mach. B 3 3

Mach. C

(ans.: 2-1-4-3-5; 35; 4, 18, 20)

. *ABC* -7

-6

 Job
 1
 2
 3
 4
 5

 Mach. A
 8
 9
 5
 6
 15

 Mach. B
 4
 5
 1
 2
 3

 Mach. C
 3
 8
 7
 7
 7

. (:

(ans.: a) 3-4-2-5-1; 50, b) 7, 35, 18)

: () *ABCDE* -8

job		machines								
	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{E}					
1	13	9	5	8	19					
2	12	11	6	2	8					
3	15	4	10	2	16					
4	17	9	12	11	10					
5	20	10	4	7	17					
6	<i>16</i>	6	5	9	<i>13</i>					

(ans.:125,32,76,83,86,42) .

Job		1	2	3	4	5	6	7	8	9	10	11	12
No.	1	\boldsymbol{A}	\boldsymbol{A}	В	\boldsymbol{A}	В	В	В	В	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}
Process	2	_	В	-	В	A	A	-	-	В	-	В	-
Operating	1	15	3	12	4	4	8	4	8	2	8	5	7
time	2	_	7	-	3	5	6	-	-	7	-	2	-

(ans.: mach. A (9-2-4-11-12-10-1-5-6); mach. B (5-6-7-8-3-9-2-4-11); 55, 0, 0)

Replacement and Maintenance models [2]

: <u>Replacement models</u> -1-8

•

:

-

.

. C:
. Resale Value S

. n
. TC

. $T = \frac{TC}{n}$. t maintenance f(t)

 $TC = C + \int_{0}^{n} f(t)dt - S$

$$T = \frac{TC}{n} = \frac{1}{n} \left(C - S + \int_{0}^{n} f(t) dt \right)$$

$$\vdots \qquad T \qquad n$$

$$\frac{\partial T}{\partial n} = -\frac{1}{n^{2}} \left(C - S + \int_{0}^{n} f(t) dt \right) + \frac{1}{n} \frac{\partial}{\partial n} \int_{0}^{n} f(t) dt$$

$$\frac{\partial}{\partial n} \int_{0}^{n} f(t) dt = \frac{\partial}{\partial n} [F(t)]_{0}^{n} \quad \text{where} \quad \int f(t) dt = F(t)$$

$$= \frac{\partial}{\partial n} [F(n) - F(0)] \quad \text{since} \quad F(0) = 0$$

$$= \frac{\partial}{\partial n} F(n) = f(n)$$

$$\frac{\partial T}{\partial n} = -\frac{1}{n^{2}} \left(C - S + \int_{0}^{n} f(t) dt \right) + \frac{1}{n} f(n) = 0$$

$$f(n) = \frac{1}{n} \left(C - S + \int_{0}^{n} f(t) dt \right)$$

$$\frac{\partial^{2} T}{\partial n^{2}} = \frac{2}{n^{3}} \left(C - S + \int_{0}^{n} f(t) dt \right) + \frac{1}{n} f'(n) - \frac{2}{n^{2}} f(n) > 0 \Rightarrow \text{min.}$$

Continuous

t

 $g(n) = \frac{1}{n} \left(C - S + \int_{0}^{n} f(t) dt \right)$

. Discrete

t

$$g(n) = \frac{1}{n} \left(C - S + \sum_{t=0}^{n} f(t) \right)$$

: <u>1-</u>

Year (t)	1	2	3	4	5	6	7	8
Maintenance $f(t)$	900	<i>1200</i>	1600	2100	2800	<i>3700</i>	4700	<i>5900</i>
Resale value (S)	4000	2000	1200	600	500	400	400	400

. 7000\$

C = 7000

C - SS f(t)g(n)2100 3550 | *3166.7* | *3050* 8600 | 3020 → mini. 3371.4 3687.5

2000

•

N	C - S	f(t)	$\sum f(t)$	g(n)
1	9000	200	200	9200
2	9000	2200	2400	5700
3	9000	4200	6600	<i>5200</i> → <i>mini</i> .
4	9000	6200	12800	5450
5	9000	8200	21000	6100

:_____

Cost of individual replacement

Cost of grouped replacement

:

-

$$N_{i} = \sum_{j=1}^{i} N_{j-1} P_{i-j+1} = N_{0} P_{i} + N_{1} P_{i-1} + N_{2} P_{i-2} + \dots + N_{i-1} P_{1}$$

: Average life of items (AL)

$$AL = \sum_{i=1}^{n} iP_i$$

: Average failure per period (AF)

$$AF = \frac{N_0}{AL}$$

: Cost of individual replacement (CIR)

$$CIR = C_1 * AF$$

:Average cost group replacement per period (i)

$$ACGR_{i} = \frac{C_{2} * N_{0} + C_{1} * \sum_{j=1}^{i} N_{j}}{i}$$

ACGR CIR

i $ACGR_i$ ()

. i

 C_1

 C_2

 N_0

i = 1, 2, 3,, n

 \boldsymbol{n}

: <u>3-</u>

End of week (i)	1	2	3	4	5	6	7	8	9	10	11
Prob.Of failure (P _i)	0.01	0.03	0.05	0.07	0.10	0.15	0.20	0.15	0.11	0.08	0.05

1.25

0.5

1000

 $N_0 = 1000$ $N_1 = N_0 * P_1 = 1000 * 0.01 = 10$ $N_2 = N_0 * P_2 + N_1 * P_1 = 1000 * 0.03 + 10 * 0.01 = 30.1$ $N_3 = N_0 * P_3 + N_1 * P_2 + N_2 * P_1 = 1000 * 0.05 + 10 * 0.03 + 30.1 * 0.01 = 50.6$ $N_4 = N_0 * P_4 + N_1 * P_3 + N_2 * P_2 + N_3 * P_1$ =1000*0.07+10*0.05+30.1*0.03+50.6*0.01=71.9 $N_5 = N_0 * P_5 + N_1 * P_4 + N_2 * P_3 + N_3 * P_2 + N_4 * P_1$ =1000*0.10+10*0.07+30.1*0.05+50.6*0.03+71.9*0.01=104.4 $N_6 = N_0 * P_6 + N_1 * P_5 + N_2 * P_4 + N_3 * P_3 + N_4 * P_2 + N_5 * P_1$ =1000*0.15+10*0.10+30.1*0.07+50.6*0.05+71.9*0.03+104.4*0.01=158.8 $N_7 = N_0 * P_7 + N_1 * P_6 + N_2 * P_5 + N_3 * P_4 + N_4 * P_3 + N_5 * P_2 + N_6 * P_1$ =1000*0.2+10*0.15+30.1*0.1+50.6*0.07+71.9*0.05+104.4*0.03+158.8*0.01=216.4 $N_8 = N_0 * P_8 + N_1 * P_7 + N_2 * P_6 + N_3 * P_5 + N_4 * P_4 + N_5 * P_3 + N_6 * P_2 + N_7 * P_1$ =1000*0.15+10*0.2+30.1*0.15+50.6*0.1+71.9*0.07+104.4*0.05+158.8*0.03+216.4*0.01 = 178.8 $N_0 = N_0 * P_0 + N_1 * P_8 + N_2 * P_7 + N_3 * P_6 + N_4 * P_5 + N_5 * P_4 + N_6 * P_3 + N_7 * P_2 + N_8 * P_1$ =1000*0.11+10*0.15+30.1*0.2+50.6*0.15+71.9*0.1+104.4*0.07+158.8*0.05+216.4*0.03+178.8*0.01=155.8 $N_{10} = N_0 * P_{10} + N_1 * P_9 + N_2 * P_8 + N_3 * P_7 + N_4 * P_6 + N_5 * P_5 + N_6 * P_4 + N_7 * P_3 + N_8 * P_2 + N_9 * P_1$ =1000*0.08+10*0.11+30.1*0.15+50.6*0.2+71.9*0.15+104.4*0.1+158.8*0.07+216.4*0.05+178.8*0.03+155.8*0.01=145.8 $N_{11} = N_0 * P_{11} + N_1 * P_{10} + N_2 * P_9 + N_3 * P_8 + N_4 * P_7 + N_5 * P_6 + N_6 * P_5 + N_7 * P_4 + N_8 * P_3$ $+N_{9}*P_{2}+N_{10}*P_{1}$

 $= 1000*0.05+10*0.08+30.1*0.11+50.6*0.15+71.9*0.2+104.4*0.15+158.8*0.1+216.4*0.07+178.8*0.05+155.8*0.03+265.8*0.01=139.1$

 $AL = \sum_{i=1}^{11} i * P_i = 1 * 0.01 + 2 * 0.03 + 3 * 0.05 + 4 * 0.07 + 5 * 0.1 + 6 * 0.15 + 7 * 0.2 + 8 * 0.15 + 9 * 0.11 + 10 * 0.08 + 11 * 0.05 = 6.84$

$$AF = \frac{N_0}{AL} = \frac{1000}{6.84} = 146.2$$
 and $CIR = C_1 * AF = 1.25 * 146.2 = 182.75$

End of week (i)	$ACGR_{i} = \frac{C_{2} * N_{0} + C_{1} * \sum_{j=1}^{i} N_{j}}{i}$
1	$\frac{1000*0.5+10*1.25}{1} = 512.5$
2	$\frac{1000*0.5 + (10+30.1)*1.25}{2} = 275.06$
3	$\frac{1000*0.5 + (40.1 + 50.6)*1.25}{3} = 204.46$
4	$\frac{1000*0.5 + (90.7 + 71.9)*1.25}{4} = 175.81$
5	$\frac{1000*0.5 + (162.6 + 104.4)*1.25}{5} = 166.75 \Rightarrow min i.$
6	$\frac{1000*0.5 + (267 + 158.8)*1.25}{6} = 172.04$
7	$\frac{1000*0.5 + (425.8 + 216.4)*1.25}{7} = 186.11$
8	$\frac{1000*0.5 + (642.2 + 178.8)*1.25}{8} = 190.78$
9	$\frac{1000*0.5 + (821 + 155.8)*1.25}{9} = 191.22$
10	$\frac{1000*0.5 + (976.8 + 145.8)*1.25}{10} = 190.33$
11	$\frac{1000*0.5 + (1122.6 + 139.1)*1.25}{11} = 188.83$

$$.(CIR = 182.75)$$
 > $(ACGR_5 = 166.76)$

Keyboard : 4-

.

3

45

48

4

) . *3.1* (()

• —

: -

$$AL = \sum_{i=1}^{4} i * P_i = 1 * 0.20 + 2 * 0.25 + 3 * 0.42 + 4 * 0.13 = 2.48$$

$$AF = \frac{N_0}{AL} = \frac{48}{2.48} = 19.355$$
 and $CIR = C_1 * AF = 3 * 19.355 = 58.065$

: -

$$N_0 = 48$$

$$N_1 = N_0 * P_1 = 48 * 0.20 = 9.6$$

$$N_2 = N_0 * P_2 + N_1 * P_1 = 48 * 0.25 + 9.6 * 0.20 = 13.92$$

$$N_3 = N_0 * P_3 + N_1 * P_2 + N_2 * P_1 = 48 * 0.42 + 9.6 * 0.25 + 13.92 * 0.2 = 25.344$$

$$N_4 = N_0 * P_4 + N_1 * P_3 + N_2 * P_2 + N_3 * P_1$$

End of year (i)	$ACGR_{i} = \frac{C_{2} * N_{0} + C_{1} * \sum_{j=1}^{i} N_{j}}{i}$
1	$\frac{45 + 9.6 * 3}{1} = 73.8$
2	$\frac{45 + (9.6 + 13.92) * 3}{2} = 57.78 \Rightarrow min i.$
3	$\frac{45 + (23.52 + 25.344) * 3}{3} = 63.864$
4	$\frac{45 + (48.864 + 18.821) * 3}{4} = 62.014$

() -

$$CM = \frac{MC}{EL} * N_{\theta} = \frac{4}{3.1} * 48 = 61.92$$

:

: -1

Year	1	2	3	4	5	6
Maintenance cost / year	200	450	680	<i>850</i>	1300	1600
Resale value	10000	8000	7000	5000	2000	1000

15000

(ans.: 4)

200 12200

year	1	2	3	4	5	6	7	8
Maintenance Cost	200	500	800	1200	1800	2500	3200	4000

7500 5

500 400

(ans.:

10000 B, A -3

: ()

	Year	1	2	3	4	5
	Resale	9	9	8	7	5
\boldsymbol{A}	Operating cost	1	1	2	3	3
	Resale	8	7	7	6	6
В	Operating cost	1	2	2	3	4

:

B, A

. () -

·

-2

(ans.: a) 2, 3; b) A; c) A)

: -4

End of week	1	2	3	4	5	6
Prob. Of failure	0.09	0.25	0.49	0.85	0.97	1

1000

0.7

(ans.: 2)

. 200 -5

1000

•

End of week	10	20	30	40	50
Prob. Of failure	0.05	0.15	0.35	0.65	1

(ans.: 20) . 2000

Quality Control and Reliability

(T.Q.M.)

: *Quality* -1-9 -1 -2 -3 -4 -5 -6 -7 -8 1775 : -1

: -2

: Statistical Qual	lity Control (SQC) 1939		-4
Contro	ol chart		
: Total Qu	vality Control (TQC)	1945	-5
1980	: Quality Assurance (QA))	-6
: Total Quality M ISO:9000	Management (TQM) 1987 ISO		-7
: Total Quality M	Ianagement (TQM)		2-9

-3

. -1
-2
-3
-4

:

. -8 . -9

·
.

.

-8 -9

-1

-2

-3

-4

-5

-6

-7

-5

-6

-7

-10

-1 . Control chart . Pareto analysis . Fish bone chart . Run chart . Bar chart . Scatter chart . Flow chart -2 -1

- -2

- -3

. - -4 - -5

. - -6

- -7

- -8

- -9

- -10

- -11

- -12

:______

:

•

•

. (

.

•

:_____

- Planning	-2
·	
	-
	-
•	-
•	-
	-
- Assessment	-3
•	_
	-
•	-
- Implementation	-4
	_
:	
•	-
·	-
Diversification	-5

- Preparation

-1

:______

:

-1
-2
-3
-4
-5
-6
-7

-8 -9

-10

-11 -12

-13

-14

ISO : <u>ISO 9000</u> -3-9

International ISOS

. Organization for Standardization

	()					-
				. IEC			
(% 70)				-
	•					%3	30
Certification	n					l	- bodies
							-
							-
					: <u>ISO</u>	9000	
						BS	DIN
		•	:				-1
							-2
							-3
							-4

:_____

2700

- Technical Committee (TC) -1

52

- Sub-Committee (SC) -2

. - Task Group (TG) -3

Technical ISO 9000

committee-176

:

. -1 - -2

. - -3

. _ -4

: . . -

-_

: <u>ISO 9000</u> - Organization -1

. ()
- Document Control -3

· . – -

· - - -

- Corrective Action

: ---

-6

-2 . ISO 9000

-. -

ISO 9000 : <u>ISO 9000</u>

: BSI BS 5750

- ISO 9000: 1987 -

: -1

- ISO 9001

. **20**

- ISO 9002 18

- ISO 9003

.

- ISO 9004

- ISO 9000 . ISO 9003 ISO 9002 ISO 9001 ISO 8402

ISO 10011

8 20 - ISO 9000:1994 -: 12

-1 -2 -3 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20

- ISO 9000:2000 -

TC-176

1994

2000

-1

-2 -3 -4 -5 -6 -7 -8

:_____

: .

: . : -1 -2

. -3

. -4 -5

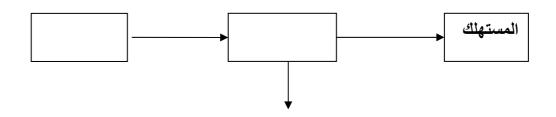
-3 . -6

-0 -7 -8

. -9

. -10 . -11 -12

. -12 : -


. -1

-2 -3 -4 -5 -1 -2 -3

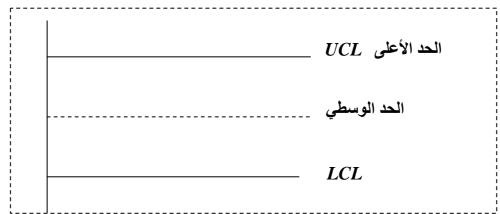
-1 -2 -3

Quality Control [2]

Quality

Quality Control

-1 -2 -3 -4 -5


:

· ...

. ... : -

: <u>Control Chart</u> -1-10

: .

· : : -1

-

-

)	:	-2
(10-20)	%	
		:
		-
•		-
		-
	•	
·		-
•		-
:		1
Sustan atia Samula	:	.1
. Systematic Sample . (4-8)		.2
. (20 - 25)		.3
. (20 – 23)		.4
	•	••
	•	
	:	
:		-1
:		
. \overline{X} – Chart		-
. R- Chart		-
. σ – Chart		-
:		-2
. ()		
		:
. P – Chart		-
. C – Chart		-
. U -Chart		_

 $: \overline{X} - Chart \underline{\hspace{1cm}} -1 - 1 - 10$

%99.7

%0.3

m

:

$$\overline{X}_{i} = \frac{\sum_{j=1}^{m} X_{ij}}{m} \qquad \overline{X}_{i}$$

$$\vdots \qquad \overline{\overline{X}} = \frac{\sum_{i=1}^{n} \overline{X}_{i}}{n}$$

$$\vdots$$

j = 1, 2,, m and i = 1, 2,, n

. n . j . X_{ij} . \overline{R}

 $\overline{R} = \frac{\sum_{i=1}^{n} R_{i}}{n} \quad where \quad R_{i} = X_{iL} - X_{iS}$

. i X_{iL} . i X_{iS}

. i X_{iS}

 $UCL(\overline{X}) = \overline{\overline{X}} + A_2 \overline{R}$ $LCL(\overline{X}) = \overline{\overline{X}} - A_2 \overline{R}$

. m

: <u>R- Chart</u> -2-1-10

· %99.7

: %**99.7**

```
25
          UCL(R) = D_4 \overline{R} and LCL(R) = D_3 \overline{R}
                                                                                        D_4, D_3
                                                                                                              )
: <u>σ – chart</u>
                                                                                                        -3-1-10
                                                                                                                    .1
                                                                                                                    .2
 \sigma_{i} = \sqrt{\frac{\sum_{j=1}^{m} X_{ij}^{2} - m \overline{X}_{i}^{2}}{m-1}} \quad and \quad \overline{\sigma} = \frac{\sum_{i=1}^{n} \sigma_{i}}{n}
                                                                                                                    .3
     UCL(\sigma) = B_2 \overline{\sigma} and LCL(\sigma) = B_1 \overline{\sigma}
                                                                                                                    .4
                                                                                                  )
```

: D_4, D_3, B_2, B_1, A_2

m	A_2	B_1	B_2	D_3	D_4
2	1.880	0	3.267	0	3.268
3	1.023	0	2.568	0	2.574
4	0.729	0	2.266	0	2.282
5	0.577	0	2089	0	2.114
6	0.483	0.030	1.970	0	2.004
7	0.419	0.118	1.882	0.076	1.924
8	0.373	0.185	1.815	0.136	1.864
9	0.337	0.229	1.761	0.816	1.816
10	0.308	0.284	1.716	0.223	1.777

(*mm*) : <u>1-</u>

			•		(((
no. of sample	X_1	X_2	X_3	X_4	no. of sample	X_{I}	X_2	X_3	X_4
1	<i>36</i>	40	40	<i>39</i>	14	35	<i>36</i>	35	36
2	39	40	36	<i>36</i>	15	35	<i>36</i>	<i>36</i>	36
3	36	36	36	39	16	35	35	39	36
4	40	39	36	40	17	37	40	41	39
5	39	39	40	39	18	35	36	36	39
6	40	36	36	36	19	36	40	39	36
7	36	36	39	36	20	35	34	34	34
8	41	41	40	37	21	36	40	35	35
9	36	35	35	36	22	36	36	35	36
10	36	36	36	<i>36</i>	23	35	39	37	41
11	36	39	39	40	24	39	40	40	39
12	36	36	36	36	25	36	36	36	39
13	36	36	36	39		1	1	1	

 $: \quad R_i \quad \overline{X}_i \quad : \underline{\hspace{1cm}}$

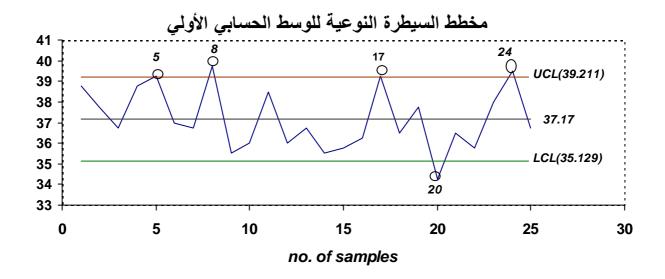
no. of sample	\overline{X}_i	R_i	no. of sample	\overline{X}_i	R_i
1	38.75	4	14	35.50	1
2	37.75	4	15	35.75	1
3	36.75	3	16	36.25	4
4	38.75	4	17	39.25	4
5	39.25	1	18	36.50	4
6	37.00	4	19	37.85	4
7	36.75	3	20	34.25	1
8	39.75	4	21	36.50	5
9	35.50	1	22	35.75	1
10	36.00	0	23	38.00	6
11	38.50	4	24	39.50	1
12	36.00	0	25	36.75	3
13	36.75	3	\sum	929.25	70

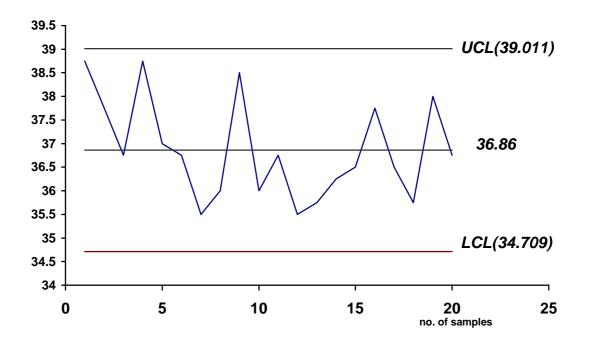
$$\overline{R} = \frac{\sum_{i=1}^{n} R_{i}}{n} = \frac{70}{25} = 2.8 \qquad \overline{\overline{X}} = \frac{\sum_{i=1}^{n} \overline{X}_{i}}{n} = \frac{929.25}{25} = 37.17$$

$$A_{2} = 0.729 \quad \text{with } m = 4 \qquad \overline{X} - Chart \qquad ($$

$$UCL(\overline{X}) = \overline{\overline{X}} + A_{2}\overline{R} = 37.17 + 0.729 * 2.8 = 39.211$$

$$LCL(\overline{X}) = \overline{\overline{X}} - A_{2}\overline{R} = 37.17 - 0.729 * 2.8 = 35.129$$


 \overline{X}_{new}


$$\overline{\overline{X}}_{new} = \frac{929.25 - 192}{25 - 5} = 36.86 \quad and \quad \overline{R}_{new} = \frac{70 - 11}{25 - 5} = 2.95$$

$$\vdots$$

$$UCL(\overline{X})_{new} = \overline{\overline{X}}_{new} + A_2 \overline{R}_{new} = 36.86 + 0.729 * 2.95 = 39.011$$

$$LCL(\overline{X})_{new} = \overline{\overline{X}}_{new} - A_2 \overline{R}_{new} = 36.86 - 0.729 * 2.95 = 34.709$$

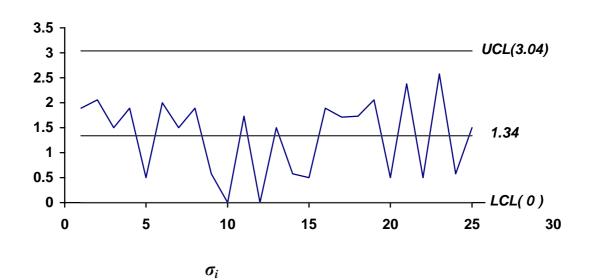


: R-Chart (

$$\overline{R} = 2.8$$
 , $D_3 = 0$, $D_4 = 2.282$

$$UCL(R) = D_4 \overline{R} = 2.282 * 2.8 = 6.39$$
 and $LCL(R) = D_3 \overline{R} = 0 * 2.8 = 0$

•


: *σ*- *chart*

no. of samples	σ_i	no. of samples	σ_i
1	1.89	14	0.58
2	2.06	15	0.50
3	1.50	16	1.89
4	1.89	17	1.71
5	0.50	18	1.73
6	2.00	19	2.06
7	1.50	20	0.50
8	1.89	21	2.38
9	0.58	22	0.50
10	0.00	23	2.58
11	1.73	24	0.58
12	0.00	25	1.50
13	1.50	Σ	33.55

$$\sigma_{i} = \sqrt{\frac{\sum_{j=1}^{m} X_{ij}^{2} - m \overline{X}_{i}^{2}}{m - 1}} \implies \sigma_{1} = \sqrt{\frac{36^{2} + 40^{2} + 40^{2} + 39^{2} - 4 * (38.75)^{2}}{4 - 1}} = 1.89 \quad \dots etc.$$

$$\overline{\sigma} = \frac{33.55}{25} = 1.34$$

 $UCL(\sigma) = B_2 \times \overline{\sigma} = 2.266 \times 1.34 = 3.04$ and $LCL(\sigma) = B_1 \times \overline{\sigma} = 0 \times 1.34 = 0$

: <u>P- Chart</u> -4-1-10

$$UCL(\overline{P}) = \overline{P} + 3* \sqrt{\frac{\overline{P}(1-\overline{P})}{m}} \quad and \quad LCL(\overline{P}) = \overline{P} - 3* \sqrt{\frac{\overline{P}(1-\overline{P})}{m}}$$

$$. \qquad m$$

$$\overline{P} = \frac{\sum_{i=1}^{n} P_{i}}{n}$$

 P_i

. .1 - 100) .2

> . (30 200 25 : 2-

2, 3, 4, 0, 5, 2, 13, 2, 3, 10, 3, 0, 4, 2, 1, 4, 5, 3, 5, 4, 1, 2, 6, 2, 5

.

n	defective	P_i	n	defective	P_i
1	2	0.010	14	2	0.010
2	3	0.015	<i>15</i>	1	0.005
3	4	0.020	<i>16</i>	4	0.020
4	0	0.000	17	5	0.025
5	5	0.025	18	3	0.015
6	2	0.010	19	5	0.025
7	13	0.065	20	4	0.020
8	2	0.010	21	1	0.005
9	3	0.015	22	2	0.010
10	10	0.050	23	6	0.030
11	3	0.015	24	2	0.010
12	0	0.000	25	5	0.025
13	4	0.020	\sum	91	0.455

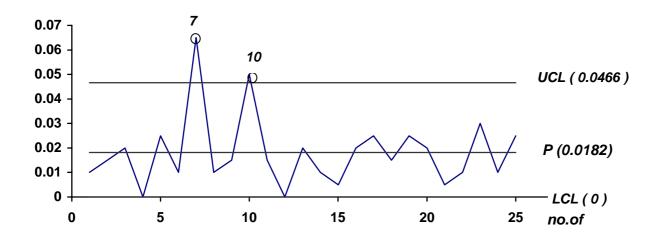
$$\overline{P} = \frac{\sum_{i=1}^{n} P_i}{n} = \frac{0.455}{25} = 0.0182$$

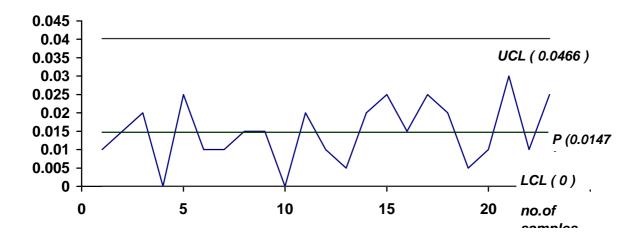
$$UCL(P) = \overline{P} + 3 * \sqrt{\frac{\overline{P}(1 - \overline{P})}{m}} = 0.0182 + 3 * \sqrt{\frac{0.0182 * (1 - 0.0182)}{200}} = 0.0466$$

$$LCL(P) = \overline{P} - 3 * \sqrt{\frac{\overline{P}(1 - \overline{P})}{m}} = 0.0182 - 3 * \sqrt{\frac{0.0182 * (1 - 0.0182)}{200}} = -0.010 \cong 0$$

$$P_{i}$$

:


n	Def.	P_i
7	<i>13</i>	0.065
10	10	0.050
\sum	23	0.115


:

$$\overline{P}_{new} = \frac{0.455 - 0.115}{25 - 2} = 0.0147$$

$$UCL(P)_{new} = 0.0147 + 3*\sqrt{\frac{0.0147*(1 - 0.0147)}{200}} = 0.0402$$

$$LCL(P)_{new} = 0.0147 - 3*\sqrt{\frac{0.0147*(1 - 0.0147)}{200}} = -0.0108 \approx 0$$

: ______ -2-10

.
$$T \qquad \frac{3\sigma}{T} \leq 1 \quad : \\ . \quad N_{\sigma} = \frac{T}{\sigma} \quad : \qquad N_{\sigma}$$

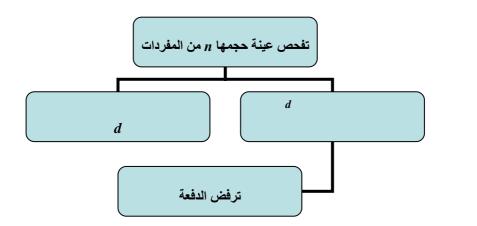
N_{σ}	1/2 area	Def. %
0.00	0.500	100.0
0.25	0.401	80.2
0.50	0.309	61.8
0.75	0.227	45.4
1.00	0.159	30.8
1.25	0.106	21.2
1.50	0.067	13.4
1.75	0.040	<i>8.0</i>
2.00	0.023	4.6
2.25	0.012	2.4
2.50	0.006	1.2
2.75	0.003	0.6
3.00	0.001	0.2

: <u>3-</u>

$$\sigma = 1.34 \qquad 1 - \qquad : _$$

$$T = 39.011 - 36.86 = 2.151 : \qquad \qquad \frac{3\sigma}{T} = \frac{3*1.34}{2.151} = 1.87 > 1$$

$$N_{\sigma} = \frac{T}{\sigma} = \frac{2.151}{1.34} = 1.6$$
1.6


%11

:____

d d d Consumer's risk $d_1 d_2 d_1 d_2 d_1 P_1 d_2 ($

: :

 P_2

:_____-

•

. –

. -

:

. d_1 . d_2

. d_3

. _

.

. d_{II} . d_{I2}

. d_{21}

. d_{22} : : d_r . d_r

. **r**

: Binomial distribution

x p

n

$$P(x) = C_x^n . p^x (1-p)^{n-x}, x = 0,1,2,...,n$$

Where:
$$C_x^n = \frac{n!}{x!(n-x)!}$$
, $n! = n(n-1)(n-2)....2.1$

10 : <u>4</u>

. 20

0.03 0.01

0.025

+ = P

+

 $P = P_1(0) + P_1(1) \cdot P_2(0) + P_1(1) \cdot P_2(1) + P_1(2) \cdot P_2(0)$. $x P_1(x)$. $x P_2(x)$

143

$$\begin{split} P_I(x) &= C_x^{10} \, p^x (1-p)^{10-x} \quad , \quad x = 0,1,2,...,10 \\ P_I(0) &= C_0^{10} \, p^0 (1-p)^{10-0} = (1-p)^{10} \\ P_I(1) &= C_I^{10} \, p^1 (1-p)^{10-1} = 10 \, p (1-p)^9 \\ P_I(2) &= C_2^{10} \, p^2 (1-p)^{10-2} = 45 \, p^2 (1-p)^8 \\ \\ P_2(x) &= C_x^{20} \, p^x (1-p)^{20-x} \quad , \quad x = 0,1,2,...,20 \\ P_2(0) &= C_0^{20} \, p^0 (1-p)^{20-0} = (1-p)^{20} \\ P_2(1) &= C_I^{20} \, p^1 (1-p)^{20-1} = 20 \, p (1-p)^{19} \\ \\ P(p) &= (1-p)^{10} + 10 \, p (1-p)^9 (1-p)^{20} + 10 \, p (1-p)^9 .20 \, p (1-p)^{19} \\ &+ 45 \, p^2 (1-p)^8 (1-p)^{20} \\ \\ P(p) &= (1-p)^{10} \left[1 + 10 \, p (1-p)^{18} (1 + 23.5 \, p) \right] \\ \\ P(p) &= (0.01 \, | \, 0.03 \, | \, 0.05 \, | \, 0.10 \, | \, 0.15 \, | \, 0.20 \, | \, 0.25 \, | \, 0.30 \, | \\ \hline P(p) &= (0.998 \, | \, 0.955 \, | \, 0.857 \, | \, 0.524 \, | \, 0.269 \, | \, 0.129 \, | \, 0.062 \, | \, 0.029 \end{split}$$

 $\begin{array}{c} : \quad 0.025 \\ 1-P(0.025)=1-(1-0.025)^{10} \left\{1+10*0.025*(1-0.025)^{18}(1+23.5*0.025)\right\} \\ =0.03 \\ . \ \%3 \\ . \ \%12.9 \\ \end{array}$

50 -1

-3

: **20**

4 3 2 6 3 1 3 2 9 3 5 3 2 5 2 2 1 3 2 1 (ans.0, 0.1533)

5 10 -2

: ()

	measurements				
n	X_1	X_2	X_3	X_4	X_5
1	1.04	1.01	0.98	1.02	1.00
2	1.02	0.97	0.96	1.01	1.02
3	1.01	1.07	0.99	1.03	1.00
4	0.98	0.97	1.02	0.98	0,98
5	0.99	1.03	0.98	1.02	1.01
6	1.02	0.95	1.04	1.02	0.95
7	1.00	0.99	1.01	1.02	1.01
8	0.99	1.02	1.00	1.04	1.09
9	1.03	1.04	0.99	1.02	0.94
<i>10</i>	1.02	0.98	1.00	0.99	1.02

. (:

(ans. a) 0.9679, 1.0429, b) 0, 0.137)

.

Date	Sample size	No. of defectives	Date	Sample size	No. of defectives
1	200	3	12	200	3
2	200	1	13	200	6
3	200	0	14	200	8
4	200	2	15	200	5
5	200	4	16	200	9
6	200	1	17	200	3
7	200	2	18	200	1
8	200	0	19	200	0
9	200	3	20	200	2
10	200	2	21	200	3
11	200	1	22	200	1

(ans. 0, 0.0332)

: -4

N	X_1	X_2	X_3	X_4	X_5	X_6
1	0.498	0.492	0.510	0.505	0.504	0.487
2	0.482	0.491	0.502	0.481	0.496	0.492
3	0.501	0.512	0.503	0.499	0.498	0.511
4	0.498	0.486	0.502	0.503	0.510	0.501
5	0.500	0.507	0.509	0.498	0.512	0.518
6	0.476	0.492	0.496	0.521	0.505	0.490
7	0.483	0.487	0.495	0.488	0.502	0.486
8	0.502	0.500	0.511	0.496	0.500	0.503
9	0.492	0.504	0.472	0.515	0.498	0.487
<i>10</i>	0.511	0.522	0.513	0.518	0.520	0.516
11	0.488	0.512	0.501	0.498	0.492	0.498
<i>12</i>	0.504	0.502	0.496	0.501	0.491	0.496
13	0.501	0.413	0.499	0.496	0.508	0.502
14	0.489	0.491	0.496	0.510	0.508	0.503
<i>15</i>	0.511	0.499	0.508	0.503	0.496	0.505

(ans. 0.0002, 0.0158)

. $\sum \overline{X}_{i} = 160.25$ $\sum \sigma_{i} = 2.05$ $\sum R_{i} = 2.19$ 6.38 6.44 6.28 6.58 : () : : : ((((ans. a) yes , b) no , c) yes)

-Reliability [3]

: Reliability -1 () **-2** -3 Continuous Random Variable \boldsymbol{T} Reliability function $T \ge 0$ $R(t) = Pr(T \ge t) \quad \forall t \ge 0$ $0 \le R(t) \le 1$ where *1*) 2) R(0) = 1 $\lim_{t\to\infty}R(t)=0$ *3*) F(t) = 1 - R(t) = Pr(T < t)1) $0 \le F(t) \le 1$ where $F(\theta) = \theta$ 3) $\lim_{t\to\infty} F(t) = 1$ Cumulative distribution function (c.d.f.) F(t). Failure function [a,b] $Pr(a \le T \le b) = F(b) - F(a) = R(a) - R(b) = \int_{a}^{b} f(t)dt$ Probability distribution function (p.d.f.) f(t)

: <u>Mean Time of Failure (MTTF)</u>

:

$$MTTF = E(t) = \int_{0}^{\infty} t \cdot f(t) dt = \int_{0}^{\infty} R(t) dt$$

$$: Variance$$

$$\sigma^{2} = V(t) = \int_{0}^{\infty} t^{2} \cdot f(t) dt - (MTTF)^{2}$$

Standard deviation

$$f(t) = 0.002 * e^{-0.002t} \quad t \ge 0$$

$$= 0 \qquad o.w$$

$$MTTF$$

$$\vdots \qquad (-_{-}$$

$$MTTF = \int_{0}^{\infty} t f(t) dt = \int_{0}^{\infty} 0.002t * e^{-0.002t} dt$$

$$MTTF = \int_{0}^{\infty} t \cdot f(t) dt = \int_{0}^{\infty} 0.002t * e^{-0.002t} dt$$

$$MTTF = -\left[t * e^{-0.002t} + \int e^{-0.002t}\right]_0^{\infty} = \left[-t * e^{-0.002t} - \frac{1}{0.002}e^{-0.002t}\right]_0^{\infty} = 500 \quad hrs.$$

$$where \quad \lim_{t \to \infty} \frac{t}{e^{0.002t}} = 0 \quad by \quad L' Hopital \quad rule$$

$$\sigma^{2} = \int_{0}^{\infty} t^{2} f(t) dt - (MTTF)^{2} = \int_{0}^{\infty} t^{2} (0.002 * e^{-0.002t}) dt - (500)^{2}$$

$$\sigma^{2} = \left[-t^{2} e^{-0.002t} - \frac{2t}{0.002} e^{-0.002t} - \frac{2}{0.00004} e^{-0.002t} \right]_{0}^{\infty} - (500)^{2} = 250000 \quad hrs.^{2}$$
By L'Hopital rule $\lim_{t \to \infty} \frac{t^{2}}{e^{0.002t}} = 0 \quad and \quad \lim_{t \to \infty} \frac{t}{e^{0.002t}} = 0$

$$\sigma = \sqrt{\sigma^2} = \sqrt{250000} = 500 \quad hrs.$$

Failure

: Hazard rate function

$$t + \Delta t, t \qquad rate function$$

$$: t$$

$$Pr(t \le T \le t + \Delta t / T \ge t) = \lambda(t) = \frac{f(t)}{R(t)} \Rightarrow R(t) = e^{-\int_{0}^{t} \lambda(t) dt}$$

$$: -3 - \frac{1}{2}$$

$$\lambda(t) = 5 * 10^{-6} t$$

-___

$$R(t) = e^{-\int_{0}^{t} \lambda(t) dt} \Rightarrow 0.98 = e^{-\int_{0}^{t} 5*10^{-6} t dt}$$

$$0.98 = e^{-2.5*10^{-6} t^{2}} \Rightarrow t = \sqrt{\frac{\ln 0.98}{-2.5*10^{-6}}} \cong 90 hrs.$$

:
$$-4-$$

$$R(t) = 1 - \frac{t^2}{a^2} \quad where \quad 0 \le t \le a$$

$$p.d.f. ($$

$$f(t) = -\frac{d}{dt}R(t) = -\frac{d}{dt}\left(1 - \frac{t^2}{a^2}\right) = \frac{2t^2}{a^2}$$
 (-____

$$\lambda(t) = \frac{f(t)}{R(t)} = \frac{2t}{a^2} \div \left(1 - \frac{t^2}{a^2}\right) = \frac{2t}{a^2 - t^2}$$
 (

$$MTTF = \int_{0}^{a} R(t)dt = \int_{0}^{a} \left(1 - \frac{t^{2}}{a^{2}}\right)dt = \left[t - \frac{t^{3}}{3a^{2}}\right]_{0}^{a} = \frac{2}{3}a$$
 (

: Conditional Reliability

$$: T_{\theta} \qquad t$$

$$R(t/T_{\theta}) = exp\left(-\int_{T_{\theta}}^{T_{\theta}+t} \lambda(t)dt\right) = \frac{R(T_{\theta}+t)}{R(T_{\theta})}$$

$$\lambda(t) = \frac{1}{2000} \left(\frac{t}{1000}\right)^{-0.5} \quad \text{where} \quad t \quad \text{in} \quad \text{years} \qquad -\underline{5} - \underline{5}$$

1)
$$R(t) = 0.90$$
 and 2) $R(t/0.5) = 0.90$:

$$R(t) = e^{-\int_{0}^{t} \lambda(t) dt} = e^{-\int_{0}^{t} \frac{1}{2000} \left(\frac{t}{1000}\right)^{-0.5}} = e^{-\left(\frac{t}{1000}\right)^{0.5}} = 0.90$$

$$\Rightarrow t = 1000 * (ln 0.09)^{2} = 11.1 \text{ years}$$
(1 -_____

$$R(t/0.5) = \frac{R(t+0.5)}{R(0.5)} = \frac{e^{-\left(\frac{t+0.5}{1000}\right)^{0.5}}}{e^{-\left(\frac{0.5}{1000}\right)^{0.5}}} = 0.90$$

$$\Rightarrow t = 1000 \left[\left(\frac{0.5}{1000}\right)^{0.5} - \ln 0.90 \right]^{2} - 0.5 = 15.813 \text{ years}$$
(2)

$$R(t/T_0) \qquad \lambda(t) = \lambda t \quad \text{where} \quad \lambda > 0 \qquad -\underline{6} - \underline{1}$$

$$R(t) = e^{-\int_{0}^{t} \lambda(t) dt} = e^{-\int_{0}^{t} \lambda t dt} = e^{-\frac{\lambda}{2}t^{2}}$$

$$R(t/T_0) = \frac{R(t+T_0)}{R(T_0)} = \frac{e^{-\frac{\lambda}{2}(t+T_0)^2}}{e^{-\frac{\lambda}{2}T_0^2}} = e^{-\frac{\lambda}{2}(t^2+2T_0t)}$$

$$R(t/T_{0}) = \frac{R(t+T_{0})}{R(T_{0})} = \frac{1 - \frac{(t+T_{0})^{2}}{a^{2}}}{1 - \frac{T_{0}^{2}}{a^{2}}} = \frac{a^{2} - (t+T_{0})^{2}}{a^{2} - T_{0}^{2}} - \underline{\qquad}$$

: The Exponential Reliability function

exponential distribution

. Constant Failure Rate (C.F.R.)

$$(\lambda(t) = \lambda \quad t \ge 0 :)$$

$$R(t) = e^{-\lambda t} \quad , \quad F(t) = 1 - e^{-\lambda t}$$

$$f(t) = \lambda e^{-\lambda t} \quad , \quad MTTF = \frac{1}{\lambda}$$

$$\sigma^2 = \frac{1}{\lambda^2} \quad and \quad R(t/T_0) = R(t)$$

0.00034 Microwave transmitter -8-

151

$$\lambda(t) = 0.00034 \qquad , \qquad R(t) = e^{-0.00034t} = R(t/T_0)$$

$$F(t) = 1 - e^{-0.00034t} \qquad , \qquad f(t) = 0.00034 * e^{-0.00034t}$$

$$MTTF = \frac{1}{0.00034} = 2941.18 hrs. \quad and \quad \sigma^2 = \frac{1}{(0.00034)^2} = 8650519 hrs.^2$$

$$\vdots \qquad \qquad 30$$

$$t = 30 * 24 = 720 \implies R(720) = e^{-0.00034*720} = 0.783$$

: Weibull distribution in reliability

.

$$\lambda(t) = \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta - 1} , \qquad \theta, \beta > 0 , \quad t \ge 0$$

$$\text{where} \quad \theta \text{ is scale parameter}$$

$$\beta \text{ is shape parameter}$$

1 1

$$R(t) = e^{-\left(\frac{t}{\theta}\right)^{\beta}} \qquad , \qquad F(t) = 1 - e^{-\left(\frac{t}{\theta}\right)^{\beta}}$$

$$f(t) = \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta-1} e^{-\left(\frac{t}{\theta}\right)^{\beta}} \qquad , \qquad MTTF = \theta \cdot \Gamma\left(\frac{1}{\beta} + 1\right)$$

$$\sigma^{2} = \theta^{2} \left[\Gamma\left(\frac{2}{\beta} + 1\right) - \left(\Gamma\left(\frac{1}{\beta} + 1\right)\right)^{2}\right]$$

$$and \quad R(t + T_{\theta}) = exp\left[-\left(\frac{t + T_{\theta}}{\theta}\right)^{\beta} + \left(\frac{T_{\theta}}{\theta}\right)^{\beta}\right]$$

$$where \quad \Gamma(\alpha) = \int_{\theta}^{\infty} y^{\alpha-1} e^{-y} dy = (\alpha - 1) \cdot \Gamma(\alpha - 1)$$

: -**9**-

 $\Gamma(\alpha)$

Shape parameter $(\beta) = 1/3$ and Scale parameter $(\theta) = 16000$

1)
$$\lambda(t) = \frac{\frac{1}{3}}{1600} \left(\frac{t}{16000} \right)^{\frac{1}{3}-1} = 0.0132283 * t^{-\frac{2}{3}}$$

2)
$$R(t) = e^{-\left(\frac{t}{16000}\right)^3} = e^{-0.0132283*t^3}$$

3)
$$F(t) = 1 - e^{-0.0132283*t^3}$$

4)
$$f(t) = \frac{\frac{1}{3}}{16000} \left(\frac{t}{16000}\right)^{\frac{1}{3}-1} e^{-\left(\frac{t}{16000}\right)^{\frac{1}{3}}} = 0.0132283 * t^{-\frac{2}{3}} e^{-0.0132283 * t^{\frac{1}{3}}}$$

5)
$$MTTF = 16000 * \Gamma\left(\frac{1}{\frac{1}{3}} + 1\right) = 16000 * \Gamma(4) = 16000 * 3! = 96000 hrs.$$

6)
$$\sigma^{2} = (16000)^{2} \left[\Gamma \left(\frac{2}{\frac{1}{3}} + 1 \right) - \left(\Gamma \left(\frac{1}{\frac{1}{3}} + 1 \right) \right)^{2} \right] = (16000)^{2} \left[\Gamma(7) - (\Gamma(4))^{2} \right]$$

= $(16000)^{2} \left[6! - (3!)^{2} \right] = 1.75104 * 10^{11} \implies \sigma = 418454.3$

7)
$$R(t/T_{\theta}) = exp \left[-\left(\frac{t+T_{\theta}}{16000}\right)^{\frac{1}{3}} + \left(\frac{T_{\theta}}{16000}\right)^{\frac{1}{3}} \right]$$

$$0.90 = exp \left[-\left(\frac{t+10}{16000}\right)^{\frac{1}{3}} + \left(\frac{10}{16000}\right)^{\frac{1}{3}} \right]$$

$$\Rightarrow t = 16000 \left[\left(\frac{10}{16000}\right)^{\frac{1}{3}} - \ln 0.90 \right]^{3} - 10 = 101.24 hrs.$$

:

. Serial configuration -1

. Parallel configuration -2

. Combined series-parallel system -3

: <u>Serial configuration</u> -1

1 2 3 - n

$$System Reliability RS(t)$$

$$R_{S}(t) = \prod_{i=1}^{n} R_{i}(t)$$

$$t \qquad i \qquad R_{i}(t)$$

:

: exponential dist.

$$R_S(t) = \prod_{i=1}^n e^{-\lambda_i^2 t} \implies R_S(t) = e^{-\lambda_S t} \quad \text{where} \quad \lambda_S = \sum_{i=1}^n \lambda_i$$

: Weibull dist.

$$R_{S}(t) = \prod_{i=1}^{n} exp\left[-\left(\frac{t}{\theta_{i}}\right)^{\beta_{i}}\right] \Rightarrow R_{S}(t) = exp\left[-\sum_{i=1}^{n} \left(\frac{t}{\theta_{i}}\right)^{\beta_{i}}\right] and \lambda(t) = \sum_{i=1}^{n} \frac{\beta_{i}}{\theta_{i}} \left(\frac{t}{\theta_{i}}\right)^{\beta_{i}-1}$$

-<u>10</u>-

MTTF

$$R_{S}(100) = 0.95$$

 $R_{S}(100) = e^{-100\lambda_{S}} = 0.95 \implies \lambda_{S} = \frac{\ln 0.95}{-100} = 0.0005129$ $\lambda = \frac{0.0005129}{4} = 0.000128$ $MTTF = \frac{1}{\lambda} = \frac{1}{0.000128} = 7812.5$

-<u>11-</u>

:

Component	Scale parameter	Shape parameter
1	100	1.20
2	150	0.87
3	510	1.80
4	720	1.00

. t = 10

$$R_{S}(t) = exp \left[-\left(\left(\frac{t}{100} \right)^{1.20} + \left(\frac{t}{150} \right)^{0.87} + \left(\frac{t}{510} \right)^{1.80} + \left(\frac{t}{720} \right) \right] \right]$$

$$R_{S}(10) = exp \left[-\left(\left(\frac{10}{100} \right)^{1.20} + \left(\frac{10}{150} \right)^{0.87} + \left(\frac{10}{510} \right)^{1.80} + \left(\frac{10}{720} \right) \right] = 0.8415$$

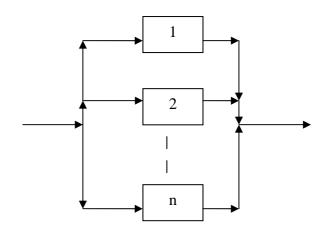
 $oldsymbol{eta}$

: معیه فإن
$$heta$$
 تکون $heta$) ، وعلیه فإن

$$R(t) = exp \left[-\left(\frac{t}{\theta}\right)^{\beta} \right] \quad where \quad \theta = \left[\sum_{i=1}^{n} \left(\frac{1}{\theta_{i}}\right)^{\beta} \right]^{-\frac{1}{\beta}}$$

Jet engine -<u>12-</u>

:


$$\theta_5 = 9300$$
 , $\theta_4 = 4780$, $\theta_3 = 5850$, $\theta_2 = 7200$, $\theta_1 = 3600$ 9 $\beta = 1.5$. MTTF

 $\theta = \left[\left(\frac{1}{3600} \right)^{1.5} + \left(\frac{1}{7200} \right)^{1.5} + \left(\frac{1}{5850} \right)^{1.5} + \left(\frac{1}{4780} \right)^{1.5} + \left(\frac{1}{9300} \right)^{1.5} \right]^{\frac{1}{1.5}} = 1842.7$ $MTTF = \theta \cdot \Gamma \left(\frac{1}{\beta} + 1 \right) = 1842.7 * \Gamma \left(\frac{1}{1.5} + 1 \right) = 1842.7 * 0.9033 = 1664.5$ $R_S(t) = exp \left[-\left(\frac{t}{\theta} \right)^{\beta} \right] = exp \left[-\left(\frac{t}{1842.7} \right)^{1.5} \right] , \quad t \ge 0$

: Parallel configuration -3

Redundante

155

: $t R_S(t) = I - \prod_{i=1}^n (I - R_i(t))$ $t i R_i(t)$

$$R_{S}(t) = 1 - \prod_{i=1}^{n} (1 - e^{-\lambda_{i}t})$$

$$. i \qquad \lambda_{i}$$

$$-13 -$$

-___

$$R_{S}(t) = 1 - \prod_{i=1}^{n} (1 - e^{-\lambda_{i}t}) = 1 - (1 - e^{-\lambda_{I}t})(1 - e^{-\lambda_{2}t}) = e^{-\lambda_{I}t} + e^{-\lambda_{2}t} - e^{-(\lambda_{I} + \lambda_{2})t}$$

$$MTTF = \int_{0}^{\infty} R_{S}(t)dt = \int_{0}^{\infty} \left(e^{-\lambda_{I}t} + e^{-\lambda_{2}t} - e^{-(\lambda_{I} + \lambda_{2})t}\right)dt = \frac{1}{\lambda_{I}} + \frac{1}{\lambda_{2}} - \frac{1}{\lambda_{I} + \lambda_{2}} - \frac{14 - \frac{1}{\lambda_{I}}}{2}$$

$$MTTF \qquad R_{S}(1000) = 0.95$$

 $R_{S}(1000) = 1 - (1 - e^{-1000t})(1 - e^{-1000t}) \Rightarrow 0.95 = 2e^{-1000\lambda} - e^{-2000\lambda}$ Let $e^{-1000\lambda} = X \Rightarrow X^{2} - 2X + 0.95 = 0$ either $X = 1.223606798 \Rightarrow \lambda = -0.000201802$ neglicted

or $X = 0.776393202 \Rightarrow \lambda = 0.000253096$ $MTTF = \frac{1}{\lambda} = \frac{1}{0.000253096} = 3951$

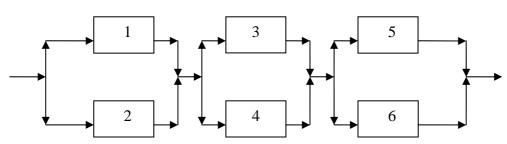
$$MTTF_{S} = \int_{0}^{\infty} R_{S}(t)dt = \frac{1}{\lambda} + \frac{1}{\lambda} - \frac{1}{\lambda + \lambda} = \frac{2}{0.000253096} - \frac{1}{2 * 0.000253096} = 5927$$

-Combined series- parallel system

(

- Series-parallel system

: (

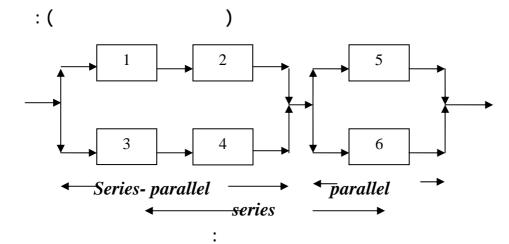

$$R_{S_I}(t) = \prod_{i=1}^2 R_i(t)$$

$$R_{S_2}(t) = R_3(t)$$

$$R_{S_3}(t) = \prod_{i=4}^6 R_i(t)$$

$$R_S(t) = 1 - \prod_{i=1}^{3} (1 - R_{S_i}(t))$$

- parallel-series system


$$R_{S_{I}}(t) = 1 - \prod_{i=1}^{2} (1 - R_{i}(t))$$

$$R_{S_{2}}(t) = 1 - \prod_{i=3}^{4} (1 - R_{i}(t))$$

$$R_{S_{3}}(t) = 1 - \prod_{i=5}^{6} (1 - R_{i}(t))$$

$$R_{S}(t) = \prod_{i=1}^{3} R_{S_{i}}(t)$$
:

Mixed parallel-series and series-parallel - -

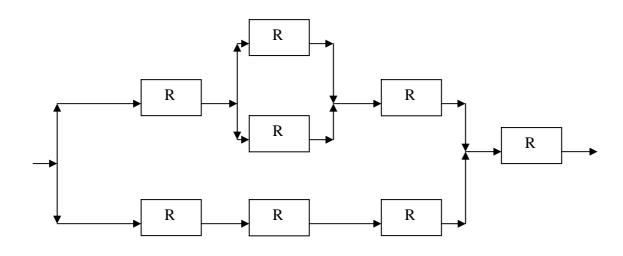
.

. -

•

$$R_{S_{II}}(t) = \prod_{i=1}^{2} R_{i}(t)$$
 :

$$R_{S_{12}}(t) = \prod_{i=3}^{4} R_i(t)$$
 :


$$R_{S_I}(t) = 1 - \prod_{i=1}^{2} (1 - R_{S_{Ii}}(t))$$
:

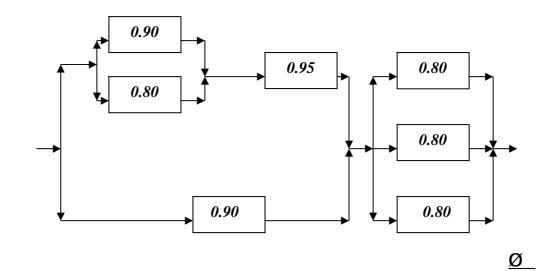

$$R_{S_2}(t) = 1 - \prod_{i=5}^{6} (1 - R_i(t))$$

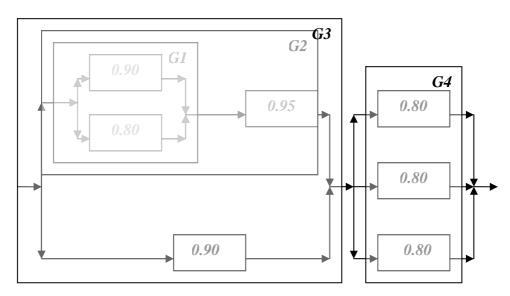
$$\mathbf{R}_{S}(t) = \prod_{i=1}^{2} \mathbf{R}_{S_{i}}(t)$$

.(R) -

R = 0.90

$$R_{GI} = I - (I - R)^{2} = R(2 - R)$$

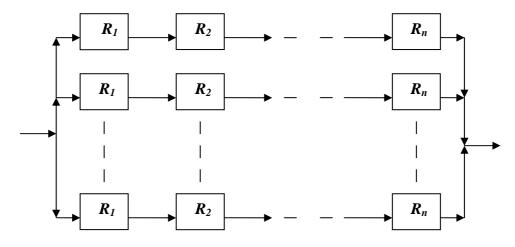

$$R_{G2} = R * R_{GI} * R = R^{3}(2 - R)$$

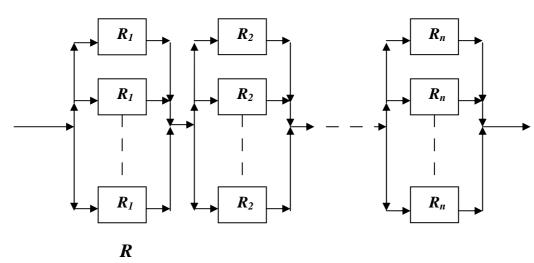

$$R_{G3} = R^{3}$$

$$R_{G4} = I - (I - R_{G2})(I - R_{G3}) = R^{3}(R^{4} - 2R^{3} - R + 3)$$

$$R_{S} = R_{G4} * R = R^{4}(R^{4} - 2R^{3} - R + 3)$$
at $R = 0.90 \implies R_{S} = (0.9)^{4} [(0.9)^{4} - 2(0.9)^{3} - 0.9 + 3] = 0.8517$

Ø <u>16 Ø</u>




$$\begin{split} R_{GI} &= 1 - (1 - 0.9)(1 - 0.8) = 0.98 \\ R_{G2} &= R_{GI} * 0.95 = 0.98 * 0.95 = 0.931 \\ R_{G3} &= 1 - (1 - 0.931)(1 - 0.90) = 0.9931 \\ R_{G4} &= 1 - (1 - 0.80)^3 = 0.992 \\ R_{S} &= R_{G3} * R_{G4} = 0.9931 * 0.992 = 0.9852 \end{split}$$

Ô High-level and low-level redundancy á

Ø Bigh-level redundancy &

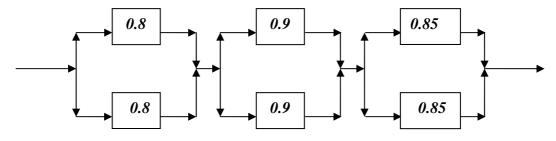
- Low-level redundancy

$$\begin{split} R_{high} &= 1 - (1 - R.R)(1 - R.R) = 2R^2 - R^4 \\ R_{low} &= \left[1 - (1 - R)(1 - R) \right] \left[1 - (1 - R)(1 - R) \right] = (2R - R^2)^2 \\ R_{low} &- R_{high} = (2R - R^2)^2 - 2R^2 - R^4 = 2R^2(R - 1)^2 \ge 0 \\ R_{low} \end{split}$$

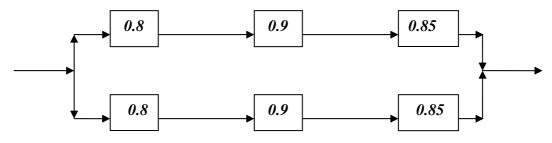
. R_{high}

-17-

. **0.80**


Power Supply

. **0.90**


Receiver

. 0.85

Amplifier

Low – level Redundancy

High – level Redundancy

$$R_{low} = [1 - (1 - 0.8)^{2}][1 - (1 - 0.9)^{2}][1 - (1 - 0.85)^{2}] = 0.929$$

$$R_{high} = 1 - (1 - 0.8 * 0.9 * 0.85)^2 = 0.849$$

-1 $R(t) = \frac{1}{0.001t + 1}$, $t \ge 0$, t in hours 1000 100 *IFR* **DFR** (ans.: a) 0.909, 0.5; b) DFR) *p.d.f.* -2 $f(t) = 0.01 \quad , \quad 0 \le t \le 100 \quad days$ (ans.: a)1-0.01t, b) 1/(100-t), c) 50; d) 28.868)-3 $f(t) = \frac{3t^2}{10^9}$, $0 \le t \le 1000$ hrs. **100** . 0.99 (ans.: a) 0.001, b) 750; c) 215.44) $R(t) = e^{-\sqrt{0.001t}} \quad , \quad t \ge 0$ **100 50** 10 **10** 0.95 (ans.: a) 0.7289, c) 0.8651; d) 12.89) (-5 $f(t) = \frac{200}{(t+10)^3}$, $t \ge 0$

163

```
0.95
    CFR
                 IFR
                               DFR
                                                    (
(ans.:a) f(t) = 100/(t+10)^2, 0.8264, b) 10, c) 0.2598; d) DFR
                             Uniform dist.
                                                         p.d.f.
                                                                                   -6
                             f(t) = \frac{1}{h} \quad , \quad 0 \le t \le b
                                  \sigma, MTTF, \lambda(t), R(t), F(t):
( ans. : F(t) = t/b, R(t) = 1 - t/b, \lambda(t) = 1/(1-b), MTTF = b/2; \sigma = b/2\sqrt{3})
                                    Fuel injection
                                                                                   -7
                   R(t) = (t+1)^{-\frac{3}{2}}, t \ge 0 in years
                                             0.19
                                                                                 6
(ans.: 0.2806; 0.0906)
            CFR
                                                                                   -8
                              \lambda_3 = 0.0025 , \lambda_2 = 0.015 , \lambda_1 = 0.002
  (ans.:a) R(t)=exp(-0.0195t), b) 51.282
                   MTTF = 1100
                                                     CFR
                                                                                   -9
                                                                      200
                                                      . 0.90
   .(
                                                                200
 (ans.: a) 0.8338, b) 115.897, c) 0.9724)
                                        \lambda = 0.0004
                      1000
                                                          CFR
                                                                                 -10
   (ans.: 0.9608; 0.6703)
                                             1000
                                                               100
                                                        Power unit
                                                                                 -11
                                              : 0.95
                                                                  5
```

CFR -

· -

(ans.: a)292.398, 584.795, 194.932; 97.466, b) 0.9975, 146.199)

-12

0.03125

0.95

(ans.: 4.69) . 24

 $\lambda(t)=0.00021$ Electronic Circuit Board -13 (ans.: 0.9932) 1000 .

: Weibull -14
: Shape parameter = 1.4 , Scale parameter = 550

(100 (

(ans.: a) 0.9122, b) 501.47, c) 359.9, d)110.224) . 0.90

Rectifier Power Supply -15

 $heta_2 = 18.5$, $heta_1 = 12$ وإن heta مختلفة بحيث heta = 2.1

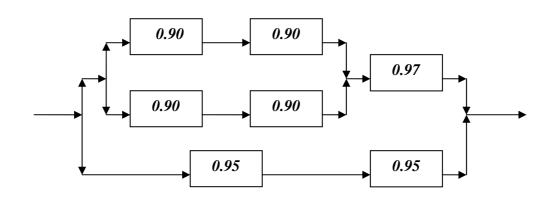
. 0.90 أوجد متوسط زمن العطل ، والعمر المصمم لوحدة تجهيز القدرة بمعولية θ_3 =21.5 , (ans.: 8.2627 ; 3.1948)

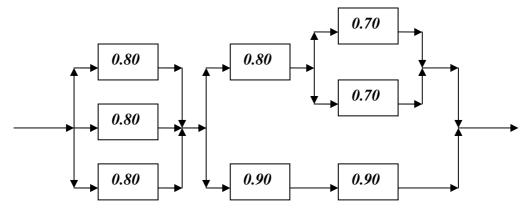
16- ما هو العدد الأعظم من المركبات المتماثلة والمستقلة التي لها توزيع ويبل بالمعلمات:

Shape parameter = 1.3, Scale parameter = 10000

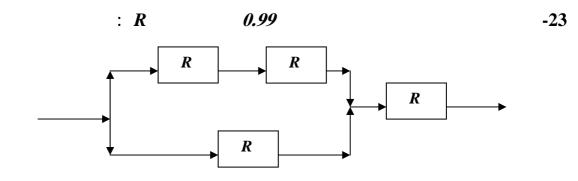
100 0.95

(ans.: 21; 888.111)

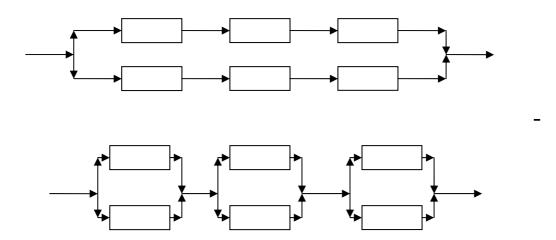

: -17


$$\lambda(t) = 0.003 \left(\frac{t}{500}\right)^{0.5} \quad , \quad t \ge 0 \quad in \quad hours$$

```
50
                              . 0.90
                            50
                                                        50
    (ans.:a)0.969, b) 111.538, c) 451.375; d)0.9438)
        :
                                 Pressure gauge
                                                                              -18
                          Shape parameter = 2.1, Scale parameter = 12000
                                                           5000
                                         5000
                                                                        (1
                                                                        (2
                                                                       (3
(ans.: a) 0.853, b) 10628, 5315.8, c) 0.403, d)0.978, 18777.638, 0.356)
                              Cyclone-365
                                                                              -19
                           f(t) = \frac{1}{(t+1)^2} , t \ge 0
                             0.999
 (ans.: a) 0.963, b) 0.111)
                                                  ( ) ( )
                       100
                                                                              -20
                                                 CFR
MTTF = 1000
مرتبطة على التوالي مع مركبة لها 	heta=10000 , eta=2
                                  توزيع أسي CFR بنسبة عطل قدر ها 0.00005 .
     (ans.: b)
\beta = 0.80
                                                                              -21
           . 0.99
                                                             \theta
```


(ans.: 5588.23)

: -22



(ans.: a) 0.994, b) 0.940)

(ans.: 0.99)

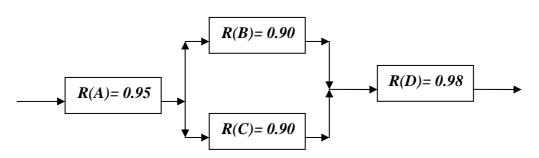
167

(ans.: a) 787.4, b) 486.6)

100 -25

-26

:


.
$$\beta = 1.2$$
 , $\theta = 840$ - . $\lambda = 0.0001$ CFR -

(ans.: a) 0.7919, b) 0.9704)

:

Structure function

R(A) = 0.9 0 R(B) = 0.80 R(C) = 0.80

(ans.: a) $R_S(t) = R(A) + R(B) \cdot R(C) - R(A) \cdot R(B) \cdot R(C)$; 0.964, b) $R_S(t) = R(A) \cdot R(D) [R(C) + R(B) - R(B) \cdot R(C)]$; 0.9217)