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Chapter 1 Introduction

Chapter One
Introduction

1. Introduction

A consider the cooling of a hot steal rod which is place in a cold
water Thermodynamics may be used to predict the final equilibrium temperature
of the rod-water combination. It will not tell us how long it takes to reach this
equilibrium condition. Heat Transfer may be used to predict the temperature of
the rod and the water as a function of time.

1.1 Definition:

Heat: is the energy transit as a result of the temperature difference.

Heat transfer: is that science which seeks to predict the energy transfer that
may take place between materials bodies as a result of a temperature
difference.

Thermodynamics: is the state science of energy, the transformation of energy
and the change in the state of matter. (Thermodynamics can be able to
determination of heat and work requirements for chemical and physical
process and the equilibrium conditions).

Heat flux: heat transfer flow in the direction per unit area (q”).

Steady state: Temperature is very does not very with time (dT/dt) =0.
Unsteady state: temperature is depending on time

1.2 Modes of Heat Transfer

The engineering area frequently referred to as thermal science includes
thermodynamics and heat transfer. The role of heat transfer is to supplement
thermodynamic analyses, which consider only systems in equilibrium, with
additional laws that allow prediction of time rates of energy transfer. These
supplemental laws are based upon the three fundamental modes of heat
transfer conduction, convection, and radiation.

1.3 Conduction Heat Transfer

Conduction may be viewed as the transfer of energy from the more
energetic to the less energetic particles of a substance due to interactions
between the particles. A temperature gradient within a homogeneous
substance results in an energy transfer rate within the medium which can be
calculated by Fourier's law

MED 3rd
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dr
q= _kAE (1.2)
Where g is the heat transfer rate (W or J/s) and k thermal conductivity (W/m
K) is an experimental constant for the medium involved, and it may depend

ar
upon other properties, such as temperature and pressure.a Is the

temperature gradient in the direction normal to the area A.

dT AT T,-T, I T T,
dx Ay -

AT
X} EA/L’

Figure 1.1 Temperature distributions for steady state conduction.
Through a plate wall
The minus sign in Fourier's Law (1.1) is required by the second law of
thermodynamics: thermal energy transfer resulting from a thermal gradient must be
from a warmer to a colder region. If the temperature profile within the medium is
linear Fig. 1.1 it is permissible to replace the temperature gradient (partial derivative)
with

&

q=—kA=" (1.2)
The quantity (L/kA) is equivalent to a thermal resistance Rk (K/W) which is equal

to the reciprocal of the conductance. As:

q="2" , R =— (1.3)
Ry

" ka
Such linearity always exists in a homogeneous medium of fixed k during steady
state heat transfer occurs whenever the temperature at every point within the body,
including the surfaces, is independent of time.
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Figure 1.2 Association of conduction heat transfer with diffusion of energy
due to molecular activity.

T,

-

Z—: , energy is either being stored in or
removed from the body. This storage rate is

If the temperature changes with time

daT
Qstorea = M Cyp at (1.4)

Where m is the mass of substance and Cp is specific heat capacity.
1.3.1 Thermal Conductivity

The thermal conductivity of a material is a measure of the ability of the material
to conduct heat.

l. Thermal Conductivity of Solids: In general, k for a pure metal
decreases with temperature; alloying elements tend to reverse this
trend. The thermal conductivity of a metal can usually be represented
over a wide range of temperature by

k = k,(a+ b6 + b6?) (1.5)
Where6 =T —T,.r and k, isthe conductivity at the reference
temperature Tref
The thermal conductivity of a non-homogeneous material is usually
markedly dependent upon the apparent bulk density, As a general rule,
k for a no homogeneous material increases both with increasing
temperature and increasing apparent bulk density.

1. Thermal Conductivity of Liquids: Thermal conductivities of most liquids
decrease with increasing temperature. But insensitive to pressure the
exception is water, which exhibits increasing k up to about 150°C and
decreasing k there after. Water has the highest thermal conductivity of
all common liquids except the so-called liquid metals.

lll.  Thermal Conductivity of Gases. The thermal conductivity of a gas
increases with increasing temperature, but is essentially independent of
pressure for pressures close to atmospheric. For high pressure (i.e.,
pressure of the order of the critical pressure or greater), the effect of

Dr. Sattar Aljabair 8
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pressure may be significant.

e o5 Lo &
Vi . + Molecular o + Molecular sobooopclectrons
’ collisions v e = ] Fox) {' SOLID N
e K o + Molecular a5 collisions °°°\'1d’°,‘§ * Lattice vibrations
L7210 diffusion 21\ + Molecular C} {f\ * Flow of free
Sy [V e i diffusion '°°°{;°}§ electrons

@
§

Fig(1.3) The mechanism of heat conduction of different phases of a substance.

1.4 Convection Heat Transfer

Whenever a solid body is exposed to a moving fluid having a temperature
different from that of the body, energy is carried or convected from or to the body
by the fluid If the upstream temperature of the fluid is T, and the surface
temperature of the solid is Ts the heat transfer per unit time is given by Newton s
Law of cooling:

q = hA(Ts — To) (1.6)

Where h is Convective Heat transfer coefficient (W/m2 K) as the constant of
proportionality relating the heat transfer per unit time and area to the overall
temperature difference. It is important to keep in mind that the fundamental energy
exchange at a solid-fluid boundary is by conduction, and that this energy is then
converted away by the fluid flow.

The thermal resistance to convection heat transfer Rc, as:

1 Te—Too
Re=— ,q=-2 (1.7)

velocity
distribution

~F u(y)

empeiature
distribution
Tiv)

q” ‘ T,

L n(y) Heated Ty}
surface

Fig (1.4) Vdocity and temperature distribution on flat plate

1.5 Radiation Heat Transfer
The third mode of heat transmission is due to electromagnetic wave
propagation, which can occur in a total vacuum as well as in a medium. Experimental
evidence indicates that radiant heat transfer is proportional to the fourth power of
the absolute temperature, whereas conduction and convection are proportional to a
linear temperature difference. The fundamental Stefan-Boltzmann Law is:

q = osT* (1.8)

MED 3rd

Year

Dr. Sattar Aljabair 9



Chapter 1 Introduction

Where T is the absolute temperature, & is Boltzmann constant independent of
surface, medium, and temperature; its value is 5.6697 x 108 W/ne.K« ., the thermal
emission from many surfaces (gray bodies) can be well represented by:

q = O-SA(T;L - Ts%u*) (1.9

Where €, the emissivity of the surface, ranges (0-1). The ideal emitter or
blackbody is one, All other surfaces emit some what less than one. Ts and Tsur The
temperature of surface and surroundings respectively. Similarly, the thermal
resistance to radiation heat transfer Ry, as:

_ Ts—Tsur _ Ts—Tsyy
r = T 2 4= (1.10)
0eA(Ts' —Tgyyr) Ry

Table1l. Summary of heat transfer rate processes

MED 3rd

Year

Mode Transfer Rate of heat Thermal
Mechanism transfer(W) Resistance (K/W)
Diffusion of energy daT L

Conduction | due to random 9= _kAE Rie = kA

molecular motion

Diffusion of energy | q = hA(Ts —Ty) !
Convection | due to  random Re = hA

molecular motion

plus bulk motion

Energy transfer by R. = Ts — Tsur
Radiation electromagnetic q " oeA(TA —TE,)

Waves = o€l (Ts4 - Tsir)

Figure (1.5) Conduction, Convection and Radiation Heat transfer Modes

The concept of thermal resistance (analogous to electrical resistance) is
introduced as an aid to solving conduction heat transfer problems.

Dr. Sattar Aljabair 10
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Example 1.1

Calculate the rate of heat transfer by natural convection between a shed roof
of area 20 m x 20 m and ambient air, if the roof surface temperature is 27°C, the air
temperature 3°C, and the average convection heat transfer coefficient 10 W/m2 K.

Figure 1.6 Schematic Sketch of Shed for
Analysis of Roof Temperature.

Solution

Assume that steady state exists and the direction of heat flow is from the air
to the roof. The rate of heat transfer by convection from the air to the roof is then
given by Eq:

qc = RA(Tuir — Troor) = 10 X 400 X (=3 — 27) = —120,000 W

Note we initially assumed that the heat transfer would be from the air to the
roof. But since the heat flow under this assumption turns out to be a negative
guantity the direction of heat flow is actually from the roof to the air.

Example 1.2
Determine the steady state rate of heat transfer per unit area through a 4.0cm

thick homogeneous slab with its two faces maintained at uniform temperatures of
380C and 21 oC. The thermal conductivity of the material is

0.19 W/m K.
q (T2 — T1) (38 — 21) w
—=—fk——"=-019X——==+480.75—
A~ "z =x 004) o0
Example 1.3

The forced convective heat transfer coefficient for a hot fluid x1 x2 flowing
over a cool surface is 225 W/m2.0oC for a particular problem. The fluid temperature
upstream of the cool surface is 120 oC, and the surface is held at 10 oC. Determine the
heat transfer rate per unit surface area from the fluid to the surface.

g=hA (Ts-T)
q/A=225(120-10)=24750 W/m2

MED 3rd

Year
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Example 1.4
After sunset, radiant energy can be sensed by a person standing near a brick

wall. Such walls frequently have surface temperatures around 44 oC, and typical brick
emissivity values are on the order of 0.92. What would be the radiant thermal flux per
square foot from a brick wall at this temperature?

w
q =0eT* =092 % 5.6697 x 1078 x (44 + 273) = 527W-

Example 1.5
In the summer, parked automobile surfaces frequently average 40-50 °C.

Assuming 45°C and surface emissivity of 0.9, determine the radiant thermal flux
emitted by a car roof

w
q =0eT*=0.9x5.6697 x 1078 x (318) = 522 —-
m

Example 1.6

The air inside an electronics package housing has a temperature of 50°C. A
“chip" in this housing has internal thermal power generation (heating) rate of 3 X 10 -
3 W. This chip is subjected to an air flow resulting in a convective coefficient h of 9
W/m2.0C over its two main surfaces which are 0.5
cm X 1.0 cm. Determine the chip surface
temperature neglecting radiation and heat transfer

from the edges.
q = hA(Ts — Tw)

In this case q is known 3 X 10 -3 W, and this is from two

. 0.5 1
surfaces having total area A=2X-—XxX—=

100~ 100
10~* m?

0.003
9x10~%

TS:TOO+%=50+ =53.33°%C

Example 1.7
Calculate the thermal resistance and the rate of heat transfer through a pane

of window glass (k = 0.78 W/m K) 1 m high, 0.5 m wide, and 0.5 cm thick, if the outer-
surface temperature is 24°C and the inner-surface temperature is 24.5°C

MED 3rd

Year
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Solution

Assume that steady state exists and
that the temperature is uniform over
the inner and outer surfaces. The
thermal resistance to conduction Rk

is from Eq.
poo L0005 oK
KTkAT 078x1x05 w

The rate of heat loss from the interior

to the exterior surface is:
AT  24.5-24

== =2 391
1=R,~ ooizs W

Example 1.8

Introduction

A long, cylindrical electrically heated rod, 2 cm in diameter, is installed in a vacuum
furnace as shown in Fig.1.8. The surface of the heating rod has an emissivity of 0.9 and
is maintained at 1000 K, while the interior walls of the furnace are black and are at
800 K. Calculate the net rate at which heat is lost from the rod per unit length and the

radiation heat transfer coefficient.

Figure 1.7 Schematic Diagram of Vacuum Furnace with Heating Rod

Solution
Assume that steady state has been Interior walls of
reached.

Moreover, note that since the walls of \

the

furnace completely enclose the heating
rod, all the radiant energy emitted by
the surface of the rod is intercepted by
the furnace walls. Thus, for a black
enclosure, Eq. (1.9) applies and the net

heat loss from the rod of surface Al is
q-= oA (Ts4 - Ts%zr)
= oenDL(T¢ — Ta,)

=567 %x1078x 0.9 xmx0.02

X1
x (1000* — 800%)

=1893 W

furnace at 800 K

Heating rod at
1000 K

Dr. Sattar Aljabair
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Note that in order for steady state to exist, the heating rod must dissipate electrical
energy at the rate of 1893 W and the rate of heat loss through the furnace walls must
equal the rate of electric input to the system, that is, to the rod.

oe(T} — T
= (1 2)2151
Tl_TZ mZ.K

Example 1.9
An instrument used to study the Ozone depletion near the poles is placed on a

large 2-cm-thick duralumin plate. To simplify this analysis the instrument can be
thought of as a stainless steel plate 1 cm tall with a 10 cm x 10 cm square base, as
shown in Fig. 1.6. The interface roughness of the steel and the duralumin is between
20 and 30 rms (um) the contact resistance is 0.05 k/w. Four screws at the corners. The
top and sides of the instrument are thermally insulated. An integrated circuit placed
between the insulation and the upper surface of the stainless steel plate generates
heat. If this heat is to be transferred to the lower surface of the duralumin, estimated
to be at a temperature of 0°C, determine the maximum allowable dissipation rate
from the circuit if its temperature is not to exceed 40°C.

Figure 1.8 Schematic Sketch of Instrument for Ozone Measurement.

Instrument package
(with insulation removed)

MED 3rd

Year

Solution /
Since the top and the sides of - Integrated /

the instrument are insulated, all the 'ar:‘:i':‘("j) o 1 e

heat generated XP : {a;_) _i

by the circuit must flow downward. S =

The thermal circuit will have three 3;" L

/
n R
/ &— 10 cm —»

resistances the stainless steel, the (

contact, and the duralumin. Using P - \

thermal conductivities kss = 14.4 ‘ S .
Duralumin

W/m K, kM = 164 W/m K the base plate at 0 °C

thermal resistances of the metal
plates are calculated from Equations:

Stainless:
) K
L B R
Ak, 001 m* x 144 W/mK W
Duralumin:
0.02 K
L . ....... S| U E.
Aky 001 m* x 164 W/m K W

THERMAL CIRCUIT

Dr. Sattar Aljabair 14
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1.6 The Energy Balance
In this special case the control surface includes no mass or volume and appears as
shown in Figure 1.8.Accordingly, the generation and storage terms of the Energy
expression,
Ein—Eout -Est + Eg=0
Consequently, there can be no generation and storage. The conservation requirement
then becomes
Ein—Eout=0
In Figure 1.8 three heat transfer terms are shown for the control surface. On a unit
area basis they are conduction from the medium to the control surface q"cond
convection from the surface to a fluid g"conv, and net radiation exchange from the
surface to the surroundings q'rad. The energy
balance then takes the Form and we can express Control surfaces
each of the terms according to the appropriate rate & {
equations.

17 — " "
Acond = Y9conv + Qrad

Heanduction

FIGURE 1.34 Application of Conservation of Energy
Law at the Surface of a System

1.7 Combined heat transfer systems
Summarizes the basic relations for the rate equation of each of the three basic heat
transfer mechanisms to aid in setting up the thermal circuits for solving combined heat
transfer problems.

1.7.1 Plane Walls in Series
In Fig. 1.15 for a three-layer system, the temperature gradients in the layers are
different. The rate of heat conduction through each layer is gk, and from Eq. (1.1) we
get

MED 3rd

Year
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Eliminating the intermediate temperatures T2 and T3 in Eq. gk can be expressed in
the form

Similarly, for N layers in series we have

g o T T s 0
q& =.-N qk= n=N =
S To. A

where T1 is the outer-surface temperature of layer 1 and TN+1 is the outer-surface
temperature of layer N. and AT is the overall temperature difference, often called the
temperature potential.

. ‘ . ;l Material C
Figure 19 N ke
Conduction o
Through a aq, a,
Three-Layer
Systemin Series.
THERMAL CIRCUIT
T, T, Ty
O—AN—O-MWA-O—AWW—O0
LA L, LC
[ s M)
Example 1. 6

Calculate the rate of heat loss from a furnace wall per unit area. The wall is
constructed from an inner layer of 0.5 cm thick steel (k : 40 W/m K) and an outer layer
of 10 cm zirconium brick (k = 2.5 W/m K) as shown in Fig. The inner-surface
temperature is 900 K and the outside surface temperature is 460 K. What is the
temperature at the interface?

Dr. Sattar Aljabair 16
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Zirconium brick

Steel

j'wh"—l—f— 460 K

qeoa

5 3
0.5 cm —v' L- 10 cm—*

Figure 1.10 Schematic Diagram of Furnace Wall.

Solution

Assumptions:

e Assume that steady state exists,

* Neglect effects at the corners and edges of the wall,

* The surface temperatures are uniform.

The rate of heat loss per unit area can be calculated from Eq:

The interface temperature T2 is obtained from 9 =

Solving for T2 gives

Note that the temperature drop across the steel interior wall is only 1.4 K because the
thermal resistance of the wall is small compared to the resistance of the brick.

Example 1.7
Two large aluminum plates (k = 240 W/m K), each 1 cm thick, with 10 um surface

roughness the contact resistance Ri = 2.75 x 10-4 m2 K/W. The temperatures at the
outside surfaces are 395°C and 405°C. Calculate (a) the heat flux (b) the temperature
drop due to the contact resistance.

Dr. Sattar Aljabair 17
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10 um surface
roughness

Figure 1.11 Schematic Diagram of
Interface Between Plates.

1 cm L—ol L—-I | cm
Solution

(a) The rate of heat flow per unit area, " through the sandwich wall is

The two resistances is equal to
(L/K) = (0.01 m)/(240 W/m.K) = 4.17 x 10sme K/W
Hence, the heat flux is

(b) The temperature drop in each section. The fraction of the contact resistance is

Hence 7.67°C of the total temperature drop of 10°C is the result of the contact
resistance.

1.7.2 Plane Walls in Parallel

7 T,

L
4 2 &% i

AAA
VA

T, 7
4 9% —o

AA
L

vV

k=4, + 4> Ag
_Li-%L G-T___ Ti-7
(L/kA), ~ (L/kA)g R R;/(R; + R;)

R
* kpdp

THERMAL CIRCUIT
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Conduction can occur in a section with two different materials in parallel between the
same potential. Fig. 1.18 shows a slab with two different materials of areas AA and AB
in parallel. If the temperatures over the left and right faces are uniform at T1 and T2,
the total rate of heat flow is the sum of the flows through AA and AB:

Note that the total heat transfer area is the sum of AA and AB and that the total
resistance equals the product of the individual resistances divided by their sum, as in
any parallel circuit. A more complex application of the thermal network approach is
illustrated in Fig. 1.19, where heat is transferred through a composite structure
involving thermal resistances in series and in parallel. For this system the resistance of
the middle layer, R2 becomes and the rate of heat flow is

RyR,
2 -
Ry + R :
Section | Section 2 Section 3
AT T Gy SRR Y
G = “Toverall ! 8- Material B ‘ Material D
k= n=3 , ky i ky o
z R qy f -
— n L AR PERN 5
n=1 g ~ Material C )
Where N is number of layers in series , A
7

. m
Ry : Thermal resistance of » layer
AT pyeran - temperature difference
across two outer surfaces

Figure 1.13 Conduction Through a Wall Consisting of Series and Parallel Thermal
Paths.

Examplel. 8
A layer of 2 in thick firebrick (kb = 1.0 Btu/hr ft °F) is placed between two % in.-thick

steel plates (ks = 30 Btu/hr ft °F). The faces of the brick adjacent to the plates are
rough, having solid-to-solid contact over only 30 % of the total area, with the average
height of asperities being L2=1/32 in. If the surface temperatures of the steel plates
are 200° and 800°F, respectively. The conductivity of air ka is 0.02 Btu/hr ft °F,
determine the rate of heat flow per unit area.

Dr. Sattar Aljabair 19
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Figure 1.14 Thermal Circuit for the Parallel-Series Composite Wall. L1= 1in.;L2=
1/32in.; Ls= 14 in.; T1is at the center.

Firebrick . PHYSICAL SYSTEM
Center

Steel plates
® Firebrick’ <2 0.2 0.9%~48 (8
Qo R, 00 ™y ‘0'\\\70@“0{

Chg e 0w O
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o
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3[)0{\7
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@

0
B
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Q
5
S
D;

<
D,
; G)Qﬁ)p

(a)

(b) i

Solution

The overall unit conductance for half the composite wall is then, from an inspection
of the thermal circuit

S"O A G U, B0 R, 0\/ & g B
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1

K, =
¥ R, + [R4R;s/(R4 + Rs)] + R,
L, (1/4in.) -3 2 op\—1
. = 0.694 x 10~ (Btu/hr ft? °F
Rs =4 = {12 in./f)(30 Btu/hr °F ft) R (o )
o
P (}/ 32 m) — 8.68 x 1073 (Btu/hr ft? °F)!

T 0.3k, (12 in./ft)(0.3)(1 Btu/hr °F ft)

Since the air is trapped in very small compartments, the effects of convection are small
and it will be assumed that heat flows through the air by conduction. At a temperature
of 300°F. Then R5 the thermal resistance of the air trapped between the asperities, is,
on the basis of a unit area, equal to The factors 0.3 and 0.7 in R4 and R5, respectively,
represent the percent of the total area for the two separate heat flow paths. The total
thermal resistance for the two paths, R4 and R5 in parallel, is

B (1/32in))

= = ; - -3 ftz oF)-1
0.7k, (12 in./ft)(0.7)(0.02 Btu/hr °F ft) 186 x 107" (Btu/hr )

R

. — _RaRs _ (87)(187) x 1076
2" Ry+Rs (87+187)x 1073
b (1 in.)

~k, (12 in,/f)(1 Btu/hr °F f)

The thermal resistance of half of the solid brick, Rl is and the overall unit conductance

= 8.29 x 1073 (Btu/hr ft? °F) !

R, = 83.3 x 1072 (Btu/hr ft? °F) !

is

o 1/2x10°
833 + 8.3+ 0.69

K, = 5.4 Btu/hr ft? °F

Btu

4 i ez ‘B
~ = KT _(5.4hr e

)(800 — 200)(°F) = 3240 Btu/hr ft?

Inspection of the values for the various thermal resistances shows that the steel offers
a negligible resistance

1.5.2 Convection and Conduction in Series

Figure (1.15) shows a situation in which heat is transferred between two fluids
separated by a wall, the rate of heat transfer from the hot fluid at temperature Thot
to the cold fluid at temperature Tcolq is
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_T— T _ AT
g R R, + R, + R,
i
0 GE ]
1 q QR 0.5
where Ry =—=—— mw
(heA)por 0";?‘0»_8‘ ‘o 3%
L . O _0»_«7 -,
Ry =17 Thor, B, hot |5 987. 067 b, cord, Teotd
?Q RO g
1 Q0.5 07
(heA)cora L

Thol Tcold

O—AMWN—O— WNV—O0—WWN—0
| L |

R, =— R,= — Ry=—

l (heApor 2 kA ’ (heA)eord

Figure 1.15 Thermal Circuit with Conduction and Convection in Series.

Example 1.8
A 0.1 m thick brick wall (k = 0.7 W/m K) is exposed to a cold wind at 270 K through a

convection heat transfer coefficient of 40 W/m2 K. On the other side is air at 330 K,
with a natural convection heat transfer coefficient of 10 W/m2 K. Calculate the rate of
heat transfer per unit area.

Solution
The three resistances are the rate of heat transfer per unit area is :
1 1
== == = .] K W
R = A~ mowm K my) - oK/
L (0.1 m)
Ry=—-= =0.143 K/W
7 kA (0.7 W/m K)(1 m?) /
1
: = 0.025 K/W

Ry = A~ @ W/m? K)(I m?)
and from Eq. (1.29) the rate of heat transfer per unit area is

q AT B (330 — 270) K
A R, + R, + Ry (0.10 4+ 0.143 + 0.025) K/W

= 2239 W
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1.5.3 Convection and Radiation in Parallel

In many engineering problems a surface loses or receives thermal energy by
convection and radiation simultaneously. Figure 1.23 illustrates the co current heat
transfer from a surface to its surroundings by convection and radiation.

4= qgc T qr

g =hed(T; - Ty)+ hyd (T; - T

q =(het hy)4d (T; - T2)
where hc is the average convection heat transfer coefficient between area Al and the
surroundings air at T2, the radiation heat transfer coefficient

The combined heat transfer coefficientis h = hc+ hr

Ty
\

q, = hrAl(rl 26 T2)

Surrounding air at T,

Surface at T

THERMAL CIRCUIT
3 I
¢ hc“il
AN
T Ty T8 BEh
O— —0 g= +
R, R,
AN
gl
h.A,
Simplified circuit
Tl Tz Tl s T2
O WAAS 0 q= R
i R.R, = hA(T, - Ty)
R.+R,

FIGURE 1.23 Thermal Circuit with Convection and Radiation
Acting in Parallel.
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Example 1.5

Air at 20C blow over a hot plate 50 x 75 cm and thick 2 cm maintained at 250 oC. The
convection heat transfer coefficient is 25 W/m2 C. calculate the inside plate

temperature if it is mode of carbon — -
steel and that 300 W is lost from the ~Zcomv h AT, 1)

plate surface by radiation. Where {eonmv — 25 {’0.5 *0, 75} 1_/250 - 20)
thermal conductivity is 43 w/m C. Geony =2.156 KW

Solution Goond = Goom n Grad
Geong = 2.156 +0. 3=2.456 kW
T,
goa?fd = kA%
T, —250
2.456=43(0.5%x0.75)1——
0.02
T;=25305°C
Example 1.9

A 0.5 m diameter pipe (¢ = 0.9) carrying steam has a surface temperature of 500 K.
The pipe is located in a room at 300 K, and the convection heat transfer coefficient
between the pipe surface and the air in the room is 20 W/m2 K. Calculate the
combined heat transfer coefficient and the rate of heat loss per meter of pipe length.

Room Temperature = 300 K

Pipe surface
temperature = 500 K

>
\ﬂ_;

3 ! Steam

Figure 1.17 Schematic Diagram of Seam Pipe

Solution

hr= 13.9 WmeK
The combined heat transfer coefficientis h = hc + hr=20+ 13.9=33.9 W/m2 K
and the rate of heat loss per meter is
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1.5.4 Overall Heat Transfer Coefficient

We noted previously that a common heat transfer problem is to determine the rate
of heat flow between two fluids, gaseous or liquid, separated by a wall. If the wall is
plane and heat is transferred only by convection on both sides, the rate of heat
transfer in terms of the two fluid temperatures is given by:

the rate of heat flow is expressed only in terms of an overall temperature potential
and the heat transfer characteristics of individual sections in the heat flow path., the
overall transmittance, or the overall coefficient of heat transfer U Writing Eq. (1.29) in
terms of an overall coefficient gives

An

overall heat transfer coefficient U can be based on any chosen area

Example 1.10

Aircraft heat exchanger

(a)

SIMPLIFIED CIRCUIT
7jgh Txg Tsc 7;;:.‘
O—— AWN—O— WNV—O0— WNV—0
1 L 1
R,= — Ry= — Ri= —
1 Ahl 2 kA 3 A 4

Figure 1.18 Physical System and Thermal Circuit.
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In the design of a heat exchanger for aircraft application, the maximum wall
temperature in steady state is not to exceed 800 k. For the conditions tabulated above,
determine the maximum permissible unit thermal resistance per square meter of the
metal wall that separates the hot gas Tgh = 1300 K from the cold gas Tgc = 300 K.
Combined heat transfer coefficient on hot side hl= 200 W/m2 K Combined heat
transfer coefficient on cold side h3 =400 W/m2 K

Solution
In the steady state we can write

9 _Tn—Ty _ Ton— Toc
A R, R, + R, + R;
1300 — 800 1300 — 300
/200  1/200 + R, + 1/400
1300 — 800 1300 — 300
0.005 R, + 0.0075
Solving for R2 gives R2 =0.0025 m? K/W

Example 1.11

The door for an industrial gas furnace is 2 m x 4 m in surface area and is to be

insulated to reduce heat loss to no more than 1200 W/m2. The interior surface is a
3/8-in.-thick Inconel 600 sheet (K= 25 W/m K), and the outer surface is a I/4 in.-thick
sheet of Stainless steel 316. Between these metal sheets a suitable thickness of
insulators material is to be placed. Insulation
The effective gas temperature inside
the furnace is 1200°C, and the overall
heat transfer coefficient between the
gas and the door is Ui = 20 W/m2 K.
The heat transfer coefficient between
the outer surface of the door and the
surroundings at 20°C is hc= 5 W/m2 K.
calculate the thickness of insulated

I/4 in. stainless steel 316 37 in. inconel 600
should be use

Figure 1.19 Cross section of composite
wall of gas furnace door
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Solution
The thermal resistance of the two metal sheets are approximately 25 W/m K the

thermal resistance of the two metal sheets are approximately:
L;+L>=0.25+0.375=0.625 in
0.625 in. Il m

R=Lk~3swWmK %94,

~6x107*m*K/W

These resistances are negligible compared to the other three resistances shown in
the simplified thermal circuit below;

The temperature drop between the gas and the interior surface of the door at the

Specified heat flux is:

Hence, the temperature of the In cornel will be about (1200-60)=1140°C. This is
acceptable since no appreciable load is applied. The temperature drop at the outer
surface is

The insulation thickness for k = 0.27 W/m K is:
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Chapter Two
Heat Conduction

2.1 Introduction

A major objective in a conduction analysis is to determine the temperature field in a
medium (Temperature Distribution), which represents how temperature varies with position
in the medium. knowledge of the temperature distribution:
+ Determination of thermal stresses, It could be used to ascertain structural integrity through
* To determine the optimize thickness of an insulating material
* To determine the compatibility of special coatings or adhesives used with the material.

2.2 Conservation of Energy

Applying energy conservation to the control volume. At an instant, these include the
rate a which thermal and mechanical energy enter Ein and leave Eout. through the control
surface, Is additional to the rate of change of energy generation Egand stored Es. A general
form of the energy conservation requirement may then be expressed on rate basis as:

E:‘.Fz + Eg _E-:}u: = Es! 2.1 E &Eﬂ

2.3 The Conduction Equation of Rectangular Coordinate

Consider the energy processes that are relevant to this control volume. If there are
temperature gradients, conduction heat transfer will occur across each of the control surfaces
a the x, y, and z coordinate. The conduction heat rates at the opposite surfaces can then be
expressed as a Taylor series expansion where, neglecting higher order terms,

Figure 2.1 Differential
control volume, dx dy dz
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dq. dg
Geiax = 4dx T ~ dx Slope = —X
x+d q dx upe dx

dq,
Dysdy =4y d_;d‘

dq.
Q:+d: = (]_- T _- d’.

> X

The rate of change of energy generation Egand stored Est
E, =qV = qdxdyd:
dar drl dar
E. =mC,— = pVC, — = p(dxdvdz)C, —
T r di‘ .l"‘ r (ﬁ‘ J’t ( ® ) r ﬂ?f

where g is the rate at which energy is generated per unit volume (W/ms) and to express
conservation of energy using the foregoing rate equation

E,+E -E, =E,
and, substituting equations, we obtain

dg /G‘rf}- ;Z/ dg., . . dr
+d 44— + 22 d0) (¢ + —Lv)— (g +22d-) + gdxdvd- = pdxdvd-C, — 2.2
KA A+ )=+ ) G+ My v = pivaazc, &

The conduction heat rates may be evaluated from Fourier's law,

our

q, =k ar _ —kdzdy ar
' dx dx
q, = —kAd—T = —kdzdx ar >~ (2.3)
dT dT

-
- -

q. = —kA— = —kdzdx—
- - ,J

Substituting Equations 2.3 into Equation 2.2 and dividing out the dimensions of the control
volume (dx dy dz), we obtain

e ,.oer ¢ .,or, ¢ _oT cT
— (k) +— (k) +—(k—)+4=pC,—
6;::( ax) 8}_( ay) 62( az) q P2 (2.4)
It is often possible to work with simplified versions of Heat Equation (k=Const) is
&’T &T T ¢ 1eéT
I a e
éxt a8t k aét 05)

where a = k/pCp (n2/9) is the thermal diffusivity.
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2.3.1 One Dimension Steady State b>x |
Conduction .

A plane wall separates two fluids of different AR
temperatures. Heat transfer occurs by convection from R »a,
the hot fluid at T, , to one surface of thewall at Tsi, by 7 | A :
conduction through the wall, and by convection from ' \
the other surface of the wall a Ts2 to the cold fluid 3

ATy,
If the heat transfer one dimensional and under steady- ?‘r[f

s T2
state conditions (there can be no change in the amount et fiuid SR A
of energy storage and generation; hence Heat f0.1: M : T2
Equation reducesto % .i; ﬁk?
g . oT
—(k—)=0 Figure 2.2 Heat transfer
ox  Cx

through a plane wall.
(2.4

If thethermal conductivity is assumed to be constant (k= Const), the equation may be integrated
twice to obtain the general solution T(X)=Cix+C2

To obtain the constants of integration, Ci and C2 boundary conditions must be introduced.
Applying the conditions

B.C.1 x=20 at I=T;; W ---mmmm--- » =Ty
B.C.2 x=07L at I=T;
A_.'r,_'\ - _?—;
Tor=CilL+Cr=CilL+Ts;  cceeeeeee- » =221 sl
L

Substituting into the general solution, the Temperature Distribution isthen

X
I(x) =(T5y-Tg ) — +1, Linearly equation.

L (2.7)

2.3.2 Contact Resistance

The existence of a finite contact resistance is due principally to surface roughness
effects. Contact spots are interspersed with gaps that are, in most instances, air filled. Heat
transfer is therefore due to conduction across the actual contact area and to conduction and/or
radiation across the gaps. The contact resistance may be viewed as two parallel resistances:
that due to:

(1) The contact spots
(2) That due to the gaps (the major contribution to the resistance).
The resistance is defined as
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Figure 2.3 Temperature drop due to
thermal contact resistance.

Example2.1

The temperature distribution acrossawall 1 mthick at a certain instant of time is given
as (T(x) = a+ bx + cx2) where T is in degrees Celsius and x is in meters, while a = 900° C, b
= -300°C/m, and c= -50°C/mre. A uniform heat generation g=1000 W/, is present in the wall
of area 10 nr having the properties p = 1600 kg/m?, k= 40 Wim K, and Cp= 4 kJ/kg K.
1. Determine the rate of heat transfer entering (x = 0) and leaving the wall (x =1 m).
2. Determine the rate of change of energy storage in the wall.
3. Determine the time rate of temperature change at x = 0, 0.25 and 0.5 m.

1 aT
) QID=QX(O) = —kA— - —kA(b+2CX)X_0
x| o
@i = —bkA = 300°C/m X 40 W/m - K X 10 m? -
Similarly,

aT
Qow = §x(L) = —kA—

9% — _kA(b"‘ZCX)x_L

xw i

~(b+ 2¢cL)kA = —[-300°C/m

Jom
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+2(—50°C/m*) x 1m| x 40 W/m - K X 10 m* = 160 kW
2. E,+E -E,=E, 2.1
where E, = ¢AL, it follows that
EymEg+ Ey— Egy = gip + QAL — gy,
E
E

120 kW + 1000 W/m® X 10 m* X 1 m — 160 kW

st

—30 kW

st
3. The time rate of change of the temperature at any point in the medium may be determined
from the heat equation, Equation 2.15, as
aT k d*T q
— +
at pc, ax? pc,
From the prescribed temperature distribution, it follows that
*’r 9 HT) d . , ) .
ax3 —E( —a(b+2cx)=‘c=2(_—50 C/m*) = —100°C/m

ax |

aT 40 W/m - K 1000 W /m’

— = x (—100°C/m?) + — , ,
ar 1600 kg/m’ x 4kJ /kg - K ( /™) + 1600 ke/m X 4Kl kg - K

aT
- = =625 X 1074°C/s + 1.56 X 1074°C/s = —4.69 X 107%°C/s
ol

Example 2.2

The diagram shows a conical section from pyroceram (k= 3.46 W/mK). It isof circular
cross section with the diameter D = ax. The small end isat x1= 50 mmand the large end at xo=
250 mm. The end temperatures are T1= 400 K and T2= 600 K, while the lateral surface iswell
insulated and a=0.25.

1. Derive an expression for the temperature distribution T(x) in symbolic form, assuming one-
dimensional conditions.

2. Sketch the temperature distribution.

3. Calculate the heat rate through the cone.

Schematic:
Solution
Assumptions: Ts = 600 K
1. Steady-state conditions. b

2. One-dimensional conduction in the x direction.
3. No internal heat generation.
4. Constant properties.

ens X1 =
s [ i
q, = dx Pyroceram le—xy = 0.25 m
X

With A=1D2/4= na2x2/4 and separating variables

9, ¢— - L
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—11}1(.?1 kAT

fﬁ’f‘i

Integrating from x1to any x within the, it follows that

v tagv L
24 d:: =—k|dT (k = const)

sy X i

Hence

ML D=k 1)

mas XX

and solving for q
m k(T -T)

A - )]

or solving for T

44 1 1
T(x)=T - — 5 (-—+—)
mk x x
B.C.2 I=T7T., at T_‘Q
ma ke (T; —
- ﬁuhjﬂxm
4{11' (T T":I'

ik [(1/x)-(1/x,)]

Substituting for g into the expression for T(X), the temperature distribution becomes
(1/x) =1/ %)
(1/x) = (1/x;)

Substituting numerical values into the foregoing result for the heat transfer rate

I'x)=L+(1~-1))

2.4 The Conduction Equation of Cylindrical Coordinate

A common example is the hollow cylinder, whose inner and outer surfaces are exposed
to fluids at different temperatures. For a general transient three-dimensional in the cylindrical
coordinates T= T(r, ¢ ,z t), the general form of the conduction eguation in cylindrical

coordinates becomes
cT

T &'r 18
o of (2.8)

- 7 2

5
- - +i_
c cz-  k

> og
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= (I .7

T=1T(r)
k= umfnml
/

Figure 2.4 Hollow cylinder with convective surface conditions.

For a general transient three-dimensional in the cylindrical coordinates T= T(r, ¢ ,z
t),the general form of the conduction equation in cylindrical coordinates becomes

18, ,8r. 18 T &'T ¢ 16T
——(r _} T3 A st =—— (2.8)
ror rt 8¢ 5‘: ko ot .
If the heat flow in a cylindrical shape is only in the radial direction and for steady-state
conditions with no heat generation, the conduction equation reduces to

16 ¢oT
——(—)=0
ror r }
Integrating once with 1espect to radius gives
r or_ C, and oIT_G
cr o r
A second integration gives IT'=Ciilnr+ C.. 2.9
To obtain the constants (Cy and C;). we introduce the following boundary conditions
B.C.1 =7; ar r=r; Ti=CyInri+ Cs.
B.C.2 =1, at r=r, T.=Cilnr,+ (..
Solving for Cy and C> and substituting into the general solution, we then obtain
T,-T =C/In2
s
I -T T, -T
C=—" C,=T,— —111:
In(r, /1) In(r, /1)
I,-T,
T(r)—iln( )+ T, 2.10
In(r, /7;) 1
we obtain the following expression for the heat transfer rate
¢, 2A4k(T, -T,
—kAd—T =—Qmlk)L= 7 ~%) 2.11
dr r In(r, /1;)
=1 In(z, /7
q, = M R= M 2.12
R 27alk
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2.4.1 Overall Heat Transfer Coefficient

A hot fluid flows through a tube that is covered by an insulating material. The system
loses heat to the surrounding air through an average heat transfer coefficient hc.o. the thermal
resistance of the two cylinders at the inside of the tube and the outside of the insulation gives
the thermal network shown below the physical system
where T}, o, hot fluid temperature
and
T, « the environmental air
temperature

[ In(ry/ry)  Inlrsiry) 1

hj.t:"tl 2ak L 2nkg L he o2mryL
the rate of heat flow is
a = AT = n.m = 1;_,1.
. iR = ! & In(ry/ry) s In(ry/r,) 1
i h2nri L~ 2nkL = 2mkgl b, 2arsL

(2.13)

it is often convenient to define an overall heat transfer coefficient by the equation
g = UAo (Thot-Teold)
The area varies with radial distance. Thus, the numerical value of U will depend on the area
selected. Since the outermost diameter is the easiest to measure in practice, Ao= 21 r3L is
usually chosen as the base area. Comparing between above Equations. we see that

Note that
UA=UiA=UoA (2.14)
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4, = 2727;,31: and the overall coefficient becomes
1
rs & ryln(ry/r)) 2 ryIn(ry/r;) i 1 2.15

U=

rihe, kq kg E

Example 2.3

Compare the heat loss from an insulated and an un-insulated copper pipe (k = 400 W/m K)
has an internal diameter of 10 cm and an external diameter of 12 cm. Saturated steam flows
inside the pipe at 110°C ( hei = 10,000 W/ne K). The pipe is located in a space at 30°C and the
heat transfer coefficient on its outer surface is estimated to be 15 W/me K. The insulation
available to reduce heat losses is 5 cm thick and its thermal conductivity is 0.20 Wim K

Solution

Figure 2.5 Schematic Diagram and Thermal Circuit for a Hollow Cylinder with Convection
Surface Conditions

The heat loss per unit length is

q__ I,-T,
L R+R+R
1
Hence we get Gl o L Il = 0000318 m K/W
< &= 2arh.,  (2m)(0.05 m)(10,000 W/m* K)
R, - In(ro/r) _ w 000007 m K/W
27 2nkype  (2m)(400 W/m K)
R, =R A : =0177m K/W

° " 2argh,  (2m)(0.06 m)(15 W/m® K)
Since R1and Rz are negligibly small compared to R3
For theun-insulated pipe.  g/L = 80/0.177 = 452 W/m

For theinsulated pipe, we must add a fourth resistance between riand ra.
R - In(z; /7)) In(11/6)
Y 2ak 27(02W /mK)

=0482mK /W

Also, the outer convection resistance changes to
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= ! =0.096mK /W

R, =
2m(0.11x15)

The total thermal resistance per meter length (RTotal=R4+Ro= 0.578 m K/W)
g/L = 80/0.578 = 138 W/m.
Adding insulation will reduce the heat loss from the steam by 70%.

Example 2.4
A hot fluid at an average temperature of 200.C flowsthrough aplastic pipe of 4 cm OD

and 3 cm ID. The thermal conductivity of the plastic is 0.5 W/m K, and the heat transfer
coefficient at the inside is 300 W/mz2 K. The pipe is located in a room at 30°C, and the heat
transfer coefficient at the outer surface is 10 W/mz2 K, Calculate the overall heat transfer
coefficient and the heat loss per unit length of pipe.

Solution
The overall heat transfer coefficient is based on the outside area of the pipe
U = 1
r, r,In(r,/r;) 1
rhe 'l kg
= : = 8.62 W/m? K
0.02 " 002In(2/1.5) 1

0.015 x 300 0.5 10

The heat toss per unit length 1s

L= UA(Tot = Toaie)

= (8.62 W/m? K)(n)(0.04 m)(200 — 30)K) = 184 W/m

2.4.2 Critical Radius of I nsulation

Although the conduction resistance increases with the addition of insulation, the
convection resistance decreases due to increasing outer surface area. Hence there may exist an
insulation thicknessthat minimizes heat loss by maximizing thetotal resistanceto heat transfer.

An optimum insulation thickness would be associated with the value of r that minimized
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gr or maximized Rrotal. Such a value could be obtained from the requirement that

dq
—=0 at =T Cyitica
ar. Critical
dg, _~27L(T, ~T,)(1/ Kr,) - (U/h”)) _
dr . 2 -
Ve ].1](?:, ! }';:I +i
k rh
1 1 k
PR T Ie =— 2.16
kr, r°h h
For spherical shape:
2k
==
h

Example 2.5
Calculate the total thermal resistance per unit length of tube for a 10 mm diameter tube

having the following insulation thicknesses: 0O, 2, 5, 10, 20 and 40 mm. The insulation is
composed of Cellular Glass (k=0.055 w/m K), and the outer surface convection coefficient is
5WmeK.

_ k 0.055
Solution r

L= = =0.011m
h 5

Hencerc> r, and heat transfer will increase with the addition of insulation up to athickness of
re-ri =(0.011-0.005)=0.006m

The thermal resistances corresponding to the prescribed insulation thicknesses may be
calculated and are summarized as follows.

THERMAL

INSULATION INSULATION &ESIE%I:CES
THICKNESS RADIUS
(r = r)(mm) r(m) cond Reonv  Rio:
0 0.005 0 637 637
2 0.007 097 455 552
5 0.010 200 318 518
6 re = 0.011 228 289 517
10 0.015 318 212 530
20 0.025 466 127 593
40 0.045 635 071  7.06

2.5 The Conduction Equation of Spherical Coor dinate
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For spherical coordinates, the temperature is a function of the three space coordinate
T(r,0, ¢ ,t). The general form of the conduction equation is then

A i ) aT 1 8T ¢4 10
1 i(r iZ) 6<sin()—)+~. a(ﬂ——+%=;‘—w— 2.17

r’sinf 6 r?sin?0 é¢?

Figure 2.6 Spherical Coordinate System

For a hollow sphere with uniform temperatures at the inner and outer surfaces, the
temperature distribution without heat generation in the steady state can be obtained by
simplifying Eq 2.17. Under these boundary conditions the temperature isonly afunction of
the radiusr, and the conduction equation is

lzf QGT) 0
¥ ér
aT C
-c, 6T = Lo
6‘1’ o
T(r-)=r:1—5
.
— —e ) C
B.C.1 I=I; at r=r1; Ti=C,-—-
Ff
_ — C.
B.C.2 =T, at =1, T, =C,——
-y
T-T, T-1, 1
G- T Ly
(r—)—(:) ° e

The temperature distribution is

T()=(F— 2=+ T,

?‘,- - (2.18)

The rate of heat transfer through the spherical shell is

MED 3rd

Year
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T o - i
g, = s _ —k(zlm-‘)i—f A=4m’ fale
N A —— 3 |
may be expressed in the integral form A=nD’ 5 sl E
L’r q,dr _ —Tlgka’l'" V=4mr’/3 5 aaa E
ATy g
Assuming constant & and ¢g,. we obtain
Ay (T —T) (r. —7)
q, =—""———7 R=-2_——" (2.19)(2.20)
r, = Ak,

Example 2.6
The spherical, thin-walled metallic container is used to store liquid nitrogen at 77 K.

The container has a diameter of 0.5 and is covered with an evacuated insulation system
composed of silica powder (k = 0.0017 W/m K). The insulation is 25 mm thick, and its outer
surface is exposed to ambient air at 300 K. The latent heat of vaporization higof liquid nitrogen
is2 x10: Jkg. If the convection coefficient is 20 W/ne K over the outer surface,

1. Determine the rate of liquid boil-off of nitrogen per hour?

2. Show expiration of critical radius of insulation? Ans. re= 2h/k

Solution

1. Therate of heat transfer from the ambient air to the nitrogen in the container can be obtained
from the thermal circuit. We can neglect the thermal resistances of the metal wall and between
the boiling nitrogen and the inner wall because that heat transfer coefficient is large. Hence

Thin-walled spherical
container, r; =0.25 m

Insulation

p b r,=0275m
Py

Liquid nitrogen

Air Toitrogen =77 K
T.=300K TS hg=2x10° J/kg
h. ,=20 Wim2 K q
THERMAL CIRCUIT
300 K 77K
O AN AW ——AM—0
R| RQ R3 R3<((R|+R3)

Figure 2.7 Schematic Diagram of Spherical Container
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e Tw.alr = Tl'lilrogcn = (3m o 77) K

R, + R, - 1 r,—r;
h dnr?  4zmkr,r,
i 223K
B 1 (0.275 — 0.250) m
(20 W/m? K)(47)(0.275 m)? v 47(0.0017 W/m K)(0.275 m)(0.250 m)
223 K
= 13.06 W

T (0053 + 17.02) K/W

To determine the rate of boil-off we perform an energy balance

Eﬁngaut mhfg = q
Solvingformgives . _ ¢ _ (13.061/5)(3600s/h1) _ o 5. ke ! hr
hfg 2x105J/kg
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2.6 Conduction with Heat Generation

A common thermal energy generation process involves
* The conversion from electrical to thermal energy in a current-carrying medium Eg=I<R.
* The deceleration and absorption of neutrons in the fuel element of a nuclear reactor
» Exothermic chemical reactions occurring within a medium. Endothermic reactions
would, of course, have the inverse effect
+ A conversion from electromagnetic to thermal energy may occur due to the absorption
of radiation within the medium.

Note: Remember not to confuse energy generation with energy storage.

2.6.1 Plane Wall with Heat Gener ation

X —>»x
~L +L -L : L
|
|
|
|
|
|

U}

' q 1} >
| fe To::
T 1 T(x) 3 2
' {x) 2
: - -

T, 3 ! §T

111 N ;
i |

? I

—_——+

§ ——————

=
N—D *

(=)

C e—— e —— -
- —— —— -

To, 1.1 ?Tlr Too sl 1 g

l T, 2, h2

(a) Asymmetrical plane wall (b)Symmetrical plane wall (c) Adiabatic surface at midline

Figure 2.8 Conduction in a with uniform heat generation

Assumptions

« Uniform heat generation per unit volume g =Const.
« For constant thermal conductivity k=Const.

« One dimension and steady state heat transfer.

The appropriate form of the heat equation, is
&°T &'T &T ¢ 1ér

=

t—5t—— = ——
cx-  ove oz k a ot (2.5)
The equation may be integrated twice to obtain the general solution

g +Cx+C,

Tix)=- ;
2k (2.6)

To obtain the constants of integration, C1and C2 boundary conditions must be introduced.
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B.C1 T=T. at  x=L @:f%f—cﬁ+g
B.C2 T=T,, at  x=-1 TL,=-—21I-CL+C,
T,-T, i* T,+T,
Cl — 5l J4 (__j — g}_"’ + Sl L
2L Y 2

In which case the Temperature distribution is
I:}_'_T:J — I L Ty + T,

L 2 L 2

222

gL
T(x)=—->(1-
( %(
The Symmetrical Plane Wall

when both surfaces are maintained at a common temperature, Tsi= Te= Ts. The
temperature distribution is given by

gL X
Tix)=—/(1—-— )+T. 2.23
(X %( /L
The maximum temperature (T=To) exists at the midline (x=0).
iy 11
r=L .1 or T -1 =9 2.24
2k ” 2k
which case the temperature distribution, after substitution eq 2.24 into eq 2.23
T(x)-T. x°
L — 1 —— 2.25
I, -1, L

Consider the surface at x = L for (Fig. 2.8b) or the insulated plane wall (Fig. 2.8c). The energy
balance given by

Eg - ‘Eour
gV =A4Ah(T, -T,) Neglecting radiation

AL = AT, - T,)

The surfacé temperature is
qL
ﬂ=a+%— 2.26

Note : A heat generation cannot be represented by a thermal circuit element
Example 2.7

A long electrical heating element made of iron has a cross section of 10 cm x 1.0 cm.
It isimmersed in a heat transfer oil at 80°C. If heat is generated uniformly at arate of 106 W/me
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by an electric current, determine the heat transfer coefficient necessary to keep the temperatu
of the heater below 200°C. The thermal conductivity for iron is 64 W/m K.

Iron heating element
Ge:= 106 Wim?

10cm

Heat transfer f

oil, 80 °C TGS
Solution
sL* 10° % (0.01)° .
r_ g =95 _107xQ0) ;.0
8k 8% 64
L
qV = ANT, -T,) (]A5=A11(Z;—Tx)
h= L =42W | m*’K
26T, -1,
Example 2.8

A plane wall is a composite of two materials, A and B. The wall of material A (k= 75W/mK)
has uniform heat generation 1.5 X 106 W/n¥, and thickness 50 mm. The wall material B has no
generation with (k = 150 W/m K) and thickness 20 mm. The inner surface of material A iswell
insulated, while the outer surface of material B is cooled by awater stream with 30°C and heat
transfer coefficient 1000 W/ne K.

1. Sketch the temperature distribution that exists in the composite under steady-state
conditions.
2. Determine the maximum temperature Toof the insulated surface and the temperature of the

cooled surface Ts. T Ty
T.=30°C
e ¢ A = 1000 W/mf K

SURDON ——n AT?
Solution i = L5 x 105 W/m ]
Assumptions: ky = 75 W/m-K bt
1. Steady-state conditions. ot

Q=

2. One-dimensional conduction in x

direction. :
3. Negligible contact resistance between walls.
4. Inner surface of A adiabatic.

5. Constant properties for materials A and B.
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T,=T.+ ‘ILT* 226

1.5=10%=0.035 -
TJ —BD—W—IDJ c

T,-T.
R +R..
L=T.+(R,, +R,)q

g =

where the resistances for a unit surface area are

M L

-\..-'II.I B = ko Eoy h
Hence . (.02 m 1 |
d b EIR T I 1000 Wm* K | 7 ! < 10 W/m' x 0.05 m
I, =115°C
From Eguation 2.24 the temperature at the insulated surface is
_1 2
L=T+5p
T, =115+%=1wc
Lu )

2.6.2 Radial Shapeswith Heat Generation
To determine the temperature distribution in the cylinder, we begin with the appropriate
form of the heat equation. For constant thermal conductivity is

1é,éT, ¢

R R
rEr{ é‘r'} i

b4,
E}rl Lk

Tir) = —%H +Cnr+C,

A. Saolid Cylinder

To obtain the constants (C1 & C2), we introduce the following boundary conditions
B.C.1 dl/dr=0 at 1r=0 ;=0
B.C.2 T=T. at r=r, =4, 4T

Ak ° !

Solving for Ci1and Czand substituting into the general solution, we then obtain

MED 3rd

Year
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T()=- i’i (1— %) +T, 2.28
The maximum temp%rature T=Toat r=0 ,
Tﬂ:—éiJrTS ﬁzi’"a—?; 2.29
4k 4k
T

substitution replace group in equation 2.28

g .2
%:1—’—2 2.30
a - ) T

The energy balance given by
E =E
£ our
GV = AN(T, ~T.)

qm,’L=2m,hL(T, - T..)
The surface temperature 1s

i =i 2 2.31
2h
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B. For Hollow Cylinder

. L Py -'—..Insulatiun
g 2 -
Try=—7"r"+Clnr+C,

4k :

To obtain the constants (O} and C5). we mtroduce the followmng boundary conditions

B.C.1 T=Ti  at r=rn T=-2L,"+cmr=+c,
B.C.2 T=T,  at r=r, T, =—%rf +Clnr, +C,

Solving for C; and C; and substituting into the general solution, we then obtain
(@ —T)+407 -7/ 4k
- In(r;, /'7,)
s 2 (T =T +4(7 =)/ 4k
C, =T, +irﬂ' & L) 4G mn ) xlnr,
. 4k In(r;, /7))

In which case the Temperature distribution 1s

. 2 X .
Te)=T, + q0; 4; o), EE:I;":; [i ' -+, —3}1} 2.32

The energy balance given by
Eg = Eﬂur

gr(r," 1)L =2m,hL(T, - T..)

The surface temperature 1s
1 2

T.=T. L90 =) 2.33

2hr,

Aaga DlElELT
03 pmall Agglall il Jlatil s ) padlds o _PL.!JJ'-"j iic sl ow
Pl..j}_}na L.,—'_‘I-_:III;;LJ'I I‘H_'_.l:u.l.lj'l LJLq. 13 j.jda...nﬂ al_f_nj;_“ Ju_"lj_]:...ﬂj E_J‘I_J;;J‘I 3;_-.1_)_" n._LIJJjJ Az -'3"- | ]
5 Sl s 5l adlds oyl dstie 510l .
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Example 2.9
A graphite-moderated nuclear reactor. Hest is generated uniformly in uranium rods of

0.05 m diameter at the rate of 7.5 x 107 W/me. These rods are jacketed by an annulus in which
water & an average temperature of 120°C is circulated. The water cools the rods and the
average convection heat transfer coefficient is estimated to be 55,000 W/ne K. If the thermal
conductivity of uranium is 29.5 W/m K, determine the center temperature of the uranium fuel
rods.

Vertical safety rods

Biological sheeld

Thermal shield \

Figure 2.9 Nuclear Fuel column with

water annulus

Reactor.
0.05m )
J Water in
Uit annulus
20 3
rod 120°C
Thermal shield f
cooling tube / /
Horizoatal control
Biological shicld  rods with cooling
cooling tube waler passages
Solution

The rate of heat flow by conduction at the outer surface equals the rate of heat flow by
convection from the surface to the water

T. =T, +1=
2h
7.5%x107 x 0.025
T =120 + —— ~137°C
2 % 55000

The maximum temperature from equation 2.29
. 2 7 = 2
p o9 g _75x10 x(0.025)

A . - +137=534°C
4k 4=205
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2.7 Heat Transfer in Extended Surfaces (Finned surface)

Extended surfaces have wide industrial application as fins attached to the walls of heat
transfer equipment in order to increase the rate of heating or cooling g = h As(Ts T«). Finscomein
many shapes and forms, some of which are shownin Fig 2.11.

Figure 2.10 Use of finsto enhance heat transfer from a plane wall.

Figure 2.11 uniform Fin configurations (a) Rectangular Fin, (b)& (c)Pin Fin

The selection of fins is made on the basis of thermal performance and cost. the fins is stronger when
the fluid is a gas rather than a liquid. The selection of suitable fin geometry requires a compromise
among:

« A cost and weight are available space

« Pressure drop of the heat transfer fluid

» Heat transfer characteristics of the extended surface.

Figure 2.12 non-uniform Fin configurations
(a) Parabolic (b) Triangular (c) Annular fin (d) Pinfin.

Consider a pin fin having the shape of a rod whose base is attached to a wall at surface
temperature Ts. The fin is cooled along its surface by a fluid at temperature Te To derive an equation
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for temperature distribution, we make a heat balance for a small element of the fin. Heat flows by
conduction into the left face of the element, while heat flows out of the element by conduction through
the right face and by convection from the surface.

Assumptions

1. Thefin has a uniform cross-sectional area

2. Thefin is made of a material having uniform conductivity (k = constant)

3. The heat transfer coefficient between the fin and the fluid is constant (h=constant).

4. One dimensional steady state condition only.

5. Non heat generation(g=0).

6. Radiation is negligible.

e L L e

o' o (iqc\')r..

Figure 2.12 Schematic Diagram of a Pin Fin Protruding from a Wall

Eirl = Er.?u.r
In symbolic form, this equation becomes Gx = Gurdy TGeonv
dg, .
. =g +—%d
_ Troae =Gx+—,
1T x IT(x —
—hiw{ _ -m"%‘f’{ +hdd (T()-T.) 2.34
ax |y LUV P
dds= Pdx
Where
P is the perimeter of the fin
Pdx isthe fin surface area between x and x+dx.
A Cross section area of fin
If k and h are uniform, Eg. 2.34 simplifiesto the form
d’T(x) hP
(x) L rm-1.]=0 235

dx? kA

It will be convenient to define an excess temperature of the fin above the environment, 6(x) = [T(x) -
Tw], and transform Eq. 2.35 into the form

J_EEI'] —m8=0

w dx’ 2.36
Where  m = hP/A.
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Last equation is alinear, homogeneous, second-order differential equation whose general solutic
the form

) =Cp e™ +Cy ™™ 2.37
To evaluate the constants C1and Czit is necessary to specify appropriate boundary conditions.
B.C.1 8(0) = (I, - T) at x=0
g.=C;+Cs 2.38

A second boundary condition depends on the physical condition at the end of the fin. we will treat the
following Eour Cases:

Casel: Thefinisvery long and the temperature at the end approaches the fluid temperature:
O(0) = (To—Tw) = 0 at X=00

Case?: The end of the fin is insulated:
do(x)

0 at x=L
dx
Case3: The temperature at the end of the fin is fixed:
L) = (TL— Tx) at x=L

Cased: Thetip loses heat by convection

960 — hé(L) at x=I
dx |.;

Casze 2

Case 4

dr

- he,p (T; - To)

T ax

x=

Figure 2.13 Representations of Four Boundary Conditions at the Tip of a Fin
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Case 1
The second boundary condition 1s:
B.C2 Blw)=(T.—T,)=0 at X=x

0= C;Emm—CQ e_m'x C;=ﬂ
B.C.I &0 =(T.—T) at x=10
g=0C;+C Co= 6.
Gx)= 6. e™ 2.39
Differentiatin
9 =-—mBe ™ 2.40

E_)l.
Since the heat conducted across the root of the fin must equal the heat transferred by convection from

the surface of the rod to the fluid,

al — .
qm =—kd— =hP{T()-T,)dx 2.41

i)
The rate of heat flow can be obtained by Two different methods.

yPEIGL B By left term in equation 2 .41 substituting Eq. 2 40 for x= 0 vields
O _gd[-malo)e =] 242

Gm =—Rd——
JEP

=kdlmd_|=k4 . —8&.

4 =NhPdk -6,

VO GTBWR By right term 1n equation 2.4/
G = hP(T()~T.)dx = hP[ 6,e™™dx

4 =hPO,—| =lhPAk -6, 2.43
i
0
Case 2
The second boundary condition 1s »
B.C. 1 8. =C+C,
dT
B.C.2 d_ =0 at x=L
x
Bx)=C; e™+Cr e™
daix
d(l} =mCe™ —mC,e™ =0
X XL
mble”i =piC,e™ C =Ce™
Substituting 1 B.C.J
2 a
-2mL x
g =C,e +C, > C‘2=1+€_2M_
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& —ImlL &
C=—-"=—¢e™ > Co=—3
1 1+€—2mf. 1 1+€2m£
Substituting the above relations for Cy and C; into Eq.(2.37)
H mx gj Rk e
b= Tt
te l+e
& E-EL-] & . [.Em;.]
B(x)=—Z—e ™ + g -
(x) l;t_g_mz _LE-]I'_L- 1+€__m£. .Emd.
g L g ) :
Blx)=————e e T+ —L o T
( ) e'"’L+em‘ En._L+€_an
-miL-%) ml-x)
e e
Fix)=06. -
= :(E-Eﬂ'*'é’m Em;+e'm,
il ml-x) [ anilex) ml-x) |y
9{1_):&[3 _+e _ ]:19; '[F m1_+emz } —]
e ™re” fe ™ +e }2
mL __-ml P —
Noting that SinhimL) = % CoshimL) = %

The temperature distribution is:

o ]_Efcoﬁhm(L—x]\
YT T cosh(mL)

2.44

The heat loss from the fin can be found by substituting the temperature gradient at the root into
Eq.(2.37), we get

de(x) _5 —msinh m(L —x)
dc 7 cosh(mL)

di(x) —msmhmL
=0 ———————— =—F mtanml
dx :

cosh mL

x=)

dg
g)‘-""i’ :_M
ax .4

g, = VhPAk 8, tanh(mL) 2.45
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The second boundary condition 1s »

BC. 1 8 =C,+0C, C,=6.-¢
B.C.2 B(x)= 6 at x=L
Substituting 1 B.C.2
Bix)=C; e™+Cre™ 2.37

HIL,.I =C) e mL C: e —mL
B =Cre™ +(6.—Cpe™

—mL
1 Em.{. _ E—m[
—mL mL —mL —mL
C,=6,- EU_] -0 -e =5':{e —e )_ch} +0 -e
g Em.f. _ E—m[ em[ _e—mL
mL
c - 6,-e —&,
2 emL _ E—mL
Substituting the above relations for Ci1and Cz2into Eq.(2.37)
By -6 L 6™ =6 .
o) = g ¢ g €
. _(E{Lj / 5,: }(gm' _ g—m‘] + gmil—xj _ g—m(f.—xj
8ix) = &,
. E em.l_'. _e—ml
B g ™ — g™ m{l-x) _ g—th—x}
() ( > )
Bix) = 8. :
(x b gL _ oML
i 2

The temperature distribution is:

Bx) = ej[(gf” 2.46

/8, )sinh mx + smh m(L — x)
sinh mL

The heat loss from the fin can be found by substituting the temperature gradient at the root into
Eq.(2.37), we get

doix) p _{(Hm 18, )m - coshmx + (—m)cosh m(L — I]}{sm%rﬁl’fj— 0
dr |, L (sinhmIT
diix) g _{{E,:L] /8. )m -—mcosh H&L}(Sﬁlh mlﬂ
dx |, - | (sinh mL )" ]
do(x)| o (8, /6,;)—coshmL
dx |, sinh mL
o a2 qpf O8]
X |0 sinh mL
g = ;?PER—A coshmL — (&, /6,)
- kA 7 sinh mL
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shml —(&.,, /8
Gg =M S Cry 1. 247
sinh mL
Noting that M =+{hPAk -8,
Case 4
The second boundary condition 1s:
B.C.1 g, =C,+C, Cc,=6-¢
B.C.2 _pde) 8(L)
dbx X=L
Bx) = Cre™ + Cre™ (2.37)
BL)=Cre™ + Cre™
d&(x)

L —mL
=mCe"™ —mC,e™"
YL

dx

Substituting above equationsin B.C.2

—k(mCe™ —mCe™™ ) =h(C, e ™ +C,e ™)
Substituting B.C .2
—k(mCie™ —m(8, —Ce™)=h(C e ™ + (8, —C))e™)
B (e ™™ —e (ki Fam))
e By (b ke - (B Fon) +1
B (e = (hlkm)e ™)
C e =y (h/ e 2+ 1—(h/ fom)
B (e =(h/Fm)e )
e Ty (b bome -+ 1— (h/ kam)

8, & (1~ (7| fon))

8, —— _

S e ™y (hi ke ™+ 1—(h/ km)

_ B.(e 5+ (h/ bome 41— (h ! km)) — 6, e (1 — (h/ k)

C, = - i
- e ™y (hikmye ™ +1— ([ k)
C -8 e ™y (hikme ™4+ 1—(h/kn)—e ™+ e ™ (h/ km))
P Vg Iml. 2mlL
e By (h/ ke 41— (h/ km)
C -6 e ™ _e e T flom) + e ™ (h km) £ 1= (h/ fon))
S e s (ke ®E 41— (h/ k)

Substituting the above relations for Ciand Czinto Eq.(2.37)

8. (e "™ —(h/km)e ™) -
7 3 g T
e MLy () famde 41— (h/ k)
g & oy o T h k) + e (R han) + 1= (h/ an) e
: e L1 (h/ km)e ™+ 1—(h/km)

Brx) =
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I:;'.' m)em{l—.ﬂ _ (f? m}e—m{L—r] +g.mlf1.—::} + E—m(_t—r)

8(x) =6,
O = T L (h lome™ — (e ™

The temperature distribution is:
(h /) sinh m(L — x) + coshm(L — x)

B(x)=8. .
) (i / kom)sinh mL + cosh mL

2.48

The heat loss from the fin can be found by substituting the temperature gradient at the root into
Eq.(2.37), we get

do(x)| _ g (—m(h/ km)coshmL — (—m sinh mL))(coshmL +h+Emysinh mL) —0 Table 2
ax .., ((h/!km)sinhmL +coshmLT
dé(x)| _mé (h/km)coshmL —sih mL)
dx |, * (h/km)smhmL + coshmL
g, =—kd ﬁ -y (h /) cu.j:';h mL —sinh mL)
) dx|,_; © (h/km)sinh mL + cosh mL
hP (F: / kom) cosh mL —sinh mL)
G s =.,||—|5':ﬁh‘1 — -
! kA (h/ Fm)sinh mL 4+ cosh mL
g, =M (R fan) CF!'E].I mL — sinh mL) 249
: (h/ km)sinh mL + cosh mL
Noting that M =~hPAk -8,

Temperature distribution and rate of heat transfer for fins
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2.7.1 Fin Performance

The heat transfer effectiveness of afin is measured by a parameter called fin effectiveness and the fin
efficiency, which is defined as

l. Fin Effectiveness ¢. A ratio of the fin heat transfer rate to the heat transfer rate
that would exist without the fin.

e — g 4 i

= - - 2.52
dy fthou- fIn l j1A-: ['T; - Tm ]

where Acisthe fin cross-sectional area at the base. the use of fins may rarely be justified unless & >= 2.
1. Fin Efficiency 5

gﬂn -
MNe=—"— 2.53
QJIIB.‘;
Quny = 14, (T, =T )= hPL6, 5 54

Where 4r1s the surface area of the fin 1s

P = 2 ’

1, =2wL, Rectangular
4, = 211-‘[1" +(t/ 2);] _ Trianguiar
Aj = 2.051‘--‘[L: +(t/ 2}3} ) Parabolic
4, =27l —+7) :

y tlrs. =7 / Annular

Where as for afin of rectangular cross section (length L & thicknesst) and an adiabatic end (Case 2) is
n M tanh mL  tanh mL
lr = hPL8, ~ mL

2.55

acorrected fin length of the form Le= L + (1/2).

tanh ml_ tanh A PL [ kd
Hp=—""— or My = =
mil, ) hPL kA

A fin efficiency for acircular pin fin (Diameter D & Length L) and an adiabatic end (Case 2) is

B tanh «f A% kD 256

My = —
T Jarh D

In Figures 2.14 and 2.15 fin efficiencies are plotted as a function of the parameter  £.*% (71 / k)"
inferred for the straight and the annular fins. Fin efficiencies obtained from the '
figures may be used to calculate the actual fin heat transfer rate from the expression

Gr =Nl = 1:04,6; 2.57
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0 05 10 £ T CEGYE S VRS
LY2 (h/kAp) '

Figure 2.14 Efficiency of straight fins (rectangular, triangular, and parabolic profiles).

OL,,_.,‘;’;2 - 1854 ‘ ‘

0 05 1.0 1.5 20 25
L3 ka,)

Figure 2.15 Efficiency of annular fins of rectangular profile.
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Example 2.10
Consider a copper pin fin 0.25 cmin diameter k= 396 Wim K that protrudesfrom awall at 95°C

into ambient air at 25°C. The heat transfer is mainly by natural convection with a coefficient equal to
10 W/ime K. Calculate the heat loss, assuming that :

(@) Thefinis"infinitely long"

(b) Thefinis 2.5 cm long and the coefficient a the end is the same as around the circumference.

(c) How long would the fin have to be for the infinitely long solution to be correct within 5%?

SOIUtion ) g.toair at 25

(@) A heat loss for the "Infinitely long” finis
g =—kdl-m8(0)e™" |=hPAKS,

T=25C
g= [(10 Wim® K) 2(0.0025 m)(396 Wim K) (2 /4(0.0025 m)° ] (05-25)°C
g=0865W

(b) The equation for the heat loss from the finite fin is case 4:

sinhmL + (h/ mk)coshmL )
= .,Iu'hPAkﬂ, — : =0.140W
e * coshmL +(h/mk)smhmL

(c) For the two solutions to be within 5%, it is necessary that
sinh mL + (h /[ mik) cosh mL

— : == (.95
cosh mL + (h/ mk) sinh mL

This condition is satisfied when mL > 1.8 or L > 28.3 cm.

Example2.11
To increase the heat dissipation from a 2.5 cm OD tube, circumferential fins made of

aluminum (k = 200 W/m K) are soldered to the outer surface. The fins are 0.1 cm thick and have an
outer diameter of 5.5 cm. If the tube temperature is 100°C, the environmental temperature is 25°C, and
the heat transfer coefficient between the fin and the environment is 65 W/me K, calculate the rate of heat
loss from two fins.

Solution
a parameters required to obtain the fin efficiency curve in
Fig. 2.15 are
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Example 2.12
The cylinder barrel of a motorcycle is constructed of 2024-T6 auminum alloy (k = 186 W/mK)

and is of height H = 0.15 m and OD = 50 mm. Under typical operating conditions the outer surface of
the cylinder is at a temperature of 500 K and is exposed to ambient air at 300 K, with a convection
coefficient of 50 W/me K. Annular fins of rectangular profile aretypically added to increase heat transfer
to the surroundings. Assume that five (N=5) such fins, which are of thicknesst = 6 mm, length L = 20
mm and equally spaced, are added. What is the increase in heat transfer due to addition of the fins?

Solution ; [

‘ (2024 T6 Al alioy)
Assumptions: |
1. Steady-state conditions. s OJH R o T = 500K
2. One-dimensional radial conduction in fins. | i A S0 WiRRK
3. Constant properties. | 4{‘*"‘"‘ S
4. No internal heat generation. Y T

- | r1=25mm
bet— L =20 mm
o 13 = 45 MM

surroundings.
6. Uniform convection coefficient over outer
surface (with or without fins).

5. Negligible radiation exchange with i

With the fins in place, the heat transfer rate is g=gr+qp
q,= Nr;.rfqm_‘ = N??fhﬁ_ﬁa
g, =N 2xls, - X, - T.)

Heat. transfer from the exposed cylinder surface is

g=h4,(T, -T_) A, =(H — Nt)2mm
Hence ) _
g =Nnh2alrl =57 KT, = T.) + h(H - N 2ar(T, - T.)

The fin efficiency may be obtained from Figure 2.19 with

I [
e=rp+==0048m, L =L+ D 0.023 m
2, ’ |k \ M2

£ =1.92, A, =Lt=138 x10"*m?, L‘-”"l — ]
" ! B . /(:‘1',‘ |

= ().15
Hence from Figure 3.19, 5, = 0.95. It follows that
g = 5{0.95 x 50 W/m’ - K x 27[(0.0487 — 0.025%) m*] x (500 — 300) K

+ 50 W/m? - K (0.15 = 5 x 0.006)(2# x 0.025) m? % (500 — 300) K

Hence q=5(100.22) + 188.5= 690 W

Without the fins, the heat transfer rateis
'1?,.' = "I-L‘Jw.:l {}-n.‘- - Tﬂ:] “!W = H{Efﬁll-:l

Hence Guo= 50 WIN¥K (0.15 x 1 x 0.025) m? (200 K) = 236 W
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