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BEAMS: SHEAR FORCE & BENDING MOMENT

Introduction

The term beam refers to a slender bar that carries transverse loading; that is, the
applied forces are perpendicular to the bar. In a beam, the internal force system
consists of a shear force and a bending moment acting on the cross section of the
bar. The study of beams, however, is complicated by the fact that the shear force

and the bending moment usually vary continuously along the length of the beam.

Supports, Types and Loads

Beams are classified according to their supports and may be summarized as:

1. A simply supported beam, Figure 1-a, has a pin support at one end and a
roller support at the other end. The pin support prevents displacement of
the end of the beam, but not its rotation. The term roller support refers to
a pin connection that is free to move parallel to the axis of the beam; hence,
this type of support suppresses only the transverse displacement.

2. A cantilever beam is built into a rigid support at one end, with the other
end being free, Figure 1-b. The built-in support prevents displacements as
well as rotations of the end of the beam.
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3. An overhanging beam, illustrated in Figure 1-c, is supported by a pin and
a roller support, with one or both ends of the beam extending beyond the

supports.

The above three types of beams are statically determinate because the support

reactions can be found from the equilibrium equations.
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(a) Simply supported beam (b) Cantilever beam (c) Overhanging beam

Figure 1: Statically determinate beams.

Figure 2 shows other types of beams. These beams are over-supported in the sense
that each beam has at least one more reaction than is necessary for support. Such
beams are statically indeterminate; the presence of these redundant supports
requires the use of additional equations obtained by considering the deformation

of the beam. These types of beams may be summarized as:

4. A propped cantilever beams (Figure 1-a); is a beam with a built in support

at one side, and a point support at the other.

5. Fixed or built-in beams; Figure 1-b, is a beam with a built in supports at
both sides.

6. Continuous beams (Figure 1-c) is a multi-span beam on hinged support.
The end spans may be cantilever, may be freely supported or fixed
supported. At least one of the supports of a continuous beam must be able

to develop a reaction along the beam axis.

Page 2 of 12 Asst. Prof. Dr. Mohsin Noori Hamzah
Lecturer Rasha Mohammed




Lecture Title: Shear Force and Bending Moment University Of Technology
Lecture Notes on Strength of Materials (2017-2018) Mechanical Engineering Department

Wo

R, Ry R, R,
(a) Propped cantilever beam (b) Fixed or restrained beam
w
" 1" Y]
r‘&
| R, lR 2 |R3 Ry
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Figure 2: Statically indeterminate beams.

A concentrated load, such as P in Figure 1-a, is an approximation of a force
that acts over a very small area. In contrast, a distributed load is applied over a
finite area. If the distributed load acts on a very narrow area, the load may be
approximated by a line load. The intensity w of this loading is expressed as force
per unit length (N/m). The load distribution may be uniform, as shown in Figure
1-b, or it may vary with distance along the beam, as in Figure 1-c.

Shear-Moment Equations and Shear-Moment Diagrams

Consider the cantilever beam shown in Figure 3-a, »

which is subjected to a concentrated load P at the c "

free end. If a cutting plane at C is drawn, a free-

body diagram through this section (Figure 3-b) + B
shows a shear forces V and bending moment M at . -

the cutting section. It is the objective in this section T

to determine the shear force V and the bending £ "

moment M at every cross section of the beam. To 4
accomplish this task, we must derive the o Y
expressions for V and M in terms of the distance x

measured along the beam. By plotting these Figure 3: (a) Cantilever beam
expressions to scale, we obtain the shear force and ~ Subjected to a concentrated
bending moment diagrams for the beam. load, (b) Section through C.
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Sign Conventions

It is necessary to adopt sign conventions for applied loading, shear forces, and
bending moments. We will use the conventions shown in Figure 4, which assume
the following to be positive.

e Shear forces that tend to rotate a beam element clockwise.
e Bending moments that tend to bend a beam element concave upward.

Positive Negative

vV v
Shear l - — |

force l I
v v
M M
Bending ( )
moment
M M

Figure 4: Sign Conventions.
Procedure for Determining Shear force and Bending Moment Diagrams

The following is a general procedure for obtaining shear force and bending
moment diagrams of a statically determinate beam:

= Compute the support reactions from the FBD of the entire beam.

= Divide the beam into segments so that the loading within each segment is
continuous. Thus, the end-points of the segments are discontinuities of
loading, including concentrated loads and couples.

Perform the following steps for each segment of the beam:

= Introduce an imaginary cutting plane within the segment, located at a
distance x from the left end of the beam, that cuts the beam into two parts.
= Draw a FBD for the part of the beam lying either to the left or to the right
of the cutting plane, whichever is more convenient. At the cut section,

show V and M acting in their positive directions.
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= Determine the expressions for V and M from the equilibrium equations
obtainable from the FBD. These expressions, which are usually functions
of x, are the shear force and bending moment equations for the segment.
These equation can be obtained using the following:

V=QF),=QCE)x (for shear force)

M=0QM),=_0QM); (for bending moment)

= Plot the expressions for V and M for the segment. It is visually desirable to
draw the V-diagram (SFD) below the FBD of the entire beam, and then
draw the M-diagram (BMD) below the V-diagram.

Example 1:

The simply supported beam in Fig. (a) carries two concentrated loads. (1) Derive the
expressions for the shear force and the bending moment for each segment of the
beam. (2) Draw the shear force and bending moment diagrams. Neglect the weight of
the beam. Note that the support reactions at A and D have been computed and are
shown in Fig. (a).

y 14 kN 28 kN

(a)
Solution:
Part 1

The determination of the expressions for V" and M for each of the three beam seg-
ments (AB. BC, and CD) is explained below.

Segment AB (0 <x <2m) Figure (b) shows the FBDs for the two parts of the beam
that are separated by section @ located within segment 4B. Note that we show
V' and M acting in their positive directions according to the sign conventions in
Fig. 4. Because V and M are equal in magnitude and oppositely directed on the
two FBDs, they can be computed using either FBD. The analysis of the FBD of the
part to the left of section (1) yields
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SF,=0 +1 18—V =0

= 418 kN Answer
SMp=0 +(y —18x+ M =0
M = +F18x kN -m Answer

o

x—b—l
|;kN Y 24 kN

(b) FBDs

14 kN 28 kN
%
M M 3m 2 m—
A E D
E
B C

Segment BC (2 m <x <5 m) Figure (c) shows the FBDs for the two parts of the
beam that are separated by section (2), an arbitrary section within segment BC. Once
again, V' and M arc assumed to be positive according to the sign conventions in Fig.
4. The analysis of the part to the left of section (2) gives

SF,=0 +] 18—14—V =0

V= +18 — 14 = +4 kN Answer

Mep=0 4+ —18x+14x—-2)+M=0

M =+18x —14(x —2) =4x+ 28 kN -m Answer

14 kN 28 kN
A B P‘) C F C D
l4 X _
%
18 kN 24 kN
(¢) FBDs

Segment (D (5 m < x <7 m) Secction (3) is used to find the shear force and bending
moment in segment CD. The FBDs in Fig. (d) again show V and M acting in their

positive directions. Analyzing the portion of the beam to the left of section (3). we
obtain

X, =0 +7 I8—14-28—-1V =0
J = +18 — 14 — 28 = —24 kN Answer
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Mg=0 +() —18x+ 14(x—2)+28(x—5)+M =0

M= +18x — 14(x —2) —28(x — 5) = —24x + 168 KN - m Answer
|]4 kN |28 kN
/ N l
I8 kN Vv 24 kN
(d) FBDs

Part 2

The shear force and bending moment diagrams in Figs. (f) and (g) are the plots of
the expressions for V and M derived in Part 1. By placing these plots directly below
the sketch of the beam in Fig. (¢), we establish a clear visual relationship between the
diagrams and locations on the beam.

Y 14 kN 28 kN
2 m4>‘
A D
o | —x
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: | : i
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T OR | 24
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+36 | : :
[ [ [
[ [ [
| | |
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| | x
(2
Shear force and bending moment diagrams
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Er Ay

An inspection of the V-diagram reveals that the largest shear force in the beam
is —24 kN and that it occurs at every cross section of the beam in segment CD. From
the M-diagram we see that the maximum bending moment is +48 kN - m, which oc-
curs under the 28-kN load at C. Note that at each concentrated force the F-diagram
“jumps” by an amount equal to the force. Furthermore, there is a discontinuity in
the slope of the M-diagram at each concentrated force.

Example 1:

The simply supported beam in Fig. (a) is loaded by the clockwise couple Cy at B.
(1) Derive the shear force and bending moment equations, and (2) draw the shear
force and bending moment diagrams. Neglect the weight of the beam. The support
reactions A and C have been computed, and their values are shown in Fig. (a).

Solution:
y
- L >
® ¢ @
ACO\ | (o | IC X
i : ~B ! _C
I | | 3
R.=T %L: o | .20
A= T [ ' | cC=7
L I (a) L L
| | | |
| | I |
| |1 M I |
| | | |
: DI
|
|
Colon o
L Vv | |
[ |
l (b) : |
[ | '
- 3 o l
) 4L Co : M
o =0
Nt
C_b < X >
L |4
Part 1

Due to the presence of the couple €y, we must analyze segments AB and BC sepa-
rately.
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Segment AB (0 < x < 3L/4) Figure (b) shows the FBD of the part of the beam to
the left of section (1) (we could also use the part to the right). Note that V" and M
are assumed to act in their positive directions according to the sign conventions in
Fig. 4.3. The equilibrium equations for this portion of the beam yield

v Crl) CPU
2F, =0 V=0 V= -~ Answer
y +1 3 I
C C
XMp=0 +0O TU.\' + M =0 M= — TU_\» Answer

Segment BC (3L/4 < x <L) Figure (c) shows the FBD of the portion of the beam to
the left of section (2) (the right portion could also be used). Once again, V' and M are
assumed to act in their positive directions. Applying the equilibrium equations to the
beam segment, we obtain

. (_.r[) (_-'U
>, =0 ——— =1V =0 J = —— Answer
b} +1 I I
Co Co

IMp=0 +0O T Co+M=0 M= — T C Answer

Part 2

The sketch of the beam is repeated in Fig. (d). The shear force and bending moment
diagrams shown in Figs. (e) and (f) are obtained by plotting the expressions for } and
M found in Part 1. From the V-diagram, we see that the shear force is the same for
all cross sections of the beam. The M-diagram shows a jump of magnitude Cy at the
point of application of the couple.

X
Co *7311 >l lL* Co
L ‘ R 5

| (d) : |
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Shear force and bending moment diagrams
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Area Method for Drawing Shear-Moment Diagrams

Useful relationships between the loadings, shear force, and bending moment can
be derived from the equilibrium equations. These relationships enable us to plot
the shear force diagram directly from the load diagram, and then construct the
bending moment diagram from the shear force diagram. This technique, called
the area method, allows us to draw the shear force and bending moment diagrams
without having to derive the equations for V and M. We first consider beams
subjected to distributed loading and then discuss concentrated forces and couples.

= Distributed Loading

Consider the beam in Figure 5-a that is subjected to a distributed load of intensity
w(x). The free-body diagram of an infinitesimal element of the beam, located at
the distance x from the left end, is shown in Figure 5-b. The segment will carry a
shear force and a bending moment at each end, which are denoted by V and M at
the left end and by V + dV and M + dM at the right end. The infinitesimal
differences dV and dM represent the changes that occur over the differential
length dx of the element.

wi(x)

(b)

Figure 5: (a) Simply supported beam carrying distributed loading; (b) free-body
diagram of an infinitesimal beam segment.
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The force equation of equilibrium for the element is
2E, =0 +1 V—-wdx—(V+dV)=0

from which we get,

_ _a
w=—— (1)

The moment equation of equilibrium yields
1‘(. p
SMo=0 +(5 —M—Vdx+(M-+dM)+wdx (2‘ ~0
Because dx is infinitesimal, the last term can be dropped, yielding

am
V=— (2)

It can be deduced from equations (1) that
F‘B dV

dx

XB
dx = Vg —Vy = —[ wdx
4 X4

J X 4
Recognizing that the integral on the right-hand side of this equation represents
the area under the load diagram between A and B (Figure 6), we get

Vg — V4, = —Area of w — diagram]§ (3)

wi(x)

|
|
W)
‘/.’1 I M
M B
A Y \ B

VB
Figure 6: (a) Simply supported beam carrying distributed loading; (b) free-body
diagram of a finite beam segment.

Page 11 of 12 Asst. Prof. Dr. Mohsin Noori Hamzah
Lecturer Rasha Mohammed

X




Lecture Title: Shear Force and Bending Moment University Of Technology
Lecture Notes on Strength of Materials (2017-2018) Mechanical Engineering Department

Similarly, from equation (2),

B dM R
dx =Mp—Ms=| Vdx

JX 4
Because the right-hand side of this equation is the area of the shear force diagram
between A and B, we obtain

)y, dx

Mg — M, = Area of V — diagram]§ (4)
= Concentrated Load and Couples
The area method for constructing shear force and bending moment diagrams
described above for distributed loads can be extended to beams that are loaded
by concentrated forces and/or couples.
Following the same procedure, described for the distributed load (above), the

shear force may be expressed as

VA+ =Vi +P (5)
Equation (5) indicates that a positive concentrated force causes a negative jump
discontinuity in the shear force diagram at A.

Similarly, for the concentrated moment
M;j =My ¥ C, (6)

Procedure for the Area Method

The following steps outline the procedure for constructing shear force and
bending moment diagrams by the area method:

e Compute the support reactions from the FBD of the entire beam.

e Draw the load diagram of the beam (which is essentially a FBD) showing
the values of the loads, including the support reactions.

e Working from left to right, construct the V- and M-diagrams for each
segment of the beam using Equations. (1)—(6).

At first glance, using the area method may appear to be more cumbersome than
plotting the shear force and bending moment equations. However, with practice
you will find that the area method is not only much faster but also less susceptible

to numerical errors because of the self-checking nature of the computations.
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BENDING STRESS IN BEAMS

Introduction

In deriving the relations between the bending moment and the bending stress, the
following assumptions are made:

1- Plane section of the beam, originally plane remains plane.
2- The material of the beam is homogenous and obeys Hooke’s law.
3- The beams are initially straight of constant cross-section.

Derivation

The stress caused by bending moment are
known as bending or flexure stresses, and the
relation between theses stresses and the
bending moment is expressed by the flexure
formula.

lP
—> dx |e—
a C
A b d A
Ri Re
] lengthened
Figure 1:
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Note: the plane that fiber ef is called the neutral surface because such fiber
remains unchanged in length and hence carries NO STRESS.

Consider now the deformation of a typical fiber gh located y units from the neutral
surface. Its elongation is the arc of a circle of radius y with angle d6 and is given

by:

d = hk = ydo
and the strain
6 ydé
L ef
If p is the radius of curvature of the neutral surface, then
Yy do Ly
Y
Applying Hooke’s law:
E
o=FEe= (;) y (1)

Now consider equilibrium of forces along x-axis;
YFE =0: [odA =0

Using eq. (1), the above integral becomes,

[Eaa=o ~ ()=

Since y dA is the moment of the differential area dA or the first moment of area
about the neutral axis, hence

(=1

However, since only ¥ in this relation can be zero. We conclude that the distance
from the neutral axis to the centroid of the cross-sectional area must be zero, i.e.,
the neutral axis must contain the centroid of the cross-sectional area.

Consider now the bending moment M induced in the beam, as shown in Figure 2,
which can be expressed as;

M = [ y(cdA) (2)
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Substitute eq. (1) into eq. (2), we get

= Q)1 8- ()

y
Figure 2 G dA

where | is the moment of inertia or the 2" moment of area of the beam section
about the neutral axis.

M = (%)1 (3)
Using eq. (1) and eq. (3)
F= Ty

Moment of Inertia or 2" Moment of Area

Shape 2nd Moment of Area
y
h“ ; bh3
NA — 7o
2 I 12
<
" -\ th3 I b’
— i ‘ X N.A — %

. b L h3\ (a? + 4ab + b?
hf o\ § N4-7\36 a+b
v y _ h\ (a+2b

— where 3 = (3) (557
|
- B L nD*
|
T
_' - Iy.a. =a(D§_Di4)
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Parallel-Axis Theorems
For the section shown in Figure 3, the axis Xq-X, IS
passing through the centroid, while X-X axis is

distanced d from it. Consider now calculating the 2"

moment of area through X-X axis,

Figure 3

IX_X=f(y+d)2dA =Jy2dA+2djydA+d2JdA

Since [ ydA is the 1% moment of area (centroid), then [ ydA = Ay , since the
axis X,-X, passes through the centroid, hence y has a value of zero. Therefore,

Ix_X=I_+Ad2

Example 1:
AY = [ydA =37, a; y;

(200 x 50 + 200 x 50)Y = (200 x 50) x 25 + (200 * 50) = 150

[ = (50><2003
NA = 12

(87.5 — 25)2) = 113.5x 10°  (Answer)

+ (50 x 200) x (150 — 87.5)2) + (222 + (50 x 200)

12

U1
o
3
3

1

200mm

///////’/”/"/”/A

200mm
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Some Interested Beam Sections

O

:‘,‘2 ‘:_25mm
% i g x50mm
777/ I
7 |

'50 mm

| ////ﬁ?ﬂ _+25mm

[EnY
8
3
P
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Example 1:

The overhanging beam shown in the figure is made of cast iron for which the
allowable stresses are o;= 40 MPa and o.= 100 MPa. Determine the maximum
uniformly distributed load that can be supported.

y ¥ ¥ L 4 L_J[

‘IZ‘.Z'&, ;%;Zm

Bl  am it
L’ = SR £2:7-}:‘;‘

- LN I —
'n.tfo"",\;‘
o -5 32w

A= —oA e .6
O e i hoxe HSeX0) _ 25, okN . w
M= - € o-93 6\
\O M. = loomo HSO""_’ -_—’2_’1-.(&\(}«3-"“
s ———'——6—"—’.\ %"
VET: 5 /
oL =25 X — =24 F Kk/m
AL { >\r\&sk() =
th ~ = l}m (A( o \onh\(a *_go’g\o == 6’: “D kN )
M :’?-— 'V\C T Je== 0 (o] 8 & ‘
:5 V| 1«0)(\0 #‘gﬂ’“o — (\s)\ N
€T —5.\5 y
=> /m
S 0 \\DSN = \\.\ x‘\}; =" " -_—7.1!’.)\'
—— ~ &—— f\ns.
r\lls V‘\,_ —_—
or )
Page 8 of 11 Asst. Prof. Dr. Mohsin Noori Hamzah

Lecturer Rasha Mohammed




Lecture Title: Bending Stress in Beams University Of Technology

Lecture Notes on Strength of Materials (2017-2018) Mechanical Engineering Department
Z =2 r
f" I / : — oy E < e\ e 33 St
7 v(‘. i { }(\l LD e\ oOoerY e\ = L. i
-1 ¢ ) (g, l '7 | J , o 9o :
/ < [ * "> | L~ l; L AL Y1y
- | Ao ‘, /\‘ (/ o /‘ " Lo~ s

o M PICNC

' 1 ) _{ ( (. ®) 5 kN/w ,M,(,l A CK!J\C.@.W\.'}VNA“OK

o L'\p)'&'y'\' b«\_’b_‘_.:‘ O o ]—

(oad of 20N af piid—span:
C‘) 7‘7\4. e 3,-\.,, A= v‘(-#"—'br— Of o Len LJ

) Tha I gt SIALSS saf= WP o e

i s
I I L\'-ﬂlu.'i.'- -['S}\Ml:c;fﬁrﬁ-.‘;;a_o |:|.
=(200x zoé)(‘;l_z(qox?’ﬂ

l? | Y -
= Q526K = ((FE X w

D ,L((rv\ :\‘\4(_,'

Sz B35~ 5@ ('{ >

1=

'\/( 3 % ‘\\:/w u_,('

| A CL

'./" NG A 7’

et

M= = \_\%1_ 3 [fzoxw %11 (S"xb %7

& LU
= g5 +3° s)xe = 6‘ S
A e
GS .63 %X @ —x‘s o K\®
C) WA A X U — 1 \g:’ X\g
— o gmilw
Page 9 of 11 Asst. Prof. Dr. Mohsin Noori Hamzah

Lecturer Rasha Mohammed



Lecture Title: Bending Stress in Beams

University Of Technology
Lecture Notes on Strength of Materials (2017-2018) Mechanical Engineering Department

ﬁ’l’\gfi At {%fm T -soetion beann @ 75 (00s17 c0;dE and 1S 1
e deep with « f/lczn‘yé _Hickness of 25mar 25 mm and-sdeb
Fhicknsss-of - 12mm . If e /)‘nu’-/,;..j bendin Strisges cor rhe
mctk"/‘n/ of tht b eans are ¥o /./,4,//,42,',, CRp AN el

/6o - i 7> i FviSion, /4;7(/ HA8 sviaxs prndnd L'//.u'/g;/ma.\@/ des b bcF~d
Joad #Ht- e beam Cin C"’fj OVEr < 5«“»1/?9 s’«ff/"vr’*’-ﬂ(,(f"*n

D/i $r7, H_/Qrzr_ﬂ_,.l i
S.bﬁd"fdm ; +

: -. s + 1
T dekecmting  F1s podion of frhe newtad l/'a.elﬁ. 7 7 /’4-
Qx,)y @€ /uv'e fo ﬁ}.c/ fLe /C'e-s/;’fgn D/E"f"*Q j'g44 f//A T

(.x’,y\;/‘,»a}(/ of e Sechron

| f2mm
— - ———

, 104 LJ e
Ay: >ay o T

[(/o 0#257) f—(/lﬁc‘/z.ﬂ ;’.: (o0 % er,f’—(/ga-"’:z&:)

(12 12) (125

o \;' — [0 Y r101
,L/.)m-év\j_cy‘ vt lre
-"’_’——"_\“ -~ -

; o ; 2 i
T =k ((loo# Y-8 )— (B 15365 ] £l(i2% (29 4)
/‘b’f) j — > T

=1 22.02 ylo rmt

s ,
"—7322«9?‘)\//0.,74({‘ ;2‘ q%s_ -
.’L/(:K//-’“-i,:-.' [a.-:.f";,\_[}v'\'le 5 it

e

o = %y_ '_-_> }-Z:‘_)'_::E Al Roxilo #2201 X

=
O

[ 35 y 4—0.6‘ /( ‘:;\_3
= LSS N ;
Meax irnacing T-cris,le St ss
s e — —m— S g : X -‘_61
iy A~LY -’—> /g,(é o e T 16 o Xto 2.2 OF X (o
3 £ o Jo9 &% X 3°

— 52,5 kN_/{;_Jq
s Bos 3 kNl

2r 4:'../\)9,7 4vlr"f":/#'fr:-( b ecin €3, Th Uit f"/’”}z" G‘A‘S"}'ft'b‘/\-#{A {'JQC(

T har fo 1A SNEE Ly i oA

3
N ™ Lr-32.3X10
Mhox = 2 = n =3 JTeIEIA0

_— (O.3iﬂ(\;'/w1.

Page 10 of 11 Asst. Prof. Dr. Mohsin Noori Hamzah

Lecturer Rasha Mohammed



Lecture Title: Bending Stress in Beams

University Of Technology
Lecture Notes on Strength of Materials (2017-2018)

Mechanical Engineering Department

4 .
4-—6-::1. An 0'/5//“1“27’.'7 b Uf = S/'m/&.ec/ Sectan /s foeced
Qs Shaosia in fhe /gjw% Defer ey The Ma glinvinn
Frevis le-andd Corvi frsSive k.’e"til‘.nﬁ stgses.

‘ e—GCo —~ Lt k/m =

gt el o] LI y"

o ST S - ek A i Zm o '
e e ea
El}:skl\/ 4 L’;n.n-n SW /O k[\/

Homm
\ E/z, =(0 kN - -5
- Al SN B S 2
R e [\ f
o Gl 1he Pesiton o]' the NA 2
: ; 1:23_.:1{ E)
== ) _—>
A Y = Zﬁ'y
(2o rbo+b0#2)Y = (295604 L +Boglo2s) .
X —-\-/ =55 e = 7
. l - s
(‘AO:V.LM .‘:‘7]“ /-".-2/‘/7"\ ) =
. F,

e ‘245?, ) 2 1 -_6/3._ e
_l_:["”r -2 0450 4 (22 / [2&! L 2085 Do
i iz + 50 #( J)_ T 5 +.2r9,t—o.:).r(2r.y_

_, = (36 s15 - mm? - - b S
/ DRAW THE SHEAL FolEE D HGLRAM L LockTE THE SECTron |
Of - 2EKD SREAR 02 CREATESFT MoplENT .- .
3) af X = =25 (jc:fc Slu;«r) /K{D ey 125" LN an
9,47‘ XK= 4 ; /\I'I.) =3 kN
"/dT—X’:-‘IvZS—M

e = MY SHiasNe #0508 Sl 4 MP  Com
£ 136 X 152 =R @ £

- ; =5
(. <2y YiPue 5. 00 » 7 .

: Ue = - '”.§’ 2 =M1, G MR T2~
AT X=F o - s DeRias .

4 i SXid £ 0.08 . jip 7 M - :

&, a0t . Mle - rprusra
05 = Sk gobd i ST

3 MAXTENSLE STERESS = 1% QRAAT boffon af b ecvads D nS

N
I

A MAX, GMPRESVESTRES= (103 Ml AT 707 5f b eon oI 8 /‘41‘5 ~

Page 11 of 11 Asst. Prof. Dr. Mohsin Noori Hamzah
Lecturer Rasha Mohammed



Lecture Title: Shear Stress in Beams
Lecture Notes on Strength of Materials (2017-2018)

University Of Technology
Mechanical Engineering Department

SHEAR STRESS IN BEAMS

Horizontal Shearing Stress in Beams

Consider two sections, (1) and (2), in a beam separated by the distance dx, as

shown in Figure (1)

©O) ©)
¥
AN SN 2y C
le b y
Resisting Shear
dF = tbhdx
< I >
SF, = 0: dF =H,—H, = fycl o,dA — fycl o dA
Since o = ? , then
MZ ¢ Ml ¢ MZ - Ml ¢ d ¢
Y1 Y1 Y1 41
From the above figure, dF = thdx;
_1dF_ 1deC A
" Thdx bldx ),
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But a I, then
dx

V c
T =—J ydA
bl V1

The integration fycl ydA is the first moment of area of the shaded area A’ about

the neutral axis, then

V I =1/
T=—A
Y

Note: The above equation sometimes written as t =% Q, where Q = A"y' is
called shear flow.

Example 1:

Draw the shear stress due to bending for the rectangular cross section shown.

b(3-5)(7+36-2))

VoY
TRt T

which reduced to

_______ ___._________Iy_ NA - tmax_

le
|‘
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Example 2:

A box beam supports the loads shown in the figure. Compute the maximum value
of P that will not exceed a flexural (or bending) stress ¢ = 8 MPa or a shearing
stress T = 1.2 MPa for the section between the supports.

/:
.P L‘Ot,’)()f\; /

Q—M :2/77 t / IéOlmn ; ZD”?n,
P ﬁ — E. + 6009 '—,Z—JQEL
L£==7-do0m 2=3 i
! /59/~n7

Solution:

LoooN
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The following example from:
= F. P. Beer, E. R. Johnston, J. T. Dewolf, D. F. Mazurek, Mechanics of
Materials, 6™ Edition, McGraw-Hill, New York, 2012.

EXAMPLE 6.01

A beam is made of three planks, 20 by 100 mm in cross section, nailed
together (Fig, 6.8), Knowing that the spacing between nadls is 25 mm and
that the vertical shear in the beam is V = 500 N, determine the shearing

I . > :
I'—l '"""‘I ; force in each nail.

200 e
I T We first determine the horizontal force per wmit length, . exerted
‘ on the lower face of the upper plank. We use Eq, (6.5), where () repre-
sents the first moment with respect to the neutral axis of the shaded urea
A shown in Fig. 6.9¢, and where [ is the moment of inertia about the
l 30 mun same axis of the entire cross-sectional area (Fig. 6.90). Recalling that the
=T first moment of an area with respeet to a given axis is equal to the product

of the area and of the distance from its centroid to the axis, b we have

100 mm
20 mm —~ - |
'

Fig. 6.8
= Ay = (0,020 m > 0.100 m)(0.060 m)
120 % 107" m®
0,100 w -} I = (0.020 m){0.100 m)*
" ‘ +2[75(0.100 m)(0.020 m)’
F(0.020 m = 0.100 m)(0.060 m)*]

I

(L TO0 ey -
o
| /

j_l,' S - e = 1667 ¥ 107" + 2(0.0667 + 7.2)107"
0020 m 7=000m | I = 16,20 X 107" m'
z NA DA Substituting into Eq. (6.5), we write
l VQ (500 N)(120 % 107" m")
= g=—= A9 e = 3704 N/m
| ! 16.20 % 10" m

| |
- =0020m  Since the spacing between the nails is 25 mm, the shearing foree in each

ta) T nail is
Fig. 6.9 F = (0.025m); = (0.025 m)(3704 N/m) = 926 N
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BEAM DEFLECTION

Introduction
When we consider designing beams based on rigidity consideration the deflection
of the beam must be known at specific or critical location.

Several methods are avaible for determining beam deflection. Although based

on the same principles, they differ in technique and in their immediate objective.

Double- Integration Method

= X
/ v
|
Q/ J!} /9
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d
Slope =tan§ = =
dx

Since 4 is small, then tan 8 ~60

— g 20 _ 2y
0= dx and dx  dx? (1)
The defferential length ds can be expressed in terms of radius of curvature p as:-
ds =pdbf
or 1B Y 2)

Subtitube eq.(1) and eq.(2)

L= ©

p dx2

In deriving the flexure formula (Bending Stress Lecture), we obtained the

relation:
1 M
= (4)
Equating eq.(3) and (4), we have
E1EY — y (5)

dx?

This is known as the differential equation of the elastic curve of the beam.

Integrating equation (5), assuming EI constant, we obtain

EI Z—z = [Mdx + ¢, (slope equation)

And

Ely = [(J Mdx)dx + ¢;x + ¢, (deflection equation)

Note: The double integration method can be used if the moment (M) has a single

expression for the whole beam.
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Example 1:
W /.
, /
X L ‘é
d?y
Mxx = EIW = —-Wx
Assuming EI constant, integrating the above equation,
2
EIZ = _wX 44 (1)
dx 2
And,
3
Ely = -W=—+Ax +B )

The above constants (A and B) can be found using the available boundary
conditions.

Boundary Conditions (BCs)

2
1) whenx =L, Z—z= 0, using eq. (1) leadsto A =%

2) whenx =L,y =0, usingeq.(2) leadsto B = —W3L3

Therefore, the equation of the elastic curve is,

Y 6 2 3

W x3 L*x L3
"~ EI

The maximum deflection occur at the free end, i.e. at x=0, then

Atx =0,y = Ymax
wlL3
ymax = - 3EI

Page 3 of 12 Asst. Prof. Dr. Mohsin N. Hamzah
Asst. Lecturer Rasha Mohammed




Lecture Title: Beam Deflection University Of Technology
Lecture Notes on Strength of Materials (2017-2018) Mechanical Engineering Department

Example 2:

w (N/m)

1725247

A A
\ 4
—

X
d?y wx?
El—=M=——
dx? 2
Integrating,
dy _ _wx’
El>=———+A (1)
And,
4
Ely=——"—+Ax+B (2)

Boundary Conditions (BCs)

3
1) whenx =L, % = 0, using eq. (1) leadsto A =%
2) whenx =1,y =0, usingeq. (2)leadsto B =22 — ¥ = 10

Therefore, the equation of the elastic curve is,

y=—|-=+—x—=

wl x* I3 LA
El 24 6 8

The maximum deflection occur at the free end, i.e. at x=0, then

B wl?

Atx=0, ymax_@
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The following example is from:

F.P. Beer, and E.R. Johnston, Mechanics Of Materials, Sixth Edtion, McGraw-
Hill, 2012.

EXAMPLE 9.02 ™ simply supported prismatic beam AB carries a uniformly distributed
load w per unit length (Fig. 9.12). Determine the equation of the elastic
curve and the maximum deflection of the beam.

L
A S T
I
Fig. 9.12
; Drawing the free-body diagram of the portion AD of the beam
1 : 7 (Fig. 9.13) and taking moments about D, we find that
B M = fwlx — fwx” (9.12)
1 I'v (R} Substituting for M into Eq. (9.4) and muitiplying both members of this
equation by the constant EI, we write
._,—.M dy .
El —% = = —wx" + -wlLx (9.13)
T | l!.l' -’ l
= ~wi
Fig. 9.13 Integrating twice in x, we huve
dy 1 1] :
0 — = — —wx" + —wlx*+ C . 14)
dx ™ P :
: | 1 ; )
Ely=—s7ux +—~ull +Cx + G, (9.15)
d 24 12 2
y ()Im aving that y = 0 at both ends of the beam (Fig. 9.14), we first let
‘ = Oand y = Oin Eq, (9.15) and obtain €, = (. We then make x = L
0,y =0 [« =Ly =0] :md y = 0 in the same equation and write
gt B
\/‘j—{* —— __/';t = 0= - guwlL'+ ful' + C|L
. —
0 - y C| = —#Hul’
‘v L Carrying the values of €, and C: back into Eq. (8.15), we obtain the
Fig. 9.14 equation of the elastic curve:
Ely = = fwx' + Swly® = fuwl’s
or
- 43 or.3 1 .
fy = :,41'_1(—1 + 2x" — Lx) (9.16)
y Substituting into Eq. (9.14) the value obtained for C,, we check
1 o that the slope of the beam is zero for x = L/2 and that the elastic curve
‘ L2 has a minirum st the midpoint € of the beam (Fig. 9.15). Letting x =
\"-—-_‘\— _)—-Qi‘—l L/2 in Eq. (9.16), we have
i~ ( - - Yo == (— L, 2] L 1 ':!;)_ _ Bl
Ye y . ~ ) ‘ - T
Fls- 9.15 l'l"l 16 5 2 1'\4”

The maximum deflection or. more precisely, the maximum absolute value
of the deflection, is thus

Swl'

IS4EI

"Im:n =
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Discussion (Macaulay's Method)

y * 450N/m
l 500N
x
A A
A 2m B 1im cC 2m D
Ry =480N R, =920N
MAB - 4803(

Mg, = 480x — 500(x — 2)
450
M:p = 480x —500(x — 2) — T(x — 3)?
Macaulay's Method ?

450
M(x) = 480x — 500(x — 2) — T(x — 3)2

Note: the above equation is for the beam only when the term inside the two
brackets (x — a) has the positive value, i.e, x = a , and if x < a (negative

value) the value of the term is zero.
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Macaulay's Method

The simple integration method used in the previous examples can only be used
when a single expression for bending moment applies along the complete length
of the beam. In general this is not the case, and the method has to be adapted to
cover all loading conditions. Following the procedure adapted by Macaulay, the
step fuctions which have the following properties, must be used

A A
y
(x —a)!
(x —a)°
> 0 >
a a
A
A
(x —a)? y
(x —a)®
0 a : >
a
(x—a) when x2=a
Generally (x —a)* =
0 when x<a
. 1
Integral of (x — a)™is [(x —a)"dx = (x —a)**t
(n+1)
Page 7 of 12 Asst. Prof. Dr. Mohsin N. Hamzah

Asst. Lecturer Rasha Mohammed




Lecture Title: Beam Deflection University Of Technology
Lecture Notes on Strength of Materials (2017-2018) Mechanical Engineering Department

Different types of loading in Macaulay's notations

) F—x

A

-
-
M(x) = —P{x — a)*
w
.
< a,

M(x) = —%W(x —a)?

lope k
wlope \HMMHHHH Wo

»

k
M(x) = —g(x—a)s
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Example 3:

write the complete moment equation for the beam shown

400N/m

solution:

Equivelant loading Complete the load

600N
A E

R, = 500N ~ 7 IR, = 1300N

400 , 400 ,
M=SOOX—T(X—1) +T(X—4) +1300(x—6)
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Example 4:

Determine +he deflection alf a peiat” Zwm s
[ f/ hanJ end 0/ Phe beam loao’ed 2¢ Sloadim 15 the
&

& ) /\/’ _au/a /5 ”W‘e#OJ
{:}u/e usi o 7 20k

2.0kN 2o kl/m }

Yy [TTT]
[ 1.2‘,._‘_;7%

EIl= 0‘65 MNMZ
/.-

M(X) =[~ 2oX 4 62<K-04» -2 <x—o‘672'.—206<-l-f7

3
+'—’22£_)- <X-/*f5] Xle

f[ffj:M(x)
"l
- X
s I o s l - - —30
7%2‘&7?1: MR) = —20Kk+62k-0-6 ;<x-of7-20<u.p
—f—? <x—I-§
fnkegrate
j h/j g), O Lx- 0. 67.. 0()(—1-3;
EL 91 _ ,2,0”* <"*°
S A}
te” % 22 &R l87+c
ar\c]

51 M ="22x "y 82 5 oé>~ 2 K=o g>_ 29 (x5
+59— <><-/-5’>+C,71+ G
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¥ 20 ,(.2%43%,.2
0;4%3 +6= %24 ».%,\az*/a-?—x-l +2‘/*
g 3C,+Cz
20 ———— 5
S D XD
f/m 4o ‘% 622.9g2
o, =3
lastic Ve,
T S - Y, 3% o 10
== 3o P +——"<’<"!‘
£r 20“3f62<x-057‘;z,‘ <x—e-6 7+ 2
I/o? LEa 2.0 <X ' 275—‘532 7(1"2'%3-
.——-_é__ &

4
3 62 , W3 3% .0 0-3F2- 252

<]
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The following example is from:

F.P. Beer, and E.R. Johnston, Mechanics of Materials, Sixth Edtion, McGraw-
Hill, 2012.

For the beam and loading shown (Fig. 9.29) and using singularity func- 3O RN
tions, (o) express the slope and deflection as functions of the distance x
from the support at A, (b) determine the deflection at the midpoint . Use b= 1914
E =200 CPaund I = 657 < 107" m* pisd 5 KN/in
(@) We note that the beam is loaded and supported in the same _ | l l | M= LN+
manner as the beam of Example 5.05. Referring to that example, we recall = C¥3 4 44D,
that the given distributed loading was replaced by the two equivalent \ (_eEW B
open-ended loadings shown in Fig. 9295 and that the following expres- b Ll ]
stons were obtuined for the shear and bending moment: | T |
1 TN+ U 1
V(x) = —15(x — 06)' + 1.5(x — 1.8)' + 26 — 1.2{x — 0.6)° nn Wm, 30m [
M(x) = —0.75(c — 0.6 + 0.73{(x — 1.8} _ | 3.6 m |
+ 260 — 1.20r — 0.6)' — 1. 44{x — 26)°
(e}
Integrating the last expression twice, we obtain
El8 = —0.25(x — 0.6)" + 0.25x — 1.8)’ | 0 61m
+ 137 — 06x — 06) — 144 (x — 26)' + C,  (9.49) P=10kN Mo =144 kN .1
Ely = —0.0625x — 0.6)° + 0.0625(x — 1.8)* + 0.4333 ] wy= 15N S
; \ e S T Rt —— v SR
- 02 — 068 —0T2xr — 26 + Cx+ C (D49 I l 1 q | l
C BER (AR
The constunts €; and C; can be determined from the boundary N — [ el - ER :
conditions shown in Fig. 9.30. Letting x = 0, y = 0 in Eq. (9.49) and ' IR I 11 ]
noting that all the brackets contain negative quantities and, therefore. are J—l8m— 11 1 1]
equal to zero, we conclude that C; = 0, Letting now x = 3.6, = 0, and / o \\\ B
's = 0in Eq. (9.49), we write ' xom \
A, = 26kN —wn = — 1.5 kN/m
0 = —0.062%3.0)" + 0.0625(1.8)" )
+ 0.4333(3.6)° — 0.2(3.0° — 0.721.0 + C,(36) + 0 v
Fig. 9.29
Since all the quantities between brackets are positive, the brackets can be
replaced by ordinary parentheses. Solving for C,, we find C; = —2.642.
Yy
r=0 u=1 | =36 y=0]
 § — = x
e — — b’
Fig. 9.30
(b) Substituting for C; and C; into Eq. {9.48) and making x = x;, =
1.5 m, we find that the deflection at point D is defined by the relation
Elyp, = —0.0625(1.2)" + 0.0625(0)"
+ 0.4333(1.8)" — 0.2(1.2)* — 0.72(—0.8F — 2.652(1 5)
The last bracket contains a negative quantity and, therefore, is equal to
zero, All the other brackets contain positive quantities and can be replaced
by ordinary parentheses, We have
Ely, = —0.0625(1.2)" + 0.0625(0)*
+ 0.4333(1.8)" — 0.2(1.2) - 0 - 2.692(1.8) = —2.794
Recalling the given numerical values of E and I, we write
(200 GPa)(687 = 10 "m')yp = =279 kN « m’
yp = —13.64 ¥ 107 'm = ~2.03 mm
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STRESSES DUE TO COMBINED LOADS

Introduction

In preceding lectures, we studied stress of various structural members carrying
fundamental loads: bars with axial loading, different components subjected to
direct shear stress, torsion of circular shafts, thin-walled pressure vessels
subjected to biaxial loading, and bending of beams. In this lecture, we will be
considering combined axial and lateral loading, and stress at a point. And the
following table reviews these types of loading:

Loading Types Stress Example Stress State
P / |
Axial Loading o = | f—y L ; _
a A e
Shearing Loading | . _ v | | | _“r,
, . Tr | I - N T i
Torsional Loading | ; — —_ | = . S ias | s
J | : | _
SKN
M 2.5 kN/m I o )
Flexural Loading | , _ MY | tHLLITEELETTY [', — _ =
I o D i [
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Combined Axial and Flexural Loads

For the beam shown in the figure the beam subjected to axial load P combined
with lateral load Q. The axial load cause a stress:

P
Oq = N (1)
And the lateral load Q cause a bending stress of:

M
Op = Ty (2)

It is shown that the top surface subjected to compression while bottom surface
subjected to tension. Therefore, the combine stress will be:

_P My
o=-+= (3)
y l Q
m
Pr—x L
f \ ;1 i :|
(a)
_ P 3 M}.
/gﬂ__ /Jgh_ g 0 =0, 10y
\ T \ -t :)
< = { i — \
- -+ = -
S \ I 3 I
L A e ( ;\g&
(b) (c) (d)

Figure 1: (a) Rectangular bar carrying axial and lateral loads; (b)—(d) stress
distribution obtained by superimposing stresses due to axial load and bending.
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Example 1:
Determine the resultant normal stress at A and B near the wall

J<7450mm—r—

L A

}

150 mm —-— S — ¥
L— 150 mm
50 mm —»| |~ B

N2
kﬁ KN
4

Horizontal component of the force = 25 x 103 x % =20 kN

Solution:

Vertical component of the force = 25 x 103 X % = 15 kN

Bending moment at the wall
M =15 x 103 x 0.45 — (20 x 103) x 0.15 = 3750 Nm

From which the beam is concave downward, thereby causing tension at A and
compression at B.

Stress at A
h
_P Mc_P M= _P oM
CTATT TAT (b3 A" bh?
12
_ 20x103 n 6%x3750 — 22 67 MPa
0.05%0.15  (0.05)%(0.15)2
Stress at B
P 6M 20 x 103 6 X 3750
® T 47 bh? T 0.05x0.15 0.05 x (0.15)2
= —17.33 MPa
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Example 2:

For the link shown in the figure, the thickness of the link is 50 mm. Given that
the force P = 40 kN, determine the maximum and minimum values of the normal
stress acting on section m-n.

i
|
|
P 140 mm : P
e — — — — _— O——-
14{} mm '
H
Solution:
50 mm
M=pPc | |
P %;—9—; 40 mm
e — — — — —
—f

Bending moment
M=Pc=0.02 x40 x 103 =800 Nm

From which the beam is concave downward, thereby causing tension at A and
compression at B.

Maximum normal stress

P Mc 40 x 103 L 800x20x107°
TTATTT T (50x 1073 x 40 x 10-3) * ((50 x 10~3)(40 x 10-3)3
12
— 80.0 MPa

Minimum normal stress

P Mc 40 x 103 800 x 20 x 1073
TAT T T(50x 1073 x 40 x 10-3) /(50 X 10-3)(40 x 10-3)3
12
= —40.0 MPa
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Example 3:

Determine the largest load P that can be supported by the platform of the cast-
iron bracket shown in the figure if o, < 30 MPa and g, < 70 MPa.

okl e o

S ectivn A-R =
Sommist 52
/) e = ‘?Oq_ozr;mz - 1
= 4
Loy = 20X /(0 19m }\//)
Solution:
Bending moment at section A-B
M =P x (0.25 + 0.05) = 0.3P
Stress at A
0=£+My: P +0.3P><0.05
A I 8000 x 10=¢ ~ 20 x 10-©
~ P =34.285KkN
Stress at B
o P My _ P 0.3P x 0.15
A I 8000x106 20x1076
~ P =3294KkN
Therefore, the largest safe load is 32.94 kN
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Home work

1- The cross section of the machine part is a square, 5 mm on a side. If the
maximum stress at section m-n is limited to 150 MPa, determine the largest
allowable value of the eccentricity e.

2- Find the largest clamping force that can be applied by the cast iron C-clamp
if the allowable normal stresses on section m-n are 15 MPa in tension and 30
MPa in compression.

~ Centroidal axis -

m -

- N\ o

=S 1 ~_$14mm

| I SR

| T t

- 60 i \ 11 mm
= l I =7800 mm*

e~ A = 130 mm?

NSSZ

3- The force P = 100 kN is applied to the bracket as shown in the figure.
Compute the normal stresses developed at points A and B.

1000 mm 4»‘ 17.5° p A = 8000 mm?>
| Q)’ - I=50x 105 mm*
(* ‘ .
' A 100 mm / / [' 4
'* 100 mm
e e e
200 mm
' v
B

End of Home work
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Stress at a Point

The average stress over an area is obtained by dividing the force by the area over
which it acts. If the average stress is constant over the area, the stress is said to be
uniform. If the stress is not uniform, the stress at any point is found by permitting
the area enclosing the point to approach zero as a limit. In other words, stress at
a point really defines the uniform stress distributed over a differential area.
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Stress at Inclined Plane

Ag=he Ay of wpclge tice ol N
\ £ sz“A’; - ’/_‘.'
g Y S
u A e |IPx 0 x
6y At 2 —
: A% | K \lA'Tx
\‘\ 7
w.-x(/]j) ‘jx/\ Gl = w )«(] .>4«ds ’y‘ j‘f,usg
'*“3

Applying the conditions of equilibrium in normal N and tangential T direction

YFy=0: Aoy = (0,Acosf)cosb + (JyAsinH) sinf —
(Txy Acos8)sin6 — (7, Asinf)cos 6
(1)

And

YFr=0: Atg = (0, Acos8)sinf — (o, Asin)cosb +
(Txy A cos 9) cos 6 — (Txy Asin 0) sinf
(2)

Since the common term A can be canceled, and since 7, = 14, , and if we use
the relations

5 1+cos260 1 — cos26 _ 1
f=—, sin“fd=— and schosBzEstH

cos > , > ,

Equation 1 and 2 will be reduced as:

+ - .
0y = 0"20” + axzay oS 20 — Ty, sin 26 (3)
And
Ox—0y .
Ty = sin 26 + Ty, cos 26 4)
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The plane of maximum normal stress, g, can be found by differentiating
Equation 3 with respect to ¢ and equating the derivative to zero, whence

tan 26 = — -2 (5)

Ox—0y

Similarly, the plane of maximum shearing stress are defined by

tan 20, = G;_Gy (6)

Txy
The plane of zero shearing stress may be determined by setting 74 to zero, this
gives
tan 26 = — -2 (7)

Note: Equation 7 is identical with Equation 5. Hence the maximum and minimum
stress occur on plane of zero shearing stress.

Substitute the value of 26 from Equation 5 and 6 into Equation 3 and 4 we
get

Note: 0,,4, and o,,;, are called principal stresses and located in a plane of zero
shear

Mohr’s Circle
Mohr interprets Equation 3 and Equation 4 graphically, he used circle for this
interpretation, accordingly, the construction is called Mohr’s circle.

Mohr showed that Equations 3 and 4 define a circle by first rewriting them as
follows

g9 — (@) = (@) cos 20 — Ty, sin 26 (8)
And
Ox—0y .
Ty = (T) sin 26 + Ty, cos 26 9)
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By squaring both these equations, i.e. Equations 8 and 9 adding the results, and
simplifying, we obtain

(0'0 . (O'x‘;o'y))z + Tg _ (ax;ay)z + T%y (10)

Since oy, 0, and 1,,, are known constants defining the specified state of stress,
whereas gy and 74 are variable. Equation 10 may be rewritten as

(09 — C)? + 14 = R? (11)

_ ox+oy 2 _ (0x—0y 2 2 _ Ox—0y 2 2
where C = - and R‘ = (—2 ) + 17y OF R —\/(—2 ) + 1%y
Equation 11 is similar to the equation:

(x—c)2+y? =12

Which is an equation of circle, therefore Equation11 represents equation of circle
shifted C distance from gy — axis.

I G,
T, "

Lok

Tyl
T G,
v
G l

A
Y

< 2 >
Tmax R
Ty
[y c 20
v ‘“ - y > O
Oy — Oy
2
Txy
Y
B
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Rules for applying Mohr’s circle:

1- Plot points that having coordinates (ay, T,,) and (o,, T,y) as shown in the

figure

A

Ox

I —>
=
=
<

2- Join the points just plotted by straight line the line is the diameter of a circle

whose center is on ¢ axis.

. Ox A
Oy | Ty
i C
Txy i
---------------- : 8 Note: all the dimension and

drawing are to scale.
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4- The angle between the radii to selected points on Mohr’s circle is twice
the angle between the normal to the actual planes represented by these
points.

A J O — T~ A

Tmax

Position of plane of max.
stress to applied stress

Example:

At a certain point a stressed body the principle stresses are o,,,,, = 80 MPa and
Omin = —40 MPa. Determine ¢ and T on the planes whose normal are at +30° and
120° with the x-axis.

Solution

~"“oMPa | ’
* \
o = Come, ‘
‘ ) B | R
‘ e P \()0 \ A
; . A :
B n' O‘ C F, ‘
.\, /,
radius 7 Cirele = fo- 25 5
, — & oMb /N
Y
oF
%
+ )‘l’-) /)(1 C 177 y’(‘. V/ﬁé’. C /m."‘ Wwr S /;(5 /"/) /)"7(.1‘1[ /S C f(/(’
0= CF = Dc+ CF :‘2()’- &o Cos Lo ’:‘f)(”ﬂfﬁ. /),;5
—
/7": DF — f;{) 51';) ().‘_‘) — {’Z-Z)A/’ﬂ f)nﬁ'
f,"//‘-
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For the state of stress shown, determine the normal 10 MPa
and shearing stresses on:

ln
 Tul=Tyg) -20 MPa

1- The principal plane
2- The plane of maximum shearing stress <—I.I—32 Mpa

3- The planes whose normal are at 36.8° and

126.8° with the x-axis.

L=Lo-ll = ,2,9
9/~n<:p--f 3'/NSS<)

dl:iqx -~ OD [/-fZ?
= ‘/’OMP:\
/1-29 20

Otz
=Y,

ﬁ«n 20":‘—2—‘2 = 0.4¢2 i
26+ #5.6 $O=20¢

b) Moy, Shuar .f/rv})
/»qx .:'.f/a — /‘2(]/\.'/[3*

99/‘ Max, Shanr = ""*435 2 Y. \\)\ /<~zq~;:,

‘slf‘\ ’/’LL X~ “l(‘(
&) Normal /s ot 3CsB°

< AcH = 24 36.¥ = F3.4

3 \"”c'
(_0) S \'5
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W 4 KeD & 7}.6—-#5.5 = %o L
o mnrcivadtas of powt H ane '
O U]4-2T €osP0 — 3&.| MP,
~ _ 2qx 30 = [4-SME

{ ==

/\/n,'_“\“l; al /2(?-?.’

P

O "= l- 2.G # Cos ?; = = /19.]1 MR

/ . L ®
" T =29 K 4130 = —~1%:%5 AlPq
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y

SAMPLE PROBLEM 7.2

For the state of plane stress shown, determine () the principal planes and
l_[“.'\“'u . the principal stresses, (b) the stress components exerted on the element
obtained by rotating the given element counterclockwise throngh 307,

BO MPy

—

=

L

5 MPu

-

r (MPu))

SOLUTION
@, = S MPy

’—‘l YEM00: &8} Construction of Mohr’s Circle. We note that on a face perpendicular
— e to the x axis, the normal stress is tensile and the shearing stress tends to rotate
3 : the element clockwise; thus, we plot X at a point 100 units to the right of
|_2g ~ the vertical axis and 45 units above the horizontal axis. In a similar fashion, we
LM A oMPY) gimine the stress components on the upper face and plot point Y(60, —48).
A Joining points X and Y by a straight line, we define the center C of Mohr’s
samp,  crde, The abscissa of C, which represents @, and the radins R of the drcle

! can be measured directly or caleulated as follows:

Ty = OC = Yo, + ¢,) = {100 + 60) = S0 MPa
R = V(CFY + (FX): = V(20) + (48)* = 52 MPa

0 B C

>

28 MPu [=> -
Y(60, —48) *

— = 132 MPu—

!
~ = a. Principal Planes and Principal Stresses. We rotate the diameter
..ﬂ?&};_.

/ = * XY clockwise through 26, until it coincides with the diameter AB. We have
6 =337
r

- AP XF _ 48 .
L e tan 28, = ——=—=24 2§, =674) 6,=337°) <
4

e

A
>~\ AT we = PEMPS The principal stresses are represented by the abscissas of points A snd B:
Ooa=0A=0C+CA=80+52 oo, = +I32MP4 <
G =0B=0C-BC=80-52 oy, =+ 28MPs

“n

= |80° - &) - 674° : " . i 3 $
:_ ;2 & " Since the rotation that brings XY into AB is clockwise, the rotation that

brings Ox into the axis Oa correspanding to e, is also clockwise; we obtain
the orientation shown lor the principal planes.

7(MP))

a (MPa) b. Stress Components on Element Rotated 30", Points X' and Y’
on Mohr's circle that correspond to the stress components on the rotated
element are obtained by rotating XY counterclockwise through 26 = 60,
We find

¢ = 180° - 60° ~ 67.4° ¢ =526° <

oy = 0K = OC — KC = 80 = 52c0s 526° o, = + 454 MPa <

ay= MLEMP T 7y = OL = OC = CL = 80 + 52 c0s 5326° o, = +1116 MPa <
;\(/\_ Ao =84AMP Ty ™ KX' = 52 sin 52.6° oy = 413 MPa +«

/\V 2 1= AL3MP Since X' is located above the horizontal axis, the shearing stress on the face
Y 0 ) - R ) o

A perpendicular to Or' tends to rotate the element clockwise,

©l0 =30
)

Hoe lj— :

—d
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