
Lecture Title: Shear Force and Bending Moment 
Lecture Notes on Strength of Materials (2017-2018) 

University Of Technology  
Mechanical Engineering Department 

 

Page 1 of 12 Asst. Prof. Dr. Mohsin Noori Hamzah 

Lecturer Rasha Mohammed 

 
 

 

 

 

BEAMS: SHEAR FORCE & BENDING MOMENT 

 

 

 

Introduction 

The term beam refers to a slender bar that carries transverse loading; that is, the 

applied forces are perpendicular to the bar. In a beam, the internal force system 

consists of a shear force and a bending moment acting on the cross section of the 

bar. The study of beams, however, is complicated by the fact that the shear force 

and the bending moment usually vary continuously along the length of the beam. 

Supports, Types and Loads 

Beams are classified according to their supports and may be summarized as: 

1. A simply supported beam, Figure 1-a, has a pin support at one end and a 

roller support at the other end. The pin support prevents displacement of 

the end of the beam, but not its rotation. The term roller support refers to 

a pin connection that is free to move parallel to the axis of the beam; hence, 

this type of support suppresses only the transverse displacement.  

2. A cantilever beam is built into a rigid support at one end, with the other 

end being free, Figure 1-b. The built-in support prevents displacements as 

well as rotations of the end of the beam.  
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3. An overhanging beam, illustrated in Figure 1-c, is supported by a pin and 

a roller support, with one or both ends of the beam extending beyond the 

supports.  

The above three types of beams are statically determinate because the support 

reactions can be found from the equilibrium equations. 

 

Figure 1: Statically determinate beams. 

Figure 2 shows other types of beams. These beams are over-supported in the sense 

that each beam has at least one more reaction than is necessary for support. Such 

beams are statically indeterminate; the presence of these redundant supports 

requires the use of additional equations obtained by considering the deformation 

of the beam. These types of beams may be summarized as: 

4. A propped cantilever beams (Figure 1-a); is a beam with a built in support 

at one side, and a point support at the other.   

5. Fixed or built-in beams; Figure 1-b, is a beam with a built in supports at 

both sides. 

6. Continuous beams (Figure 1-c) is a multi-span beam on hinged support. 

The end spans may be cantilever, may be freely supported or fixed 

supported. At least one of the supports of a continuous beam must be able 

to develop a reaction along the beam axis. 
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Figure 2: Statically indeterminate beams. 

A concentrated load, such as P in Figure 1-a, is an approximation of a force 

that acts over a very small area. In contrast, a distributed load is applied over a 

finite area. If the distributed load acts on a very narrow area, the load may be 

approximated by a line load. The intensity w of this loading is expressed as force 

per unit length (N/m). The load distribution may be uniform, as shown in Figure 

1-b, or it may vary with distance along the beam, as in Figure 1-c.  

Shear-Moment Equations and Shear-Moment Diagrams 

Consider the cantilever beam shown in Figure 3-a, 

which is subjected to a concentrated load P at the 

free end.  If a cutting plane at C is drawn, a free-

body diagram through this section (Figure 3-b) 

shows a shear forces V and bending moment M at 

the cutting section. It is the objective in this section 

to determine the shear force V and the bending 

moment M at every cross section of the beam. To 

accomplish this task, we must derive the 

expressions for V and M in terms of the distance x 

measured along the beam. By plotting these 

expressions to scale, we obtain the shear force and 

bending moment diagrams for the beam.  

 

Figure 3: (a) Cantilever beam 

subjected to a concentrated 

load, (b) Section through C. 
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Sign Conventions 

It is necessary to adopt sign conventions for applied loading, shear forces, and 

bending moments. We will use the conventions shown in Figure 4, which assume 

the following to be positive. 

• Shear forces that tend to rotate a beam element clockwise.  

• Bending moments that tend to bend a beam element concave upward. 

 

Figure 4: Sign Conventions. 

Procedure for Determining Shear force and Bending Moment Diagrams 

The following is a general procedure for obtaining shear force and bending 

moment diagrams of a statically determinate beam:  

▪ Compute the support reactions from the FBD of the entire beam.  

▪ Divide the beam into segments so that the loading within each segment is 

continuous. Thus, the end-points of the segments are discontinuities of 

loading, including concentrated loads and couples. 

Perform the following steps for each segment of the beam:  

▪ Introduce an imaginary cutting plane within the segment, located at a 

distance x from the left end of the beam, that cuts the beam into two parts.  

▪ Draw a FBD for the part of the beam lying either to the left or to the right 

of the cutting plane, whichever is more convenient. At the cut section, 

show V and M acting in their positive directions.  
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▪ Determine the expressions for V and M from the equilibrium equations 

obtainable from the FBD. These expressions, which are usually functions 

of x, are the shear force and bending moment equations for the segment. 

These equation can be obtained using the following: 

    𝑉 = (∑ 𝐹𝑦)𝐿 = (∑ 𝐹𝑦)𝑅                   (for shear force) 

   𝑀 = (∑ 𝑀)𝐿 = (∑ 𝑀)𝑅                   (for bending moment) 

▪ Plot the expressions for V and M for the segment. It is visually desirable to 

draw the V-diagram (SFD) below the FBD of the entire beam, and then 

draw the M-diagram (BMD) below the V-diagram. 

Example 1: 

 
Solution: 

 



Lecture Title: Shear Force and Bending Moment 
Lecture Notes on Strength of Materials (2017-2018) 

University Of Technology  
Mechanical Engineering Department 

 

Page 6 of 12 Asst. Prof. Dr. Mohsin Noori Hamzah 

Lecturer Rasha Mohammed 

 
 

 

 

 

 



Lecture Title: Shear Force and Bending Moment 
Lecture Notes on Strength of Materials (2017-2018) 

University Of Technology  
Mechanical Engineering Department 

 

Page 7 of 12 Asst. Prof. Dr. Mohsin Noori Hamzah 

Lecturer Rasha Mohammed 

 
 

 

 

 



Lecture Title: Shear Force and Bending Moment 
Lecture Notes on Strength of Materials (2017-2018) 

University Of Technology  
Mechanical Engineering Department 

 

Page 8 of 12 Asst. Prof. Dr. Mohsin Noori Hamzah 

Lecturer Rasha Mohammed 

 
 

 

Example 1: 

 

Solution: 
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Area Method for Drawing Shear-Moment Diagrams 

Useful relationships between the loadings, shear force, and bending moment can 

be derived from the equilibrium equations. These relationships enable us to plot 

the shear force diagram directly from the load diagram, and then construct the 

bending moment diagram from the shear force diagram. This technique, called 

the area method, allows us to draw the shear force and bending moment diagrams 

without having to derive the equations for V and M. We first consider beams 

subjected to distributed loading and then discuss concentrated forces and couples. 

▪ Distributed Loading  

Consider the beam in Figure 5-a that is subjected to a distributed load of intensity 

w(x). The free-body diagram of an infinitesimal element of the beam, located at 

the distance x from the left end, is shown in Figure 5-b. The segment will carry a 

shear force and a bending moment at each end, which are denoted by V and M at 

the left end and by V + dV and M + dM at the right end. The infinitesimal 

differences dV and dM represent the changes that occur over the differential 

length dx of the element.  

 

Figure 5: (a) Simply supported beam carrying distributed loading; (b) free-body 

diagram of an infinitesimal beam segment. 
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The force equation of equilibrium for the element is 

 

from which we get, 

   𝑤 = −
𝑑𝑉

𝑑𝑥
 (1) 

The moment equation of equilibrium yields 

 
Because dx is infinitesimal, the last term can be dropped, yielding 

   𝑉 =
𝑑𝑀

𝑑𝑥
 (2) 

It can be deduced from equations (1) that 

 
Recognizing that the integral on the right-hand side of this equation represents 

the area under the load diagram between A and B (Figure 6), we get 

   𝑉𝐵 − 𝑉𝐴 = −𝐴𝑟𝑒𝑎 𝑜𝑓 𝑤 − 𝑑𝑖𝑎𝑔𝑟𝑎𝑚]𝐴
𝐵 (3) 

 
Figure 6: (a) Simply supported beam carrying distributed loading; (b) free-body 

diagram of a finite beam segment. 
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Similarly, from equation (2), 

 
Because the right-hand side of this equation is the area of the shear force diagram 

between A and B, we obtain 

   𝑀𝐵 − 𝑀𝐴 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑉 − 𝑑𝑖𝑎𝑔𝑟𝑎𝑚]𝐴
𝐵 (4) 

▪ Concentrated Load and Couples  

The area method for constructing shear force and bending moment diagrams 

described above for distributed loads can be extended to beams that are loaded 

by concentrated forces and/or couples.  

Following the same procedure, described for the distributed load (above), the 

shear force may be expressed as 

   𝑉𝐴
+ = 𝑉𝐴

− ∓ 𝑃𝐴  (5) 

Equation (5) indicates that a positive concentrated force causes a negative jump 

discontinuity in the shear force diagram at A. 

Similarly, for the concentrated moment 

   𝑀𝐴
+ = 𝑀𝐴

− ∓ 𝐶𝐴  (6) 

Procedure for the Area Method  

The following steps outline the procedure for constructing shear force and 

bending moment diagrams by the area method:  

• Compute the support reactions from the FBD of the entire beam.  

• Draw the load diagram of the beam (which is essentially a FBD) showing 

the values of the loads, including the support reactions.  

• Working from left to right, construct the V- and M-diagrams for each 

segment of the beam using Equations. (1)–(6).  

At first glance, using the area method may appear to be more cumbersome than 

plotting the shear force and bending moment equations. However, with practice 

you will find that the area method is not only much faster but also less susceptible 

to numerical errors because of the self-checking nature of the computations.  
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BENDING STRESS IN BEAMS 

 

 

 

Introduction 

In deriving the relations between the bending moment and the bending stress, the 

following assumptions are made: 

1- Plane section of the beam, originally plane remains plane. 

2- The material of the beam is homogenous and obeys Hooke’s law. 

3- The beams are initially straight of constant cross-section. 

 

Derivation 

The stress caused by bending moment are 

known as bending or flexure stresses, and the 

relation between theses stresses and the 

bending moment is expressed by the flexure 

formula. 
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Note: the plane that fiber ef is called the neutral surface because such fiber 

remains unchanged in length and hence carries NO STRESS.  

 

Consider now the deformation of a typical fiber gh located y units from the neutral 

surface. Its elongation is the arc of a circle of radius y with angle dθ and is given 

by: 

𝛿 = ℎ𝑘 = 𝑦𝑑𝜃 

and the strain 

𝜀 =
𝛿

𝐿
=

𝑦𝑑𝜃

𝑒𝑓
 

If 𝜌 is the radius of curvature of the neutral surface, then 

𝜀 =
𝑦 𝑑𝜃

𝜌 𝑑𝜃
=

𝑦

𝜌
 

Applying Hooke’s law: 

 𝜎 = 𝐸𝜀 = (
𝐸

𝜌
) 𝑦   (1) 

Now consider equilibrium of forces along x-axis; 

∑ 𝐹𝑥 = 0:          ∫ 𝜎𝑑𝐴 = 0 

Using eq. (1), the above integral becomes,  

∫ (
𝐸

𝜌
) 𝑦𝑑𝐴 = 0       →     (

𝐸

𝜌
) ∫ 𝑦𝑑𝐴 = 0  

Since y dA is the moment of the differential area dA or the first moment of area 

about the neutral axis, hence 

(
𝐸

𝜌
) 𝐴𝑦̅ = 0  

However, since only  𝑦̅ in this relation can be zero. We conclude that the distance 

from the neutral axis to the centroid of the cross-sectional area must be zero, i.e., 

the neutral axis must contain the centroid of the cross-sectional area. 

Consider now the bending moment M induced in the beam, as shown in Figure 2, 

which can be expressed as; 

 𝑀 = ∫ 𝑦(𝜎𝑑𝐴)         (2) 
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Substitute eq. (1) into eq. (2), we get 

 𝑀 = (
𝐸

𝜌
) ∫ 𝑦2 𝑑𝐴 = (

𝐸

𝜌
) 𝐼 

 

where I is the moment of inertia or the 2nd moment of area of the beam section 

about the neutral axis. 

  𝑀 = (
𝐸

𝜌
) 𝐼         (3) 

Using eq. (1) and eq. (3) 

 
𝐸

𝜌
=

𝑀

𝐼
=

𝜎

𝑦
 

This leads directly to the flexure formula. 

    𝜎 =
𝑀𝑦

𝐼
 

 

Moment of Inertia or 2nd Moment of Area  

Shape 2nd Moment of Area 
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ℎ

3
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d 

Xo Xo 

X X 

y 

Parallel-Axis Theorems 

For the section shown in Figure 3, the axis Xo-Xo is 

passing through the centroid, while X-X axis is 

distanced d from it.  Consider now calculating the 2nd 

moment of area through X-X axis, 

𝐼𝑋−𝑋 = ∫(𝑦 + 𝑑)2 𝑑𝐴    = ∫ 𝑦2𝑑𝐴 + 2𝑑 ∫ 𝑦𝑑𝐴 + 𝑑2 ∫ 𝑑𝐴 

Since ∫ 𝑦𝑑𝐴  is the 1st moment of area (centroid), then ∫ 𝑦𝑑𝐴 = 𝐴𝑦̅  , since the 

axis Xo-Xo passes through the centroid, hence 𝑦̅ has a value of zero. Therefore, 

                             𝐼𝑋−𝑋 = 𝐼̅ + 𝐴 𝑑2 

Example 1: 

  𝐴𝑌̅ = ∫ 𝑦𝑑𝐴 = ∑ 𝑎𝑖  𝑦̅𝑖
𝑛
𝑖=1  

(200 × 50 + 200 × 50)𝑌̅ = (200 × 50) × 25 + (200 ∗ 50) ∗ 150 

 𝑌̅ =
175

2
= 87.5 𝑚𝑚  

 𝐼𝑁𝐴 = (
50×2003

12
+ (50 × 200) × (150 − 87.5)2) + (

200×503

12
+ (50 × 200) ×

(87.5 − 25)2) = 113.5 × 106      (Answer) 
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Some Interested Beam Sections 
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Example 1: 

The overhanging beam shown in the figure is made of cast iron for which the 

allowable stresses are t = 40 MPa and c = 100 MPa. Determine the maximum 

uniformly distributed load that can be supported.  
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SHEAR STRESS IN BEAMS 

 

 

 

Horizontal Shearing Stress in Beams 

Consider two sections, (1) and (2), in a beam separated by the distance dx, as 

shown in Figure (1) 

 

 

 

 

  

 

∑𝐹𝑥 = 0:                         𝑑𝐹 = 𝐻2 − 𝐻1         = ∫ 𝜎2𝑑𝐴 −
𝑐

𝑦1
∫ 𝜎1𝑑𝐴

𝑐

𝑦1
 

Since 𝜎 =
𝑀𝑦

𝐼
  , then 

𝑑𝐹 =
𝑀2

𝐼
∫ 𝑦𝑑𝐴

𝑐

𝑦1

−
𝑀1

𝐼
∫ 𝑦𝑑𝐴

𝑐

𝑦1

=
𝑀2 − 𝑀1

𝐼
∫ 𝑦𝑑𝐴

𝑐

𝑦1

=
𝑑𝑀

𝐼
∫ 𝑦𝑑𝐴

𝑐

𝑦1

 

From the above figure, 𝑑𝐹 = 𝜏𝑏𝑑𝑥; 

𝜏 =
1

𝑏

𝑑𝐹

𝑑𝑥
=

1

𝑏𝐼

𝑑𝑀

𝑑𝑥
∫ 𝑦𝑑𝐴

𝑐

𝑦1

 

H1 

 

b 

Resisting Shear 
𝑑𝐹 = 𝜏𝑏𝑑𝑥 

𝑑𝑥 

c y 

 

N.A. 

H2 

y1 
c 
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But 
𝑑𝑀

𝑑𝑥
= 𝑉 , then 

𝜏 =
𝑉

𝑏𝐼
∫ 𝑦𝑑𝐴

𝑐

𝑦1

 

The integration ∫ 𝑦𝑑𝐴
𝑐

𝑦1
  is the first moment of area of the shaded area 𝐴′ about 

the neutral axis, then 

   𝜏 =
𝑉

𝑏𝐼
𝐴′ 𝑦̅′ 

 

Note: The above equation sometimes written as 𝜏 =
𝑉

𝑏𝐼
 𝑄, where 𝑄 = 𝐴′ 𝑦̅′ is 

called shear flow. 

 

Example 1: 

Draw the shear stress due to bending for the rectangular cross section shown. 

𝜏 =
𝑉

𝑏𝐼
𝐴′ 𝑦̅′ =

𝑉

𝐼𝑏
[𝑏 (

ℎ

2
− 𝑦) (𝑦 +

1

2
(

ℎ

2
− 𝑦))] 

which reduced to 

𝜏 =
𝑉

2𝐼
(

ℎ2

4
− 𝑦2) 

𝜏𝑚𝑎𝑥 =
𝑉

2 (
𝑏ℎ3

12 )
(

ℎ2

4
) =

3

2

𝑉

𝑏ℎ
=

3

2

𝑉

𝐴
 

 

 

 

 

 

y 
h/2 

𝜏𝑚𝑎𝑥 

b 

h 
N.A. 
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Example 2: 

A box beam supports the loads shown in the figure. Compute the maximum value 

of P that will not exceed a flexural (or bending) stress 𝜎 = 8 MPa or a shearing 

stress 𝜏 = 1.2 MPa for the section between the supports. 

 

Solution:  
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The following example from:  

 F. P. Beer, E. R. Johnston, J. T. Dewolf, D. F. Mazurek, Mechanics of 

Materials, 6th Edition, McGraw-Hill, New York, 2012. 
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BEAM DEFLECTION 

 

 

 

Introduction 

When we consider designing beams based on rigidity consideration the deflection 

of the beam must be known at specific or critical location. 

Several methods are avaible for determining beam deflection. Although based 

on the same principles, they differ in technique and in their immediate objective. 

 

Double- Integration Method 
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Slope =tan 𝜃 =
𝑑𝑦

𝑑𝑥
 

Since θ is small, then tan 𝜃  𝜃 

𝜃 =
𝑑𝑦

𝑑𝑥
 and  

𝑑𝜃

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2
                             (1) 

The defferential length ds can be expressed in terms of radius of curvature ρ as:- 

𝑑𝑠 = 𝜌 𝑑𝜃 

Or              
1

𝜌
=

𝑑𝜃

𝑑𝑠
≈

𝑑𝜃

𝑑𝑥
                      (2) 

Subtitube eq.(1) and eq.(2) 

1

𝜌
=

𝑑2𝑦

𝑑𝑥2
                                                (3) 

In deriving the flexure formula (Bending Stress Lecture), we obtained the 

relation: 

1

𝜌
=

𝑀

𝐸𝐼
                                                   (4)  

Equating eq.(3) and (4), we have 

   𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 𝑀 (5) 

This is known as the differential equation of the elastic curve of the beam. 

Integrating equation (5), assuming EI constant, we obtain  

     𝐸𝐼
𝑑𝑦

𝑑𝑥
= ∫ 𝑀𝑑𝑥 + 𝑐1  (slope equation) 

And 

 𝐸𝐼𝑦 = ∫(∫ 𝑀𝑑𝑥)𝑑𝑥 + 𝑐1𝑥 + 𝑐2       (deflection equation) 

 

 

Note: The double integration method can be used if the moment (M) has a single 

expression for the whole beam.  
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Example 1: 

 

 

 

  

 

𝑀𝑥𝑥 = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= −𝑊𝑥 

Assuming EI constant, integrating the above equation, 

𝐸𝐼
𝑑𝑦

𝑑𝑥
= −𝑊

𝑥2

2
+ 𝐴 (1) 

And, 

𝐸𝐼𝑦 = −𝑊
𝑥3

6
+ 𝐴𝑥 + 𝐵 (2) 

The above constants (A and B) can be found using the available boundary 

conditions. 

Boundary Conditions (BCs) 

1) when 𝑥 = 𝐿 ,
𝑑𝑦

𝑑𝑥
= 0 , using eq. (1)  leads to 𝐴 =

𝑊𝐿2

2
 

2) when 𝑥 = 𝐿 , 𝑦 = 0 ,    using eq. (2) leads to 𝐵 = −
𝑊𝐿3

3
 

Therefore, the equation of the elastic curve is, 

𝑦 =
𝑊

𝐸𝐼
[−

𝑥3

6
+

𝐿2𝑥

2
−

𝐿3

3
] 

The maximum deflection occur at the free end, i.e. at x=0, then 

At 𝑥 = 0 , 𝑦 = 𝑦𝑚𝑎𝑥 

𝑦𝑚𝑎𝑥 = −
𝑊𝐿3

3𝐸𝐼
 

 

 

 

  

W 

L x 
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Example 2: 

 

 

 

 

 

𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 𝑀 = −

𝑤𝑥2

2
          

Integrating, 

  𝐸𝐼
𝑑𝑦

𝑑𝑥
= −

𝑤𝑥3

6
+ 𝐴     (1) 

And, 

 𝐸𝐼𝑦 = −
𝑤𝑥4

24
+ 𝐴𝑥 + 𝐵 (2) 

Boundary Conditions (BCs) 

1) when 𝑥 = 𝐿 ,
𝑑𝑦

𝑑𝑥
= 0, using eq. (1)  leads to  𝐴 =

𝑤𝐿3

6
      

2) when 𝑥 = 𝐿 , 𝑦 = 0 ,    using eq. (2) leads to 𝐵 =
𝑤𝐿4

24
−

𝑤𝐿4

6
= −

𝑤𝐿4

8
 

Therefore, the equation of the elastic curve is, 

𝑦 =
𝑤

𝐸𝐼
[−

𝑥4

24
+

𝐿3

6
𝑥 −

𝐿4

8
]     

The maximum deflection occur at the free end, i.e. at x=0, then 

   𝐴𝑡 𝑥 = 0 , 𝑦𝑚𝑎𝑥 =
𝑤𝐿4

8𝐸𝐼
 

 

 

 

 

x 
L 

w (N/m) 
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The following example is from: 

F.P. Beer, and E.R. Johnston, Mechanics Of Materials, Sixth Edtion, McGraw-

Hill, 2012.  
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Discussion (Macaulay's Method) 

 

 

 

 

 

 

𝑀𝐴𝐵 = 480𝑥 

𝑀𝐵𝐶 = 480𝑥 − 500(𝑥 − 2) 

𝑀𝐶𝐷 = 480𝑥 − 500(𝑥 − 2) −
450

2
(𝑥 − 3)2 

Macaulay's Method ?  

𝑀(𝑥) = 480𝑥 − 500〈𝑥 − 2〉 −
450

2
〈𝑥 − 3〉2 

 

 

Note: the above equation is for the beam only when the term inside the two 

brackets 〈𝑥 − 𝑎〉 has the positive value, i.e, x ≥ 𝑎 , and if 𝑥 < 𝑎 (negative 

value) the value of the term is zero. 

 

 

 

 

 

 

 

 

1𝑚 
A B C 

D 

500N 

450N/m 

𝑅1 =480N 
𝑅2 =920N 

2𝑚 2𝑚 

𝑦 

𝑥 
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Macaulay's Method 

The simple integration method used in the previous examples can only be used 

when a single expression for bending moment applies along the complete length 

of the beam. In general this is not the case, and the method has to  be adapted to 

cover all loading conditions. Following the procedure adapted by Macaulay, the 

step fuctions which have the following properties, must be used 

 

  

 

 

 

 

 

 

 

 

 

 

Generally      〈𝑥 − 𝑎〉𝑛 = {
(𝑥 − 𝑎)𝑛          𝑤ℎ𝑒𝑛       𝑥 ≥ 𝑎

0                       𝑤ℎ𝑒𝑛      𝑥 < 𝑎

 

Integral of 〈𝑥 − 𝑎〉𝑛 is  ∫〈𝑥 − 𝑎〉𝑛𝑑𝑥 =
1

(𝑛+1)
〈𝑥 − 𝑎〉𝑛+1 

 

 

 

 

〈𝑥 − 𝑎〉2 𝑦 

𝑎 0 

〈𝑥 − 𝑎〉3 

𝑦 

𝑎 

〈𝑥 − 𝑎〉0 

𝑦 

𝑎 0 

〈𝑥 − 𝑎〉1 

𝑦 

𝑎 
0 
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Different types of loading in Macaulay's notations  

 

 

 

 

𝑀(𝑥) = 𝑀0〈𝑥 − 𝑎〉0 

 

 

 

 

 

 

 

𝑀(𝑥) = −𝑃〈𝑥 − 𝑎〉1 
 

 

 

 

 

 

𝑀(𝑥) = −
1

2
𝑤〈𝑥 − 𝑎〉2 

 

 

 

 

 

 

𝑀(𝑥) = −
𝑘

6
〈𝑥 − 𝑎〉3 

 

 

 

 

 

 

a 

𝑥 

Slope k 
𝑤0 

a 

𝑃 

𝑥 

a 

𝑥 

a 

𝑀0 

𝑥 

𝑤 
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Example 3: 

write the complete moment  equation for the beam shown 

 

 

 

 

solution: 

 

 

 

 

 

 

𝑀 = 500𝑥 −
400

2
〈𝑥 − 1〉2 +

400

2
〈𝑥 − 4〉2 + 1300〈𝑥 − 6〉 

 

 

 

 

 

 

 

 

 

A 

B C D 

E 
400N/m 

𝑅1 = 500𝑁 𝑅2 = 1300𝑁 

600N 

Complete the load 
Equivelant loading 

A 

B C D 

E 
400N/m 

𝑅1 = 500𝑁 𝑅2 = 1300𝑁 

600N 

1m 
3m 

2m 
2m 
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Example 4: 
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The following example is from: 

F.P. Beer, and E.R. Johnston, Mechanics of Materials, Sixth Edtion, McGraw-

Hill, 2012.  
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STRESSES DUE TO COMBINED LOADS 

 

 

 

Introduction 

In preceding lectures, we studied stress of various structural members carrying 

fundamental loads: bars with axial loading, different components subjected to 

direct shear stress, torsion of circular shafts, thin-walled pressure vessels 

subjected to biaxial loading, and bending of beams. In this lecture, we will be 

considering combined axial and lateral loading, and stress at a point. And the 

following table reviews these types of loading: 

Loading Types Stress Example Stress State 

Axial Loading 𝜎𝑎 =
𝑃

𝐴
 

  
 

Shearing Loading 𝜏 =
𝑉

𝐴
 

 
    

Torsional Loading 𝜏 =
𝑇𝑟

𝐽
 

     

Flexural Loading 𝜎 =
𝑀𝑦

𝐼
 

 

 

 

F 

T 
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Combined Axial and Flexural Loads 

For the beam shown in the figure the beam subjected to axial load P combined 

with lateral load Q. The axial load cause a stress: 

 𝜎𝑎 =
𝑃

𝐴
  (1) 

And the lateral load Q cause a bending stress of: 

 𝜎𝑏 =
𝑀𝑦

𝐼
 (2) 

It is shown that the top surface subjected to compression while bottom surface 

subjected to tension.  Therefore, the combine stress will be: 

   𝜎 =
𝑃

𝐴
 ∓

𝑀𝑦

𝐼
  (3) 

 

Figure 1: (a) Rectangular bar carrying axial and lateral loads; (b)–(d) stress 

distribution obtained by superimposing stresses due to axial load and bending. 
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Example 1: 

Determine the resultant normal stress at A and B near the wall 

 

Solution: 

Horizontal component of the force = 25 × 103 ×
4

5
= 20 𝑘𝑁 

Vertical component of the force = 25 × 103 ×
3

5
= 15 𝑘𝑁 

Bending moment at the wall 

𝑀 = 15 × 103 × 0.45 − (20 × 103) × 0.15 = 3750 𝑁𝑚 

From which the beam is concave downward, thereby causing tension at A and 

compression at B. 

Stress at A 

𝜎 =
𝑃

𝐴
+

𝑀𝑐

𝐼
=

𝑃

𝐴
+

𝑀
ℎ
2

(
𝑏ℎ3

12 )
=

𝑃

𝐴
+

6 𝑀

𝑏ℎ2
   

=
20×103

0.05×0.15
+

6×3750

(0.05)×(0.15)2
= 22.67 MPa     

Stress at B 

𝜎 =
𝑃

𝐴
−

6𝑀

𝑏ℎ2
=

20 × 103

0.05 × 0.15
−

6 × 3750

0.05 × (0.15)2
 

= −17.33 MPa     
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Example 2: 

For the link shown in the figure, the thickness of the link is 50 mm. Given that 

the force P = 40 kN, determine the maximum and minimum values of the normal 

stress acting on section m-n. 

 

Solution: 

 

Bending moment  

𝑀 = 𝑃 𝑐 = 0.02 × 40 × 103 = 800 Nm 

From which the beam is concave downward, thereby causing tension at A and 

compression at B. 

Maximum normal stress 

𝜎 =
𝑃

𝐴
+

𝑀𝑐

𝐼
=

40 × 103

(50 × 10−3  ×  40 × 10−3)
+

800 × 20 × 10−3

(
(50 × 10−3)(40 × 10−3)3

12 )
 

= 80.0 MPa     

Minimum normal stress 

𝜎 =
𝑃

𝐴
−

𝑀𝑐

𝐼
=

40 × 103

(50 × 10−3  ×  40 × 10−3)
−

800 × 20 × 10−3

(
(50 × 10−3)(40 × 10−3)3

12 )
 

= −40.0 MPa     
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Example 3: 

Determine the largest load P that can be supported by the platform of the cast-

iron bracket shown in the figure if 𝜎𝑡 ≤ 30 MPa and 𝜎𝑐 ≤ 70 MPa. 

 

Solution: 

Bending moment at section A-B  

𝑀 = 𝑃 × (0.25 + 0.05) = 0.3𝑃 

Stress at A 

𝜎 =
𝑃

𝐴
+

𝑀𝑦

𝐼
=

𝑃

8000 × 10−6
+

0.3𝑃 × 0.05

20 × 10−6
 

∴ 𝑃 = 34.285 kN     

Stress at B 

𝜎 =
𝑃

𝐴
−

𝑀𝑦

𝐼
  =

𝑃

8000 × 10−6
−

0.3𝑃 × 0.15

20 × 10−6
 

∴ 𝑃 = 32.94 kN     

Therefore, the largest safe load is 32.94 kN     
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Home work 

1- The cross section of the machine part is a square, 5 mm on a side. If the 

maximum stress at section m-n is limited to 150 MPa, determine the largest 

allowable value of the eccentricity e. 

 

 

2- Find the largest clamping force that can be applied by the cast iron C-clamp 

if the allowable normal stresses on section m-n are 15 MPa in tension and 30 

MPa in compression. 

 

 

3- The force P = 100 kN is applied to the bracket as shown in the figure. 

Compute the normal stresses developed at points A and B. 

 

End of Home work 
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Stress at a Point 

The average stress over an area is obtained by dividing the force by the area over 

which it acts. If the average stress is constant over the area, the stress is said to be 

uniform. If the stress is not uniform, the stress at any point is found by permitting 

the area enclosing the point to approach zero as a limit. In other words, stress at 

a point really defines the uniform stress distributed over a differential area. 
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Stress at Inclined Plane  

 

Applying the conditions of equilibrium in normal N and tangential T direction 

∑ 𝐹𝑁 = 0 ∶    𝐴𝜎𝜃 = (𝜎𝑥𝐴 cos 𝜃) cos 𝜃 + (𝜎𝑦 𝐴 sin 𝜃) sin 𝜃 −

(𝜏𝑥𝑦 𝐴 cos 𝜃) sin 𝜃 − (𝜏𝑦𝑥 𝐴 sin 𝜃) cos 𝜃                  

 (1) 

And 

∑ 𝐹𝑇 = 0 ∶    𝐴𝜏𝜃 = (𝜎𝑥 𝐴 cos 𝜃) sin 𝜃 − (𝜎𝑦 𝐴 sin 𝜃) cos 𝜃 +

(𝜏𝑥𝑦 𝐴 cos 𝜃) cos 𝜃 − (𝜏𝑥𝑦 𝐴 sin 𝜃) sin 𝜃 

 (2) 

Since the common term A can be canceled, and since 𝜏𝑦𝑥 = 𝜏𝑥𝑦 , and if we use 

the relations 

cos2 𝜃 =
1 + 𝑐𝑜𝑠2𝜃

2
,   sin2 𝜃 =

1 − 𝑐𝑜𝑠2𝜃

2
, and   sin 𝜃 cos 𝜃 =

1

2
sin 2𝜃   

Equation 1 and 2 will be reduced as: 

 𝜎𝜃 =
𝜎𝑥+𝜎𝑦

2
+

𝜎𝑥−𝜎𝑦

2
cos 2𝜃 − 𝜏𝑥𝑦 sin 2𝜃     (3) 

And 

 𝜏𝜃 =
𝜎𝑥−𝜎𝑦

2
sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃 (4) 
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The plane of maximum normal stress, 𝜎𝜃, can be found by differentiating 

Equation 3 with respect to θ and equating the derivative to zero, whence 

 tan 2𝜃 = −
2𝜏𝑥𝑦

𝜎𝑥−𝜎𝑦
 (5) 

Similarly, the plane of maximum shearing stress are defined by 

 tan 2𝜃𝑠 =
𝜎𝑥−𝜎𝑦

2𝜏𝑥𝑦
   (6) 

The plane of zero shearing stress may be determined by setting 𝜏𝜃 to zero, this 

gives 

 tan 2𝜃 = −
2𝜏𝑥𝑦

𝜎𝑥−𝜎𝑦
 (7) 

Note: Equation 7 is identical with Equation 5. Hence the maximum and minimum 

stress occur on plane of zero shearing stress. 

Substitute the value of  2𝜃    from Equation 5 and 6 into Equation 3 and 4 we 

get 

   𝜎𝑚𝑎𝑥
𝑚𝑖𝑛

=
𝜎𝑥+𝜎𝑦

2
∓ √(

𝜎𝑥−𝜎𝑦

2
)

2
+ 𝜏𝑥𝑦

2  

   𝜏𝑚𝑎𝑥 = ∓√(
𝜎𝑥−𝜎𝑦

2
)

2
+ 𝜏𝑥𝑦

2  

Note: 𝜎𝑚𝑎𝑥   and 𝜎𝑚𝑖𝑛   are called principal stresses and located in a plane of zero 

shear 

Mohr’s Circle 

Mohr interprets Equation 3 and Equation 4  graphically, he used circle for this 

interpretation, accordingly, the construction is called Mohr’s circle. 

Mohr showed that Equations 3 and 4 define a circle by first rewriting them as 

follows  

 𝜎𝜃 − (
𝜎𝑥+𝜎𝑦

2
) = (

𝜎𝑥−𝜎𝑦

2
) cos 2𝜃 − 𝜏𝑥𝑦 sin 2𝜃              (8) 

And 

 𝜏𝜃 = (
𝜎𝑥−𝜎𝑦

2
) sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃  (9) 
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By squaring both these equations, i.e. Equations 8 and 9 adding the results, and 

simplifying, we obtain 

 (𝜎𝜃 − (
𝜎𝑥+𝜎𝑦

2
))

2

+ 𝜏𝜃
2 = (

𝜎𝑥−𝜎𝑦

2
)

2
+ 𝜏𝑥𝑦

2    (10) 

Since 𝜎𝑥 , 𝜎𝑦 and 𝜏𝑥𝑦 are known constants defining the specified state of stress, 

whereas  𝜎𝜃 and 𝜏𝜃 are variable. Equation 10 may be rewritten as 

 (𝜎𝜃 − 𝐶)2 + 𝜏𝜃
2 = 𝑅2  (11) 

where 𝐶 =
𝜎𝑥+𝜎𝑦

2
,  and   𝑅2 = (

𝜎𝑥−𝜎𝑦

2
)

2
+ 𝜏𝑥𝑦

2     or     𝑅 = √(
𝜎𝑥−𝜎𝑦

2
)

2
+ 𝜏𝑥𝑦

2    

Equation 11 is similar to the equation: 

(𝑥 − 𝑐)2 + 𝑦2 = 𝑟2 

Which is an equation of circle, therefore Equation11 represents equation of circle 

shifted C distance from 𝜎𝜃 − axis. 
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Rules for applying Mohr’s circle: 

1- Plot points that having coordinates (𝜎𝑥 , 𝜏𝑥𝑦) and (𝜎𝑦 , 𝜏𝑥𝑦) as shown in the 

figure 

 

 

 

 

 

2- Join the points just plotted by straight line the line is the diameter of a circle 

whose center is on σ axis.  

 

 

 

 

 

3- Draw the circle (Mohr’s circle) 
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𝜎𝑦 𝜏𝑥𝑦 

Note: all the dimension and 

drawing are to scale. 
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4- The angle between the radii to selected points on Mohr’s circle is twice 

the angle between the normal to the actual planes represented by these 

points. 

 

 

 

 

 

 

 

Example: 

At a certain point a stressed body the principle stresses are 𝜎𝑚𝑎𝑥 = 80 MPa and 

𝜎𝑚𝑖𝑛 = −40 MPa. Determine σ and 𝛕 on the planes whose normal are at +30˚ and 

120˚ with the x-axis. 

Solution 

 

𝜏𝑥𝑦 

𝜎𝑥 A 

B 

𝜎𝑦 𝜏𝑥𝑦 

𝜎𝑚𝑎𝑥 

𝜎𝑚𝑖𝑛 
Position of plane of max. 

stress to applied stress 

 

R 

2θ 

C 

𝜏𝑚𝑎𝑥 
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Example: 

For the state of stress shown, determine the normal 

and shearing stresses on: 

1- The principal plane 

2- The plane of maximum shearing stress 

3- The planes whose normal are at 36.8 and 

126.8  with the x-axis. 

Solution 
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