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INTRODUCTION, STRESSES AND STRAINS

Introduction

The study of the strength of materials is the study of the behavior of solid bodies
under load. The way in which they react to applied forces, the deflections
resulting and the stresses and strains set up within the bodies, are all considered
in an attempt to provide sufficient knowledge to enable any component to be
designed such that it will not fail within its service life. Typical components

considered in this course include beams, shafts, cylinders and struts.

Analysis of Internal Forces

Consider a body of any shape acted upon by the forces shown in Figure 1-a, the

forces F,, F,, 5, and F, are the external forces acted on the body. This body is
considered in static equilibrium (i.e. remains at rest). To study the internal forces,
a section a-a through the body will cut the body into two pieces, Figure 1-b shows
one piece of section a-a of the body balanced by components of internal forces.
If the X axis is normal to the section, Y and Z axes are chosen parallel to the

section.

Page 1 of 13 Asst. Prof. Dr. Mohsin N. Hamzah



Lecture Title: Introduction, Stresses and Strains
Lecture Notes on Strength of Materials (2017-2018)

University Of Technology
Mechanical Engineering Department

6 z
Section a-a

(b)

Figure 1: (a) Body of any shape subjected to external forces; (b) Balance of

forces through section a-a.

Each component reflects a different effect of the applied loads on the member

and is given a special name, as follows:

Py, Axial forces, if the forces try to pull the body, it is called tensile
forces and called compressive if it tends to shorten the body.

Py, Py, Shear forces: usually designated by V, which acts parallel to the
plane of section.

M, Torque T, this component measure the resistance to twisting the
member.

M,,, M,,  Bending moments, these components measure the resistance to
bending the member about Y or Z axis.

Simple Stress

The unit strength of a material is usually defined as the stress in material. Stress

IS expressed as:

Force

F
A

where o (Greek lower case letter sigma) is the intensity of forces per unit area, or

stress (N/m?), F is the applied load (N), and A is the cross sectional area (m?).
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The above equation of stress represents an average stress, and means that the

stress is known as a simple stress. A more exact definition of stress is obtained

by dividing the differential load, dF, by differential area, dA, over which it acts:

__dF

o=
dA

Example 1:

A
o

™

)

—
-l | ]

LA

An aluminum tube is rigidly fastened between a bronze rod and a steel rod as

shown in the figure. Axial loads are applied at positions indicated. Determine the

stress in each material.

Aluminum Steel
ee
Bronze A = 1000 mm? e
A =700 mm?2 A+ SO0 mme
20 kN—>| < » e 10 kN
L 15kN  15kN
500 mm —— 600 mm—»} 700 mm——=|
(a)
B i ¢ Pb
20 kN
1}
e Pu
20 kN 15 kN
—_— e }—»a
20 kN 15kN  15kN

(b)

Solution:
From the free body diagram

P,=20kN, P,=5kN , P,=10kN
The stresses can be computed as:
F
o=~
A

3
For Bronze: Oy = o =28 X 10° — = 28 MPa
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3
For Aluminum: o, = LO_G =5 MPa
1000x%10
3
For Steel: o, = mx—lo% = 12.5 MPa
800x%10
Example 2:

For the truss shown in figure, determine the stress in the member BD. the cross
sectional area of each member is 900 mm?

Pt
g 1 p I
|
T ‘ Section1-1 B
3!m ‘ = Bf)
| A I H H, 3 -
X # - ~— am| 4 fi
C \/I\’ ¢ d 7 \\
77 A ~
Y  J A - >
) Jo ] ¢ o
A, 30 kN 70 kN H,
’ ) A, Y 30 kN
fe————————d panelsat 4 m = 16 m e } im F 4m ‘
(a) (h)
Solution

“ Ruy = 40 kN
From figure (b), section 1-1,
YM; =0 Fgpx34+40x8—-30x4=0
« Fgp = —66.7 kN

Therefore, the force in member BD is 66.7 KN «,

66.7x103

= W = 74.1 MPa

OBp

Home work:
Redo Example 2 by determining the stress in member EG.
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Shearing Stress

Shearing stress is the stress caused by force acting along or parallel to area
resisting the forces and can be defined as:

4
T=-
A

where t (Greek lowercase letter tau) is the shearing stress (N/m?), V is the
shearing force (N), and A is the area (m?).

Examples of shearing stresses:

tP
| I

P P — Punch

- Q — =l | m : ______ pa Metal sheet

ﬂg-“!_-'_-!_-_D
LA— P |
11 —-

|
tp

Example 3:

A 750 mm pulley, loaded as shown in the figure, is keyed to a shaft 50mm
diameter. Determine the width b of the 75mm-long key if the allowable shearing
stress is 70 MPa.

Shaft 750 mm diameter

50 mm
6 kN diameter shaft
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Solution:
The torque on the pulley can be calculated as,

0.75
T = (10X 10° — 6 x 10%) x ——= 1.5 x 10° N.m = 1.5 kNm

This torque will be transferred to shaft as,

T =15x103 = 7 x 32107

3
V= 2><1.5><1_2 — 60 kN
50%x10

The shearing stress in the key is,

%4
T=-
A
Therefore,
6 _ 60x103
70 x 10> = 75%10~3Xb
~b=0.0114m=11.4 mm
Home work:

For the pulley shown in the figure, determine the diameter of the four similar
bolts needed to connect the shaft with the pulley via the coupling shown.

40 kN |

700-mm diameter

300-mm diameter

24 kN
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Bearing Stress

If two bodies are pressed against each other, compressive forces are developed
on the area of contact. The pressure caused by these surface loads is called
bearing stress. Examples of bearing stress are the soil pressure beneath a pier and
the contact pressure between a rivet and the side of its hole. If the bearing stress
Is large enough, it can locally crush the material, which in turn can lead to more

serious problems.

As an illustration of bearing stress, consider the lap joint formed by the two
plates that are riveted together as shown in Figure 2(a). The bearing stress caused
by the rivet is not constant; it actually varies from zero at the sides of the hole to
a maximum behind the rivet as illustrated in Figure 2(b). The difficulty inherent
in such a complicated stress distribution is avoided by the common practice of
assuming that the bearing stress oy, is uniformly distributed over a reduced area.

The reduced area Ay, is taken to be the projected area of the rivet:
Ab =t d

where t is the thickness of the plate and d represents the diameter of the rivet, as
shown in the free body diagram (FBD) of the upper plate in Figure 2(c). From
this FBD we see that the bearing force F, equals the applied load P, so that the

bearing stress becomes

where A, is the projected area of the rivet hole.
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P
N

/

/ 3

i Pb :}\\ ~ - :{,,

- et
O // —d -

Projected area
of rivet
(b) (c) FBD

Figure 2: Bearing stress: (a) a rivet in a lap joint; (b) bearing stress is not constant;
(c) bearing stress caused by the bearing force P, is assumed to be

uniform on projected area t d.

Example 4:

The lap joint shown in the figure is fastened by four rivets of 19 mm diameter.

Find the maximum load P that can be applied if the working stresses are 96 MPa

for shear in the rivet and 124 MPa for bearing in the plate.

Solution:

l’ 190 mﬁ:

- 2,

We will calculate P using each of the two design

criteria. The largest safe load will be the smaller of

N
9/

the two values. The FBD is shown of the lower

plate. This cut exposes the shear forces V that act

P
FBD N

on the cross sections of the rivets. We see that the

equilibrium condition is V =P/4.
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Design for Shear Stress in Rivets
The value of P that would cause the shear stress in the rivets to reach its working

value is found as follows:

14
T=-
A
6 P/4
96 x 10> = 2(19x1073)2
P=108.8 kN

Design for Bearing Stress in Plate

The shear force V =P/4 that acts on the cross section of one rivet is equal to the
bearing force P, due to the contact between the rivet and the plate. The value of
P that would cause the bearing stress is,

— Pb

Op = A—b

Therefore, P, = 0, t d

2= (124 x 109)(22 x 1073)(19 x 1073)
P =207.3kN

Choose the Correct Answer
Comparing the above solutions, we conclude that the maximum safe load P that

can be applied to the lap joint is
P=108.8 kN Answer

with the shear stress in the rivets being the governing design criterion.
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Strain
If a bar is subjected to a direct load, the bar will change in length. If the bar has a

length L and changes in length by 4L, the strain produced is defined as

change in length

train =
Stram orginal length

Stress — Strain Diagram
The strength of material is not the only criterion that must be considered in

designing structures the stiffness of material is frequently of equal importance.

Elastic
L |
I i
e —————— Partialiy piastic — ———H, Test
£ ! specimen
I B 5
i " F Circular —

Gauge
tength

cross-section

Load or stress

Extension or stramn

If a specimen of structural steel is gripped between the jaws of testing machine
and the unit load or stress was plotted against unit elongation (or strain). The

resulted diagram shown is called a stress-strain diagram.
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Notes:

1. The material behaves elastically till elastic limit B.

2. Point Aiis called proportionality limit where stress is proportional to strain.
3. The material beyond elastic limit is plastically deformed.

4. C s called upper yield point, and D is the lower yield point.

5. E is where the ultimate stress occur, in this point necking occur.

6. F is the fracture point.

Discussion

Stress o

' )
Stroin = | Strain e

0% Per manent ‘set’

Hooke’s Law
A material is said to be elastic if it returns to its original, unloaded dimension,
when load is removed. In most engineering materials this elastic behavior is

linear, i.e. the stress is directly proportional with strain, Hooke’s law states that:
Stress (o) « Strain (g)

Therefore,
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stress
— = constant
strain
o=Ee¢

where E is called the modulus of elasticity or Young's modulus.

Note: In most common engineering applications strain is rarely exceeded 0.001
or 0.1%.

. F 5
o =Es, smceazz and €=

__FL
AE

Poisson's Ratio

When a specimen subjected to axial tensile loading a reduction or lateral
contraction induces to the specimen's cross-sectional area. Similarly, a
contraction owing to an axial compressive load is accompanied by a lateral
extension. In the linearly elastic region, it is found experimentally that lateral
strains, say in the y and z directions, are related by a constant of proportionality,

v, to the axial strain caused by uniaxial stress only ¢,, = a,./E , in the x direction:
&y =& = —y = (6)
Alternatively, the definition of v may be stated as

lateral strain (7)
axial strain

Here v is known as Poisson's ratio, after S. D. Poisson (1781-1840). The values
of Poisson's ratio are 0.25 to 0.35 for most metals. Extreme cases range from a

low of 0.1 (for some concretes) to a high of 0.5 (for rubber).
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Hooke’s Law in Shear

Shear stress causes the deformation shown in the
figure. The lengths of the sides of the element do not
change, but the element undergoes a distortion from
a rectangle to a parallelogram. The shear strain,
which measures the amount of distortion, is the angle
v (lowercase Greek gamma), always expressed in

Initial shape
Deformed shape

radians. It can be shown that the relationship between shear stress t and shear
strain vy is linear within the elastic range; that is,

T=GYy
which is Hooke’s law for shear. The material constant G is called the shear

modulus of elasticity (or simply shear modulus), or the modulus of rigidity. The
shear modulus has the same units as the modulus of elasticity (Pa).

Sample Problem 2.2

The cross section of the 10-m-long flat steel bar AB has a constant thickness of
20 mm, but its width varies as shown in the figure. Calculate the elongation of the
bar due to the 100-kN axial load. Use E = 200 GPa for steel.

120 mm
40 mm Area= A
) 1 ‘{—_—T_L
IOKN=—" et 100 KN
_T— A — B_T_
]
L=10m

Solution

Equilibrium requires that the internal axial force P = 100 kN is constant along the
entire length of the bar. However, the cross-sectional area A of the bar varies with
the x-coordinate, so that the elongation of the bar must be computed from Eq. (2.7).

We start by determining A as a function of x. The cross-sectional areas at A
and B are A4 =20 x 40 = 800 mm? and A = 20 x 120 = 2400 mm?. Between A
and B the cross-sectional area is a linear function of x:

X

A= Ag+(Ap — Ax)] = 800 mm” + (1600 mm2]%
Converting the areas from mm? to m? and substituting L = 10 m, we get
A = (800 + 160x) x 107% m? {a)

Substituting Eq. (a) together with P =100 % 10* N and E =200 x 10* Pa into
Eq. (2.7), we obtain for the elongation of the rod

d:JLP 100 x 103

10 m
—dx = h
o EAT L (200 x 10%)[(80D + 160x) x 10-6]

om o gy 0.5 0
=05 L 307 160 = Tgo (800 + 160x)]g

0.5 2400 _3
_ﬁlnm_ltﬂx 107° m =3.43 mm Answer
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THERMAL DEFORMATIONS AND STRESSES

Introduction

It is well known that changes in temperature cause dimensional changes in a
body: An increase in temperature results in expansion, whereas a temperature
decrease produces contraction. This deformation is isotropic (the same in every
direction) and proportional to the temperature change. The strain caused by
temperature change (°C) is denoted by a and is called the coefficient of thermal
expansion. Thermal strain caused by a uniform increase in temperature A7 is

& = alAT

and
8, = a(AT)L

where «a is the coefficient of thermal expansion.

Example 1:
A steel rod of length L and uniform cross sectional area A is secured between

two walls, as shown in the figure. Use L=1.5m, E=200 GPa, a =
11.7 x 107° /°C and AT = 80 °C. Calculate the stress for a temperature
increase of AT for:

a) The walls are fixed.
b) The walls move apart a distance 0.5mm.

L
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Solution:

a) 6,y — 6 =0

RL
a(AT)L — — = 0 s |

Mednal npneerng besertmert

. R=AE o (4T)

o= % = Ea(AT)

=200 x 10° x 11.7 X 107® x 80 = 187.2 MPa (Answer)

L

I

b) 6¢n — 6g = 6y

aryL =Rk s
R=AE (a AT -2

L
The compressive stress is then,

o =2=E (aaT - 2*)

= 200 x 10° (11.7 x 1076 x 80 —

0.5x1073

) = 120.52 MPa (Answer)

Example 2:
A rigid block having a mass 5 Mg is supported by three rods symmetrically

placed, as shown in the figure. Determine the stress in each rod after a
temperature rise of 40 °C. Use E<=200 GPa, as=11.7 pm/m-°C, As=500 mm?,
Ex=83 GPa, ap=18. 9 um/m-°C, and A,=900 mm?.
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E— g E—
=
— p% —
L=05m| & 8 L=05m
7] |70
L=1m
W= 5000x9.81
Solution:
|—— ] (:} | =———1
Initial
level
________ | P AL S | i
IR H ©pbr ‘ _H_
[l ©6p) Final i
Ly ors U yOpy level Il
I;st Pbr ]L‘Pst
Deformation

Sths + SPS = 6thb + 6Pb

PgtLg
ASES

PprLp
ApEp

as(AT)L + =2 = g, (AT)L, +

PStXO.S

11.7 x 107 x 40 x 0.5 + =
500x10~6x200x10°

Simplifying the above equation,

=189x107°x40x 1+

PpyX1
900x1076x83x10°

P, —2.6P,, =104 x 103N 1)
Statics (Free Body Diagram, F.B.D)
2P, + P, = 5000 x 9.81 = 49.05 x 103 N (2)
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Solving equation (1) and (2),

P;; = 37.0kN and P,,, = —25 KN (compression)

Stresses
F P 37x103
o = —,hence o, =-L=—""—"—=74MPa (Answer)
A Ag 500%x10~6
P 25%103
op =~ =———=278MPa (Answer)
Ap  900%10
Example 3:

For assembly shown in the figure. Determine the stress in each of the two vertical
rods if the temperature rises 40 °C after the load P=50 kN is applied. Neglect the

deformation and mass of the horizontal bar AB. Use E,=70 GPa, o;=23.0

um/m-°C, A;=900 mm?, E=200 GPa, as=11.7 pm/m-°C and A;=600 mm?,

(o)
( ]
Aluminum Steel
3m 4m
A
= S o 8
7777 3m 3m 3m

Solution:

YM,=0. 50x103X9—F X6—F,x3=0

2F, + F, = 150 x 103 (1)
: 2 2
o--_ oTs or B
‘ e S R
T - ¥ 50 kN

Ss &g
6 3
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FsLg FoLg
as(AT)Lg + =2(a,(AT)L, +
AgEs AqE,

11.7 X 1076 X 40 X 4 + o e
600x107°x200x10

2(23><10—6><4o><3+ Fox3 )
900Xx10~6x70x10°

F, —2.857F, = 109.44 kN (2)
Solve (1) and (2) for F, and F,,
F, =80.4kNand F, = —10.17 kN

Stresses

F. 80.4x103
0 =— = — = 11.3 MPa (Answer)
Ag 600Xx10

__ Fg _ 10.17x103

= 00w10=% = 134 MPa (Answer)

Example 4:

A rod is composed of three segments, as shown in the figure. Compute the stress

induced in each material by a temperature drop 30 °C if (a) the walls are rigid and
(b) the walls spring together by 0.3mm. Assume E,=70 GPa, a,=23.0 um/m-°C,
A,=1200 mm?, Ep=83 GPa, ap=18.9um/m-°C, A,=2400 mm? E.=200 GPa,
as=11.7 pm/m-°C and A;=600 mm?,

e 800 mm —l< 500mm _ 400 mm,_ P
7 7
7 [
7 —
:..-_-: Bronze Aluminum Steel é
A A=2400 mm? A=1200 mm2  A=600 mm?
E=83 GPa E=70 GPa E=200 GPa

Solution

a) X(6; +6p) =0
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F %x0.8
9x107°%x%x30x0.8—
18.9x 10 3008 2400 x 107 x 83 x 10°

Fx05 +11.7x 1076 x 30 X 0.4
1200 x 10~ x 70 x 10° ' '
Fx04

T 600 x 10-6 X 200 x 10°

+ 23 x107° % 30 x 0.5

0

F=70.592 kN
Stresses
x 3
0, == =220 = 117.65MPa  (Answer)
S N 3
o, = Z_a - % =58.82MPa  (Answer)
a 3
op =2 =" = 2941MPa (Answer)
b

b) S8y + 8p) = 0.3 x 1073

F*0.8

5700 X 10683 x 109 T 23 X 107°x 30 % 0.5

18.9 x 107 x 30 X 0.8 —

F x0.5
~ 300 X 05 705 Tos T 117 % 107° x 30 x 0.4
F x 0.4 _
TG00 x 106 x200x 100~ 03 * 10 ’
F=49.15KN
Stresses

3
=5 D% _g191MPa  (Answer)

O. = =
S A 600x1076
F, 49.15x103
o, =—= — = 40.95 MPa (Answer)
Ag  1200%10

3
=5 DIV _ 5047 MPa (Answer)

0. = =
b™ A, 7 2400x10

Example 5:
A rigid horizontal bar of negligible mass is connected to two rods as shown in the

figure. If the system is initially stress-free; determine the temperature change that
will cause a tensile stress of 60 MPa in the steel rod. Assume Es=200 GPa,

as=11.7 um/m-°C and As=900 mm?, E,=83 GPa, 0,,=18.9um/m-°C, A,=1200 mm?,
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[

Steel
3m
. 2m 3m
Aﬁ]}) @ O B
Bronze
2m
Solution
Os = Z_s - F, = Ago;
Statics
Y>M, =0: F,#5=F, %2
5
Fp =1F, (1)

Since o, = 60 MPa, then F, = A;o, = 900 X 107® X 60 X 10° = 54 kN,

Use equation (1), F, = 135 kN

Deformation

A E, 2

x 3
18.9% 1076 X AT X 2 4+ — 22102

1200x10"°x83%x10°

;(11.7 X 1076 X AT X 3 +

AT =?

5 E.L
=2 (aS(AT)LS +

S S)
AEs

54x103x3 )
900x107°x200x10°
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=1 9V0 Aiat arals

The following example from:
= BeerF.P., Johnston E.R., Mechanics of Materials, McGraw-Hill, New York,
2012.

(@ =]

I(—‘
o —

\komﬁrosmj SAMPLE PROBLEM 2.4 —
=8

The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-
dldmetet brass cylinder BD. A 22-mm-diameter steel rod AC passes through
a hole in the bar and is secured by a nut which is snugly fitted when the
temperature of the entire <lssemblv is 20°C. The temperature of the brass
cylinder is then raised to 50°C w. hile the steel rod remains at 20°C. Assum-
ing that no stresses were present before the temperature change, determine
the stress in the cylinder.

0.9 m

Rod AC:  Steel Cylinder BD:  Brass
¥ A E = 200 GPa E = 105 GPa
a=11.7 X 107%°C a = 20.9 X 107%°C

SOLUTION

Statics. Considering the free body of the entire assembly, we write
+YE Mg = 0: Ruy(0.75m) — Rg(0.3m) =0 R, = 04Ry (1)

Deformations. We use the method of superposition, considering Ry as
redundant. With the support at B removed, the temperature rise of the cylinder
causes point B to move down through &;. The reaction Ry must cause a deflec-
tion 8; equal to &7 so that the final deflection of B will be zero (Fig. 3).

0.45 <5 <
F]“b m 0.3 m Deflection ;. Because of a temperature rise of 50° — 20° = 30°C,

the length of the brass cylinder increases by 8r.
8r = L(AT)a = (0.3 m)(30°C)(20.9 % 107%°C) = 188.1 X 10 °m |

Deflection 8. We note that 8, = 0.48¢ and 8, = 8p + 8z/p.
R,L R4(0.9 m)

8¢ = = = 1184 X 10 "R
CTAE T 1a(0.022 m) (200 GPa) a1

8p = 0.408; = 0.4(11.84 X 107°R,) = 4.74 X 107°R, |
RpL Rg(0.3 m)
Os/p = AR 1 PR Ep—
77(0.03 m)~(105 GPa)
We recall from (1) that R, = 0.4Rz and write
8, = 8p + 8pp = [4.74(0.4R) + 4.04R5]107° = 594 X 10°Ry 1
But 8; = &;: 188.1 X 107 °m = 5.94 X 10" Ry Rz = 31.TkN
Rj 31.7 kN

Stress in Cylinder: ¢y, =—=-—"""—"— o5 =448 MPa
Y P $7(0.03 m)? !

= 404 X 10™R; ]
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TORSION OF CIRCULAR SHAFT

Introduction

In many engineering applications, members are required to carry torsional loads.
In this lecture, we consider the torsion of circular shafts. Because a circular cross
section is an efficient shape for resisting torsional loads, circular shafts are
commonly used to transmit power in rotating machinery. Derivation of the
equations used in the analysis follows these steps:

= Make simplifying assumptions about the deformation based on
experimental evidence.

= Determine the strains that are geometrically compatible with the assumed
deformations.

= Use Hooke’s law to express the equations of compatibility in terms of
stresses.

= Derive the equations of equilibrium. (These equations provide the
relationships between the stresses and the applied loads.)

Torsion of Circular Shafts

Consider the solid circular shaft, shown in the Figure 2.1, and subjected to a
torque T at the end of the shaft. The fiber AB on the outside surface, which is
originally straight, will be twisted into a helix AB’ as the shaft is twist through the
angle 6. During the deformation, the cross sections remain circular (NOT

distorted in any manner) - they remain plane, and the radius r does not change.
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Besides, the length L of the shaft remains constant. Based on these observations,
the following assumptions are made:

= The material is homogeneous, i.e. of uniform elastic properties throughout.

= The material is elastic, following Hooke's law with shear stress
proportional to shear strain.

= The stress does not exceed the elastic limit or limit of proportionality.

= Circular cross sections remain plane (do not warp) and perpendicular to the
axis of the shaft.

= Cross sections do not deform (there is no strain in the plane of the cross
section).

= The distances between cross sections do not change (the axial normal strain
IS zero).

Figure 2.1: Deformation of a circular shaft caused by the torque T.

6; = DE =16 (2)

where the subscript s denotes shear, r is the distance from the origin to any
interested fiber, and @is the angle of twist.

From Figure 2.1,
yL =10
The unit deformation of this fiber is,
y=T=7 (2)

Shear stress can be determined using Hooke’s law as:
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T=Gy=6(%) (3)

Note: since 7 = (GL—Q) r = const.r, therefore, the

conclusion is that the shearing stress at any /

internal fiber varies linearly with the radial
distance from the axis of the shaft.

For the shaft to be in equilibrium, the resultant of the shear stress acting on a cross
section must be equal to the internal torque T acting on that cross section. Figure
2.2 shows a cross section of the shaft containing a differential element of area dA
located at the radial distance r from the axis of the shaft. The shear force acting
onthisareaisdF = T dA, directed perpendicular to the radius. Hence, the torque

of dF about the center O is:

Figure 2.2: The resultant of the shear stress acting on the cross section.

T=[rdF =[rtdA (4)
Substituting equation (3) into equation (4),
T, =|r (%) rdd = % rédA

Since[ r*dA = ], the polar 2" moment of area (or polar moment of inertia) of
the cross section
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Rearranging the above equation,

_TL

0 =
JG

()

where T is the applied torque (N.m), L is length of the shaft (m), G is the shear
modulus (N/m?), J is the polar moment of inertia (m*), and @ is the angle of twist
In radians.

From equations (5) and (3),

or

T=— (6)

Complementary
longitudinal shears

Polar Moment of Inertia

= Solid Shaft
Consider the solid shaft shown, therefore,

R R
J=Jr*dA= [ r?Qnrdr) =2n [ ridr

which yields,
r# T
= 2n[—]R ==-R*
or Figure 2.3: Shaft cross-section
] = md*
32
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= Hollow Shaft
The above procedure can be used for calculating the polar moment of

inertia of the hollow shaft of inner radius R; and outer radius R,,
J =2m [ ridr = 2(RE - R)
or
J =5, (D5 = D)
» Thin-Walled Hollow Shaft
For thin-walled hollow shafts the values of D, and D; may be nearly equal,
and in such cases there can be considerable errors in using the above
equation involving the difference of two large quantities of similar value.

It is therefore convenient to obtain an alternative form of expression for the

polar moment of area. Therefore,
] = fOR 2nrd3dr =Y Qrrdr)r? =Y Ar?

where A = (2m r dr) is the area of each small element of Figure 2.3, i.e. J
is the sum of the Ar? terms for all elements.

If a thin hollow cylinder is therefore considered as just one of these
small elements with its wall thickness t = dr, then

] =Ar?=Qnrrt)r? =2nr3t (approximately)

Notes: The maximum shear stress is found (at the surface of the shaft) by

replacing r by the radius R, for solid shaft, or by R, , for the hollow shaft, as

2T _ 16T :
Tmax = 5 = —5 = solid shaft
2TR 16TD,
T = = — hollow shaft
max — mgR4-r*)  w(DE-D}) f
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Composite Shafts - Series Connection

If two or more shafts of different material, diameter or basic form are connected
together in such a way that each carries the same torque, then the shafts are said
to be connected in series and the composite shaft so produced is therefore termed
series-connected, as shown in Figure 2.4. In such cases the composite shaft
strength is treated by considering each component shaft separately, applying the
torsion theory to each in turn; the composite shaft will therefore be as weak as its
weakest component. If relative dimensions of the various parts are required then
a solution is usually effected by equating the torques in each shaft, e.g. for two

shafts in series

T = GyJ1 64 _ Gy /2 0,

Figure 2.4: “Series connected” shaft - common torque

Composite Shafts - Parallel Connection
If two or more materials are rigidly fixed together such that the applied torque is

shared between them then the composite shaft so formed is said to be connected
in parallel (Figure 2.5).
For parallel connection,
Total Torque T = T, +T, (7)

In this case the angles of twist of each portion are equal and
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ik, _ Tolp (8)
Gi1J1 G2 )2
or

ﬂ _ Gy /1 (2)

Ty  GaJ2\Ly
Thus two equations are obtained in terms of the torques in each part of the
composite shaft and these torques can therefore be determined.

In case of equal lengths, equation (8) becomes

Ty _ G
T, G
\ J

T
Figure 2.5: “Parallel connected” shaft - shared torque.

Power Transmitted by Shafts
If a shaft carries a torque T Newton meters and rotates at o rad/s it will do work
at the rate of
Tw Nm/s (or joule/s).
Now the rate at which a system works is defined as its power, the basic unit of
power being the Watt (1 Watt = 1 Nm/s).
Thus, the power transmitted by the shaft:
= Tw Watts.

Since the Watt is a very small unit of power in engineering terms use is

normally made of S.I. multiples, i.e. kilowatts (kW) or megawatts (MW).
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Examplel:
A solid shaft in a rolling mill transmits 20 kW at 120 r.p.m. Determine the

diameter of the shaft if the shearing stress is not to exceed 40MPa and the

angle of twist is limited to 6° in a length of 3m. Use G=83GPa.
Solution

Power=T o
20x103 = Tx120 2m
X = X X —
60

20x103
T = = 1590 N.m
41t

Since two design conditions have to be satisfied, i.e. strength (stress)

consideration, and rigidity (angle of twist) consideration. The calculations

will be as:
= Based on strength consideration (Tmax = ;LDZ)
20106 = 16x1590
=T

.~ D = 0.0587 = 58.7mm
T . . TL
= Based on rigidity consideration (9 = ]—G)

9= TL
- md!
32

G

T 32x1590x3
© 6O — = 27
180 d*x83x10°

=~ D=0.0465 m=46.5 mm
Therefore, the minimum diameter that satisfy both the strength and rigidity

considerations is D=58.7mm. (Answer)
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Example 2:
A steel shaft with constant diameter of 50 mm is loaded as shown in the figure

by torques applied to gears fastened to it. Using G= 83 GPa, compute in

degrees the relative angle of rotation between gears A and D.

800 N.m
A

1300 N.m
\ 1200N.m

e \S
700 N.m
=%

Solution:
It is convenient to represent the torques as vectors (using the right-hand rule)

on the free body diagram, as shown in the figure.

1300N.m 1200 N.m

800 N.m«— —>p <
D C B

Using the equations of statics (i.e. ), T = 0), the internal torques are:

TAB:7OON.m, TBC:-SOON.m and TCD:800N.m.

—»» 700 N.m
A

(0.05)*
Jag =Jsc =Jep =] = u 32

_\TL _ Taplap | Teclpc | Teplep
HA/D - - . + +
JG  JagG  JpcG  JenG

= ! (700x3 — 500x1.5 + 800x2) = 0.0579 rad.

- 4
m(0.05)% 83x109

~.8ap = 3.32° (Answer)
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Example3:

A compound shaft made of two segments: solid steel and solid aluminum
circular shafts. The compound shaft is built-in at A and B as shown in the
figure. Compute the maximum shearing stress in each shaft. Given
Ga=28GPa, Gy = 83 GPa.

T=1 kN.m
\ Aluminum Steel g
A § 50 mm é B
F::< 3m e 1.5m =é

Solution:

This type of problem is a statically indeterminate problem, where the equation
of statics (or equilibrium) is not enough to solve the problem. Therefore, one
equation will be obtained from statics, and the other from the deformation.

= Statics
T, +T, =T =1000 1)

= Deformation (6, = 6,)

TsLs Tqlq

Since 6, = 6,, then 16 = T , which yield,
Tyx1.5 B T,x3
%x83x109 B WxZleO9
from which,
T, = 1.17T, 2

Solving equation (1) and (2):

T,=461 N.m and T, = 539N.m

= Stresses (r = ?)

. . 16T
The maximum stress occur at the surface, i.e. Tyqx = —
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;= _l6d61
a ™ 7(0.075)3

= 5.57 MPa (Answer)

o = 16+539
S 7 1(0.05)3

= 22.0 MPa (Answer)

Example 4:

The compound shaft, shown in the figure, is attached to rigid supports. For
bronze (AB) d=75mm, G=35GPa, T < 60MPa. For steel (BC), d=50mm,
G=83GPa, T < 80MPa. Determine the ratio of lengths b/a so that each
material will be stressed to its permissible limit, also find the torque T
required.

A T /
A % Bronze Steel g C
N
N_ a L SN 7
Solution:
= For bronze
T,r T, x0.075/2
T, = —— - 60x106 = — /
Jb 35 %(0.075)*
From which
T, = 4970 N.m
For steel
T.r T.x0.05/2
T, =— - 80x10° = ns—/
]S ﬁX(OOS)LL
From which

T, = 1963.5 N.m

Applied torque T=T,, + T, = 6933.6 N.m (Answer)
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From the deformation 6, = 6,,

TsLs _ Tplp _ 1963.5xb . 4970xa
JsGs  JpGp %X(0.05)4x83x109 %x(0.075)4><35><109

From which
(b/a)=1.1856 (Answer)

Example 5:
A compound shaft consisting of an aluminum segment and a steel is acted
upon by two torque as shown in the figure. Determine the maximum
permissible value of T subjected to the following conditions:
T, < 100MPa, t, < 70MPa, and the angle of rotation of the free end limited

to 12°. Use G5, = 83GPa and G, = 28 GPa.

75 mm

‘ T
Aluminum (( :
-
-

Solution:

<— T <«— 2T
Tal=3T T5t=2T

Jo = :—zx(0.05)4 = 6.136x10""m*

SIS

Ju = 3”—2x(o.075)4 =3.106x10"5m*
Tr
For steel (r = 7)

100x106 = _27x0:025

6.136x10~7

Fromwhich, T = 1.23 kN.m
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= For aluminum

3Tx0.075/2

70x10° = L
3.106x10~6

From which, T = 1.93 kNm

= Deformation

w2 TL _ Talg | TLs
0 = =176~ 7 6. T .G
] ]a a ]S S

T 3Tx2 2Tx1.5
12x— =
180 3.106x10~6x28x10°? 6.136x10~7x83x10°?

From which, T=1.64 kKN.m

Therefore, the maximum safe value of torque (T) is T=1.23 KN.m (Answer)

Example 6:
The steel rod fits loosely inside the aluminum sleeve. Both components are
attached to a rigid wall at A and joined together by a pin at B. Because of a
slight misalignment of the pre-drilled holes, the torque T, = 750 N.m was
applied to the steel rod before the pin could be inserted into the holes.
Determine the torque in each component after T, was removed. Use G = 80

GPa for steel and G = 28 GPa for aluminum.

Aluminum — Pin —
_____________ 'ill)_ Ay o Steel
40 mm 1:50 mimn : :
______________ Tr 1 A
BY Ty
3m “!

Solution:

The initial torque T, will cause an initial angle of twist to the steel rod,

_ ToL __ 750%3 _
% = JsGs  25(0.04)4x80x10° 0.1119058 rad.
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When the pin was inserted into the holes with the removal of T,, the system will
stabilize in static equilibrium. This will cause some of the deformation of steel
rod to be recovered, as shown in the figure. This relation may be expressed as,

FiQaLposition

6, =05+ 806,

Tx3 n Tx3
312(0.04)4><80><109 312((0.05)4—(0.04)4)x28x109

0.1119058 =

From which, T = 251.5 N.m (Answer)
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s 1 V0 Aieo ataals

The following example from:
= BeerF.P., Johnston E.R., Mechanics of Materials, McGraw-Hill, New York,
2012.

i SAMPLE PROBLEM 3.5

1
i

| 4 A steel shaft and an aluminum tube are connected to a fixed support and
76 mm 50 mm . . . . . c e
to a rigid disk as shown in the cross section. Knowing that the initial stresses
l are zero, determine the maximum torque Ty, that can be applied to the disk
if the allowable stresses are 120 MPa in the steel shaft and 70 MPa in
500 mm | the aluminum tube. Use G = 77 GPa for steel and G = 27 GPa for
aluminum.

4~ SOLUTION

Statics. Free Body of Disk. Denoting by T the torque exerted by
Ty ) the tube on the disk and by T, the torque exerted by the shalt, we find
E To=T1,+T, 1

Deformations. Since both the tube and the shaft are connected to the
rigid disk, we have

T
]1(*1 fzaz
‘ T,(0.5 m) - T,(0.5 m)
T (2.003 X 10"°m*)(27 GPa)  (0.614 X 10~ ° m*)(77 GPa)
Ty = 0.8747T, (2)

Shearing Stresses. We assume that the requirement T, = 70 MPa
is critical. For the aluminum tube, we have
Taamf1 (70 MPa)(2.003 X 10°° m*)

= = = 3690 N - m
cy 0.038 m

38 mm |

30 mm

by Using Eq. (2), we compute the corresponding value T5 and then find the

A maximum shearing stress in the steel shaft.
Gy = 27GPa ‘

=538 mm)jﬁ— (30 mm)*] T, = 0.8747, = 0.874(3690) = 3225 N - m
= 2003 X107 m Toes (3225 N - m)(0.025 m)
Teios] = =
= 0.614 x 10 % m*

= 131.3 MPa

We note that the allowable steel stress of 120 MPa is exceeded; our assump-

tion was wrong. Thus the maximum torque T, will be obtained by making

Tseel = 120 MPa. We first determine the torque T.

Taeetfo (120 MPa)(0.614 X 107° m*)
cs 0.025 m

Ty = = 2950 N - m

From Eq. (2), we have

2950 N - m = 0.874T, T,=3373N - m

Steel

25 mm— - e Using Eq. (1), we obtain the maximum permissible torque
1~ A
Ji= 5[5 mm)Y] To=T,+T3=233753N-m + 2950 N - m

= 0.614 X 10~ %m? . -
Ty = 6.325kN - m
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TORSION OF THIN-WALLED TUBES

Consider the thin-walled tube subjected to the torque T shown in Figure 1(a). We
assume the tube to be of constant cross section, but the wall thickness t is allowed
to vary within the cross section. The surface that lies midway between the inner
and outer boundaries of the tube is called the middle surface. If t is small
compared to the overall dimensions of the cross section, the shear stress =
induced by torsion can be shown to be almost constant through the wall thickness
of the tube and directed tangent to the middle surface, as shown in Figure 1(b). It
IS convenient to introduce the concept of shear flow q, defined as the shear force

per unit edge length of the middle surface. Thus, the shear flow is

1)

Middle surface
(@)

Figure 1: (a) Thin-walled tube in torsion; (b) shear stress in the wall of the tube;

(c) shear flows on wall element.
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The shear flow is constant throughout the tube, as explained in what follows.
Considering the equilibrium of the element shown in Figure 1(c). In labeling the
shear flows, we assume that g varies in the longitudinal (x) as well as the
circumferential (s) directions. Thus, the terms (dq/dx) dx and (dq/ds) ds
represent the changes in the shear flow over the distances dx and ds, respectively.
The force acting on each side of the element is equal to the shear flow multiplied

by the edge length, resulting in the equilibrium equations

d
YE =0: (q+a—st)dx—qu=0
]
YE =0: (q+£dx)ds—qu=0
which yield Z—Z = z—z = 0, thus proving that the shear flow is constant throughout

the tube.

To relate the shear flow to the applied torque T, consider the cross section of
the tube in Figure 2. The shear force acting over the infinitesimal edge length ds
of the middle surface is dP = q ds. The moment of this force about an arbitrary
point O in the cross section is r dP = (q ds) r, where r is the perpendicular
distance of O from the line of action of dP. Equilibrium requires that the sum of

these moments must be equal to the applied torque T; that is,

T=¢ qrds (2)
where the integral is taken over the closed curve formed by the intersection of the

middle surface and the cross section, called the median line.

Median line — ' //
(length = §) Y f/
o /
Area=Ap— 0 ~ /

C=

Figure 2: Calculating the torque T on the cross section of the tube.
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Since q is constant, equation (2) can be written as T = qgﬁs rds. From

Figure 2 it can be seen that dA, = X ds, where dA, is the area of the shaded

T2
triangle. Therefore, gﬁs rds = 24A,, where Ay is the area of the cross section that

Is enclosed by the median line. Consequently, equation (2) becomes
T == 2140 q

from the shear flow is

a=5; 3)

0

The angle of twist of the tube cab found by equating the work done by the
shear stress in the tube to the work of the applied torque T. From Figure 3, the

work done on the element is,

dU = % (force X distance) = % (g ds xydx)
where q ds is the elemental shear force which moves a distance y dx, Figure 3.

Using Hooke’s law, i.e. y = % = q/(Gt), the above equation may be written as,

dU =L ds dx 4)
d
s y_,r’/
dx dPZQdS
v dx

Figure 3: Deformation of element caused by shear flow.
Since g and G are constants and t is independent of x, the work U is obtained from

equation (4) over the middle surface of the tube,

=5k (% Dar=5(% D) ®)
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Conservation of energy requires U to be equal to the work of the applied torque;

that is, U = T 6 /2. Then, using equation (3), equation (5) will be,

(zTTO)Z%(Sﬁs %) - %TQ

from which the angle of twist of the tube is
TL ds
0= 4G A2 (fﬁs T) 6)

If t is constant, we have 955 (ds/t) = S/t, where S is the length of the median

line. Therefore, equation (6) becomes

TLS TLS

6 = = (7)

T 4GAZt 240G

For closed sections which have constant thickness over specified lengths but

varying from one part of the perimeter to another:

0=— (Z+2+2 4 etc.) 8)
4642 \t; ' t,  t3

Thin-Walled Cellular Sections
The above theory may be applied to the solution of problems involving cellular

sections of the type shown in Figure 4.

A T1 B T2 E
— —
T Al T A2 l
N
D C F
Figure 4: Thin-walled cellular section.
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Assume the length CDAB is of constant thickness t; and subjected therefore
to a constant shear stress t1. Similarly, BEFC is of thickness t, and stress . with
BC of thickness t; and stress ta.

Considering the equilibrium of complementary shear stresses on a

longitudinal section at B, it follows that

d1 =42+ q3
or
T1ty = Taty + T3l3 (9)
The total torque for the section is then found as the sum of the torques on the

two cells by application of equation (3) to the two cells and adding the result,

T = quAl + Zquz = Z(TltlAl + thzAz) (10)

The angle of twist will be common to both cells, i.e.,

9 = L (‘5151+1353) _ L (‘5252—‘5353) (11)

T 26 4, 26 4,
where S;, S, and S; are the median line perimeters CDAB, BEFC and BC

respectively.

Note: The negative sign appears in the final term because the shear flow along

BC for this cell opposes that in the remainder of the perimeter.
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Example 1:
A thin-walled member 1.2 m long has the cross-section shown in the figure.

Determine the maximum torque which can be carried by the section if the angle
of twist is limited to 10°. What will be the maximum shear stress when this

maximum torque is applied? For the material of the member G = 80 GN/m?.

{
IOrm'; 1Irnm |
| .
[~ 25 mm: |
Solution:
Now, perimeter of median line = s = (2 x 25 + 27 x 10) mm
= 112.8 mm
area enclosed by median = A = (20 x 25 + 7 x 10?) mm®
= 814.2 mm?®
TLs
F 7), 6=
rom eqn (7)) 3A% Gt
10 x 27 Tx1.2x112.8 x 1073

360  4(814.2 x 106)2 x 80 x 10° x 1 x 10-3
i.e. maximum torque possible,

_ 207 x 4 x 814.2> x 80 x 10°°

T =
360 x 1.2 x 112.8 x 1073
=273 Nm
T
From eqn. (3 ), Tmax = Y

_ 273
T 2x8142x 1076 x 1 x 103

= 168 x 10° = 168 MN/m*

The maximum stress produced is 168 MN/m?.
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Example 2:
The median dimensions of the two cells shown in the cellular section of the figure

below are A; =20 mm x 40 mm and A, = 50 mm x 40 mm with wall thicknesses

ty =2 mm, t; = 1.5 mm and t; = 3 mm. If the section is subjected to a torque of
320 Nm, determine the angle of twist per unit length and the maximum shear
stress set up. The section is constructed from a light alloy with a modulus of
rigidity G = 30 GN/m?2.

ATt B T E
f lfS 2
T Al ‘I AZ l
b ¢ F
Solution:
From egn. (10),
320 = 2(7y X 2 X 20 X 40 + 7, X 1.5 X 50 X 40) x 107° (1)
From egn. (11),
2x30x10°%x6 = m(rlmo +2%20)1073 + 73 x 40 x 1073) (2)
and,
2X30 X 10° X 0 = ————(7,(40 + 2 X 50)107% — 75 X 40 X 107%) (3)
Equating (2) and (3),
40T1 == 281-2 - 28T3 (4)

From eqgn. (9),
2T1 = 1.57:2 + 37:3 (5)
The negative sign indicates that the direction of shear flow in the wall of

thickness ts is reversed from that shown in the figure.
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Solving equations (1), (4) and (5) for t1, 12 and 13,
T, =27.6 MPa, 1, =38.6MPa and 13 =—0.9 MPa

The maximum shear stress present in the section is thus 38.6 MN/m? in the 1.5

mm wall thickness.

From eqgn. (3),

1x103
20X40%x10~6

~ 0 =0.04525 rad.= 2.592°

2x30x10°%x0 = (27.6 x (40 + 2 x 20) — 0.9 x 40)

Some Available Cross-Section

“‘7 120 mm 4""

‘-‘f— 50 mm —>—‘

20 mm

50 mm

‘ P > ‘
20 mm
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The following example from:
= Pytel A., Kiusalaas J., Mechanics of Materials, 2" Edition, Cengage
Learning, Stamford, 2010.

Er Ay

o 19V0 Ai Staals

2 mm

Iz O)
AN SR

O
x>
e

3 rTnm \_@;

Sample Problem 3.7

An aluminum tube, 1.2 m long, has the semicircular cross section shown in the figure.
If stress concentrations at the corners are neglected, determine (1) the torque that
causes a maximum shear stress of 40 MPa, and (2) the corresponding angle of twist
of the tube. Use G = 28 GPa for aluminum.

Solution
Part 1

Because the shear flow is constant in a prismatic tube, the maximum shear stress
occurs in the thinnest part of the wall, which is the semicircular portion with 7 = 2 mm.
Therefore, the shear flow that causes a maximum shear stress of 40 MPa is

q =t = (40 x 10°)(0.002) = 80 x 10° N/m

The cross-sectional area enclosed by the median line is
5 o

1 nr-  n(0.025)"

A0 = '—2_' — —_,,———“

=0.9817 x 1073 m?
which results in the torque—see Eq. (3.8a):

T =2A40q = 2(0.9817 x 1073)(80 x 10%) = 157.07N - m Answer
Part 2

The cross section consists of two parts, labeled (1) and (2) in the figure, each having a
constant thickness. Hence, we can write
ds 1 1 S S
¢ —=—| ds+—| as="2+2
st hls nls, n 5]

where S, and S; are the lengths of the median lines of parts (1) and (2), respectively.
Therefore,

w

5.94

st B 2

+ =

)E(l_s o 2 w(25) 2(25)
S

)

and Eq. (3.9a) yields for the angle of twist
TL % ds 157.07(1.2)

f=r 0 ==
4GAZJs 1 4(28 x 10°)(0.9817 x 10-3)

5 (55.94)

= 0.0977 rad = 5.60 Answer
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THIN WALLED PRESSURE VESSELS

Introduction

A pressure vessel is a pressurized container, often cylindrical or spherical. The
pressure acting on the inner surface is resisted by tensile stresses in the walls of
the vessel. If the wall thickness t is sufficiently small compared to the inner
diameter of the vessel, d;, these stresses are almost uniform throughout the wall
thickness. It can be shown that if (t/d;) < (1/20), the stresses between the
inner and outer surfaces of the wall vary by less than 5%. Thin wall pressure
vessels are widely used in industry for storage and transportation of liquids and

gases when configured as tanks. See Figure 1.

E ) |

Figure 1: Pressure vessels: (a) cylindrical tank, (b) spherical tanks.
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Thin Cylinder under Internal Pressure

When a thin-walled cylinder is subjected to internal pressure, three mutually

perpendicular principal stresses will be set up in the cylinder materials, these
stresses are

1. Circumferential or hoop stress
2. Radial stress
3. Longitudinal stress

Note: a cylinder is consider to be thin when the ratio §< % , Where t is the
thickness and d; is the inner diameter of the cylinder.

Assumptions
= Hoop and longitudinal stress are considered constant along thickness.

= Radial stress is small for thin cylinder assumption and may be neglected.

Figure 1: Thin cylindrical pressure vessel subjected to internal pressure.

Hoop or circumferential stress
Total force on half cylinder= p X projected area = p X (dL)

Total resisting force =20 X tL

d
Hoop stress oy = 2=
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Progecied
area -

Figure 2: Balance of forces along circumferential to find hoop stress.

Longitudinal stress

Total force on the end of cylinder owing to internal pressure = pressure x area,
2

. td
l.e. |4 X T

Area of metal resisting this force=mdt

force_ wd2/4 _pd

SO =
L area mdt 4t

Longitudinal stress g, = 24

4t

— ay -~
- —=]
— D P
2 - d
[ <—— p p—™
— —
— (o] - —

Figure 3: Balance of forces along longitudinal to find longitudinal stress.

Change in dimensions
1- Change in length

The change in length of the cylinder may be determined from the longitudinal
strain,

Longitudinal strain=§ (0, — vay)
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Note: In the above equation the radial stress is neglected because the cylinder is
considered thin.

Change in length= longitudinal strain x original length
= % (o, —voy)L
=% (1-2v)L
2- Change in diameter
Change in diameter = %j (2—-v)

3- Change in internal volume

Change in internal volume = % (5 —-4v)V

Note: v is the Poisson's ratio, as stated before, which is a material property,

defined as v = _(Slateral/glongitudinal)

Thin Spherical Shell under Internal Pressure
Because of the symmetry of the sphere, the stresses set up owing to internal
pressure will be two mutually perpendicular hoop or circumferential stresses of

equal value and a radial stress.

Figure 4: Thin spherical shell subjected to internal pressure.

Note: for% < 2—10 , the spherical vessel is considered thin, and the radial stress, oy,
can be neglected
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Force on half-sphere owing to internal pressure = pressure x projected area

_ md?
P
Resisting force =ay X mdt
wd?
P T = Oy X mdt

- - d
Circumferential or hoop stress= Z—t

Change in internal volume

Change in internal volume:% aA-v)v

Cylindrical Vessel with Hemispherical Ends

a) For the cylindrical portion

d
Hoop stress oy, = 2
2t
and
- - pd
Longitudinal stress o, = -—

Cc

. . . 1
Hoop or circumferential strain = (oye —voy.)

_pd .
C4t.E (Z-v)

b) For the hemispherical ends

_ pd

Hoop stress oy p”
N

. 1
Hoop strain = (oys — VOys)

—prd 1 _
T 4tgE (1-v)

Thus equating the two strains in order that there shall be no distortion of the
junction,

pd pd
2—v) = 1—
wEC VT g1 Y
b _ 1w
te 2-v

Note: for v = 0.3 (steel), z_s == 0.4117
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Hemi-spherical ends

Figure 5: Cylindrical vessel with hemispherical ends

Example 1:
A water tank of 8 m diameter and 12 m high. If the tank is to be completely filled,

determine the thickness of the tank plating if the stress is limited to 40 MPa.

Solution:

The maximum stress in cylindrical pressure vessel occur at hoop

_pd
LAY
Pressure (p)=pgh = 1000 X 9.81 X 12 = 117.72 kPa
6 _ 117.72x103x8
40 x10° = ————
Sot=11.8mm  (Answer) w

Example 2:

The pipe carrying steam at 3.5 MPa has an outer _
diameter of 450 mm and a wall thickness of 10 mm. A % ‘ %
gasket is inserted between the flange at one end of the | ‘
pipe, and a flat plate is used to cap the end. (a) How §+ l ‘
many 40-mm-diameter bolts must be used to hold the = 54_»
cap on if the allowable stress in the bolts is 80 MPa, of T
which 55 MPa is the initial stress? (b) What = ‘

circumferential stress is developed in the pipe?
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Solution:

= Fpoits = N X (OporeAport)

prtD?
- Fyoqm = 4
prtD?
T NOpoitAport
_ pD? _ (3.5x10°%(0.45-0.02)2
- Opoitd? - (80—55)%x106x(0.04)2 =16.2 Use 17 bolts (Answer)
6 —
Oy = pD _ 3.5x10°%(0.45-0.02) _ 753 MPa  (Answen)
2t 2%0.01
Example 3:

The tank, shown in the figure, is fabricated from steel plate. Determine the
minimum thickness of plate which may be used if the stress is limited to 40 MPa

and the internal pressure is 1.5 MPa.

600 mm
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Solution:
Checking for hoop:

p*(600><10_3+2><(400*10_3/2))L

Hoop stress=

2Lt
1.5 x 10° x (0.6 + 0.4)L
40 x 10° =
2Lt
t=0.01875m= 18.75 mm
2(0.4)240.6%0.4
Checking for longitudinal stress: o, = p(4( )" +0.6x )

(rx0.4+2x%0.6)t

1.5 x 106 (% (0.4) + 0.6 X 0.4)

40 x 106 =
(mx04+2x0.6)t

t=5.58 mm

Therefore, the minimum safe thickness is t =18. 75 mm  (Answer)
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