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Basic Concepts




o Rotor dynamics

1Is a  specilalized branch of applied
mechanics concerned with the behavior and
diagnosis of rotating structures. It is commonly
used to analyze the behavior of structures
ranging from jet engines and steam turbines to

auto engines and computer disk storage.




o Rotor

1s a moving component of an mechanical rotating
system 1n the turbine, electric motor, electric
generator, or alternator. Its rotation 1s due to the

produced torque around the rotor's axis.




Bearings

In rotor systems where bearings are far more
flexible than the shaft, it is the bearings which will
have the greatest influence on the motion of the rotor.
Such rotors may be 1dealized as the rigid rotor. It is
assumed that the shaft has no flexibility, and bearings
are assumed to behave as linear springs and dampers,

Body Force
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Aerodynamic
Loading

Couplin
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Couplings

Turbine to Gear box : Most of the manufacturers are
using flexible coupling , the reason might be offset
alignment, High speed (56000-10000rpm) and the
flexible couplings with the distance piece can bare up to
2—3 mm Misalignment.

Gear Box to Generator : Rigid coupling and Flexible
coupling.. a3

In Higher Capacity turbines
, Turbines are Directly

Coupled to Generator at
3000Rpm , so Rigid couplings are used.

Angular and parallel alignment must be more
accurate 1n Rigid coupling shafts than Flexible
couplings.



» Mathematical Model

drive gear- long fly- load
motor box driveshaft  wheel motor
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OND T ECTURE

Calculation of Equivalent Second
Moment of Area for Stepped Shaft




Equivalent inertia technique

An approximate method 1s provided where by the
fundamental natural frequency of a non-uniform cross-
sectional shaft may be determined with reasonable
accuracy.

The essential part of Rayleigh's method is the assumption
of a dynamic deflection curve and the application of the
energy method to determine the fundamental frequency.

If therefore, the resulting deflection curve for a stepped
shaft could be replaced with a uniform shaft, having an
equivalent second moment of area, such that the resulting
deflection i1s not too far removed from the true shape, then
the calculated natural frequency using the approximate
deflected shape will be sufficiently accurate for general
purposes.



Equivalent 274 moment of area for over hanged
rotor

Consider the stepped cantilever as illustrated in Fig.(1). The
cantilever may be sub-divided into divisions equal to the
number of changes in the shaft cross-section, applying to the
right hand side of each section the equivalent static loading
and couple produced by end load (W) The equations for
deflection and slope for a uniform cantilever loaded at one
end are:

Fig.(1a)
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3
Deflection due to an end load= %

2
Deflection due to an end couple = %

2
Slope due to an end load= %

Slope due to an end load= %

Where:
W = applied end load (N)
L = beam length (m)
E = young modulus of the beam material
= second moment of area of a uniform cross-sectioned beam

M = applied end moment



By using eq.1, it is possible to determine the deflections for a stepped shaft
at stations (1), (2) and (3) in fig.1 as follows:

At station (3):

— 3 _ 2
Y; = Deflection = Wils—lp) 4 Wl)@s=Lp)™ eq.2
3E1; 21,

_ _ W(L3—Lz)?* | (WLp)(L3—L3)
65 = Slope = 25, + El, e eq.3

At station (2):

— 3 _ 2
Y, = Deflection = Wilp~la) 4 Wha)WEp=la)” Y34+ 05(L, —L1) cevevennnn.n. eq.4
3E1, 2El,
— 2 —
0, = Slope = Wilp=la)” | Wh)Uply) O3 eereeeennnn. eq.b

2EI, El,

At station (1):

3
Yl == % + YZ + 92[41 ............... eq6



If equations (2 up to 5) are substituted into eq.6 , then expanding the
produced equation and cancelling the identical terms, the equation of
deflection can be written as:

w .3 L3_L3 L.3-L
_ 1 _l_(z 1)_|_(3 2 )| eq.7

C3E| L I I3

6

Consider fig.2 a cantilever with a uniform cross-section, the deflection at

the free end will be expressed as:

After equating eqgs. 7 & 8, the equivalent second moment of inertia for the
stepped shaft will be obtained from the following equation:

I e — T eeeeenenennnnn eq.9 (n =the number of rotor stations)




Equivalent 274 moment of area for the rotor
between two bearing

If the shaft section between the two bearings in fig.(3) 1s now
considered, the initial assumption made for this section of shaft
was at the position where dy/dx = 0 the shaft could be
considered as being encastre, in practice the problem would be
in finding this position. However, provided the loading 1is
spread approximately over the entire shaft system, it would not
be unreasonable to use the center of gravity as the position
where the cantilever may be considered as encastre.

W
AI v F
Y ) Ay
RA > > RB Fig.3




Hence the deflected cantilever can be equated to the deflection
of a simply supported beam with the loading off-set to one side.

Further, by averaging the inertias of the two cantilevers the
equivalent inertia for the complete system may be deduced.

Consider a simply supported beam subjected under load W as
1llustrated in Fig. (3). The reactions R, and Ry can be determined
by taking the algebraic summation of the moments about the
point B and A respectively. Thus:

Ry, =— and Rp = % ............... eq.10

The center of gravity for the simply supported beam shown in
Fig. (3) is at the point of the applied load W.

Hence, relaying on the basic assumption designated previously,
the deflected beam can be considered as two cantilevers being
encastre at the section where the load W 1s applied.



W
A B

Y. /I
a b Fig.4
RA :I RB .

I:
Consider Fig.(4). The deflection of the left cantilever due to an
end load R, 1s:

SN
SN

A

v

_ RAa3

Similarly, the deflection of the Right Cantilever due the end
load Ry 1s:

__ Rpb?

where, I 1s the equivalent second moment of area for the left.
stepped cantilever.
Iz 1s the. equivalent second moment of area for the right
stepped cantilever.



By substituting eqs.10 into eqs. 11 & 12, §, and §, become:

Wha3 Wab?3
3El,p(a+h) 3EI p(a+b)

If fig.(4) 1s again plotted with the lines AC, EG, BD, CB and CGD
as 1llustrated in fig.(5)

A a E b B
& F, = | Fig.5
C TG D

The line EG will represent the deflection of the simply
supported beam at the point E where the load W 1s applied.
Hence from the similarity of the of the two triangles ABC and
EBF, EF can be determined. That 1s:

EF _ EB . __ (EB)(AC)
iR gives , EF = (AB)




Similarly, from the similarity of the triangles GCF and DCB, FG
can be found. Thus:

FG = (Cfggm ..................... eq.15
But AB=CD =AE+EB=a+b
AC =6, and BD = &,
CG=AE=a and GD =EB =b  vvvvevrvvenr.. eq.16

By sub. eq.16 into egs. 14 & 15, EF and FG become:

EF = 1h and FG = PR TR RRERREEY eq.1’7
But EG = EF + FG ................. eq.18
Then;
i adyp
EG = —p + L rtereeeeeeeee eq.19

And from eq.13 and eq.19 , EG becomes:

Wb2a3 Wa?b3
EG =
3El, (a+b)2 ' 3El,g(a+h)?



From eq.9, I; and I_; can be expressed as follows:

a3 b3

IeL — 3 3 and IeR — 3 3\  cccece: eq.2].
an'n _Ln—l an'n _Ln—l
1 In 1 In
a b
Then from eq.21 and eq.20, eq.21 becomes:

_ w 2 nln®—Ly_43 2 A

EG = E(asD)? ’b (Zl . )a +a (21 o )b] .......... eq.22

The deflection of a uniform simply supported beam subjected
under load W can be expressed as follows:
W a?p?
W ™ 3E (a+b)Ig

From equating eqs. 22 and 23 and cancelling the 1dentical terms,
I; can be expressed as follows:

_ (a+b)a’b?
IE — ] nLng_Ln 13 ] nLng_Ln 13 ................... eq24
b2 (a1t ar(zpnsnst)
21 In a 21 In b
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Rayleigh method for estimation of
the fundamental natural frequency
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Rayleigh’s method can be applied to find the fundamental
natural frequency of continuous systems. This method is much
simpler than exact analysis for systems with varying
distributions of mass and stiffness. Although the method 1is
applicable to all continuous systems,
we shall apply 1t only to beams in this section, consider the beam
shown in Fig. (1).

A flx, _;}

4

titti++¢ LTT
3 — ]
< o [-f, ) I
1 - - = X

- X .-| dx |-!— ‘

Fig.(1)

In order to apply Rayleigh s method, we need to derive
expressions for the maximum kinetic and potential energies and
Rayleigh s quotient. The kinetic energy of the beam can pbe
expressed as:



1.1, 1,
T=-[,widm =~ [ w?pA(x)dx .............. eq.1

The maximum kinetic energy can be found by assuming a
harmonic variation w(x,t) = W(x) cos wt :

2 ]
Toax = %fo W2(x) pA(X)dX...ceenennn...... eq.2

The potential energy of the beam Vis the same as the work done in
deforming the beam. By disregarding the work done by the shear
forces, we have

Where M 1s the bending moment given by M = —EI —2

And 6 1s the slope of the deformed beam given by 6 = ™

Thus Eq.(3) can be rewritten as:



V= %fol (EI azw) W dx =%fol El (az—w)z AX ceveeinnannn, eq.4

0x2) 0x2 0x2

Since the maximum value of w(x, t) 1s W(x), the maximum value of
Vis given by

2
Vi = %fol EI (dzw(x)) AX vevvenennnnn., eq.b

dx?

By equating T,,,, to V,,,,, We obtain Rayleigh s quotient:

2
[ d2W (x)
2 _ El fo( dx? ) dx

pA | (f W(x)2dx
Whereas the same formula for lumped rotor system 1is:
w = \/g Yo miW (x);

- 2

0

Where:

m; 1s the mass or load applied at the ith station

W (x); 1s the deflection of the beam at the ith station

g 1s the gravitational acceleration, its unit depends on W(x); units.



Useful formula for beam deflection noting that y(x) = W(x):

Cantilever Beam p P_Tz{gﬂ — %): D<x<a
5 6EI
= a "1 Wx) = 2
A Pa ) ) - =
l—*{ X ,r ! ﬁ{h —a);, a=x<=I|
\
y
Simply Supported Beam P} 5 .
P 22 -xr-bY); O0=x=a

| 6EI
- F = i vy =
| ; } ! ¥(x) Pa(l — x)

r 2Ax —x? —a?); a=x=I
P / t 6EIl | )
¥
.1'!
Fixed-fixed Beam Ph*x*
P 6EH'1‘[3EII —x(3a+b)]; 0=x=a
-— =l i | vy = -
/l 7 ’ IF Ax) Pa*(l — x)* }
—x “ bl — (I — x)(3b + a)|:
- ! . 6EIF ( { )]

!
A
¥



Simply Supported Beam with Overhang

Simply Supported Beam with Overhanging Load
P
- ! :.-i-: a—:—l

1 T

-+

Same as in case of simply supported beam

forO0 =x =ganda =x =1

Ax) =

P
EET"I“E —a)(x-1); I=x=l+c
P
6;;(x2—12); 0=x=I
W) =9 px — 1)
cEll [a(3x = 1) = (x=1%; I=x=l+a
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Flexibility Influence Coefficients
Matrix and Stiffness Matrix




Development of the stiffness matrix using stiffness influence

coefficients 1s straight-forward. For mechanical systems, the
calculation of stiffness influence coefficients requires the
application of the principles of statics and little algebra.

However, the calculation of a column of stiffness influence
coefficients for a structural system modeled with (n) degrees of
freedom requires the solution of (n) simultaneous equations.

This leads to significant computation time for systems with
many degrees of freedom.

Flexibility influence coefficients provide a convenient alternative.
They are easier to calculate than stiffness influence coefficients
for structural systems and the knowledge of them 1s sufficient for
solution of the free-vibration problem.

If the stiffness matrix, K, is nonsingular, then its inverse exists.
The flexibility matrix, A, is defined by



The elements of K are determined by using stiffness influence
coefficients. Analogously, flexibility influence coefficients can be
used to determine A. The flexibility influence coefficient (a;;) 1s
defined as the displacement of the particle whose displacement is
represented by (x;) when a unit load 1s applied to the particle
whose displacement 1s represented by (x;) and no other loading 1is
applied to the system. If (x;) represents an angular coordinate,
then a unit moment 1s applied (see Figure.1).

f1 f- f3
..... ) (P CRISTI A
M |2 M Fig.(1)
Suppose an arbitrary set of concentrated loads {f,f,,....., f,} 1s

applied statically to an nDOF system. The load f; is applied to the
particle whose displacement is represented by (x;) .

Using the definition of flexibility influence coefficients, (x;)“1s
calculated from:



— n
Xj — izlajifi .............. eq2

So, for three d.o.f, eq.2 becomes:

X1 =aq1f1 a2/, +assf;
Xp = Qy1f1 + az2f2 + az3f3

X3 = Qa31f1 + azyf, + aszsf;
And in matrix form:

=|Aaz1 Qazz Qaz3ll|f;,
a3y A3z Azzl|f;

[%] a1 a2 a13] fi

{x}=1lal{f}......c....... eq.3

Where [a] 1s the influence coefficient matrix of flexibility influence
coefficient matrix. And 4 = [a]

Pre-multiply eq.3 by [a] ™1 :

[a]™" {x} = [a] " [al{f}

{fr=lal™t {x}.ccoe....... eq.4

But{f}=1[k]{x}............ eq.5
comparison eq.4 and eq.5 gives: [k] = [a]™! or [a] = [k]™?



Useful formula for beam deflection noting that y(x) = W(x):

Cantilever Beam p P_Tz{gﬂ — %): D<x<a
5 6EI
= a "1 Wx) = 2
A Pa ) ) - =
l—*{ X ,r ! ﬁ{h —a);, a=x<=I|
\
y
Simply Supported Beam P} 5 .
P 22 -xr-bY); O0=x=a

| 6EI
- F = i vy =
| ; } ! ¥(x) Pa(l — x)

r 2Ax —x? —a?); a=x=I
P / t 6EIl | )
¥
.1'!
Fixed-fixed Beam Ph*x*
P 6EH'1‘[3EII —x(3a+b)]; 0=x=a
-— =l i | vy = -
/l 7 ’ IF Ax) Pa*(l — x)* }
—x “ bl — (I — x)(3b + a)|:
- ! . 6EIF ( { )]

!
A
¥



Simply Supported Beam with Overhang

Simply Supported Beam with Overhanging Load
P
- ! :.-i-: a—:—l

1 T

-+

Same as in case of simply supported beam

forO0 =x =ganda =x =1

Ax) =

P
EET"I“E —a)(x-1); I=x=l+c
P
6;;(x2—12); 0=x=I
W) =9 px — 1)
cEll [a(3x = 1) = (x=1%; I=x=l+a
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Eigen Values n Eigen Vectors
for the Rotor



for the free vibration of the undamped system of several degrees
of freedom, the equations of motion expressed in matrix form

become:

IM{x}+ [K|[{x} = {0} .ccevrr......o. eq.1l
Where
myp My
= = mass matrix (a square matrix)
Mp1 My Mnn
ki1 ki
K=]|: = stif fness matrix (a square matrix)
knl an knn
(xl\
X2

X = > = displacement vector (a column matrix)

\ X1, J



If we pre-multiply eq.1 by M~1, we obtain the following terms:
M~M = (a unit matrix)
M~1K = D (a system matrix)
and
IX+DX=0 .eveeeenann.n.. eq.2

The matrix D is referred to as the system matrix, or the dynamic
matrix since the dynamic properties of the system are defined by
this matrix.

Assuming harmonic motion X = —AX, where 1=w?, eq.2
becomes:

ID—AI{X}=0 ..cevnnen.... eq.3
The characteristic equation of the system 1s the determinant

equated to zero, or
ID—AI| =0 ...uu......... eq.4

The roots A; of the characteristics equation are called
eigenvalues, and the natural frequencies of the system axe
determined from them by the relationship:



By substituting 4; into the matrix equation, eq.3 , we obtain the
corresponding mode shape X; which 1s called the eigenvector.
Thus for an n-degrees of freedom system, there will be n
elgenvalues and n eigenvectors.

It 1s also possible to find the eigenvectors from the adjoint matrix
of the system. If for conciseness, we make the abbreviation
B = D — AI and start with definition of the inverse

B~1 =ﬁaij .............. eq.6
We can pre-multiply by |B|B to obtain: |B|] = B adj B

Or 1n terms of the original expression for B
|D — AI|I =D — Alladj[D — AI] ................. eq.7

If now we let A = A, , an eigenvalue, then the determinant on the
left side of the equation is zero and we obtain:

0] = [D — Adladj|D — A0 eeeeennen..n..... eq.8



The above equation is valid for all A; and represents n equations
for the n-degrees of freedom system. Comparing eq.8 with eq.3
for the 1*h mode

D — A {X}, =0

We recognize that the adjoint matrix, adj[D — A;I] , must consist
of columns, each of which is the eigenvector X; (multiplied by an
arbitrary constant).

The chosen column which represents the eigenvector for the
eigenvalue under consideration must satisfy the following
conditions:

1- The chosen column must satisfy the shape of the mode shape
under consideration.

2- The chosen column must contain the highest no. of unity.



Finding of Adj [A] [1 > 3]

Solution: First find the cofactor of each element.

4 5

Ay = =24 Ap =— =5 Apg= = —4
Y ‘u E‘ 1 ‘1 ﬁ‘ b As ‘1 u‘
2 3 1 3 1 2
# ‘u 5‘ = ‘1 5‘ ’ = ‘1 u‘
2 3 1 3 1 2
As ‘4 5‘ Ax ‘u 5‘ Ass ‘u 4‘

As a result the cofactor matrix of A 15

24 5 —4
-12 3 2
-2 -5 4

Finally the adjugate of A 1s the franspose of the cofactor matrix:

24 -12 -2
5 3 -5
-4 2 4
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Dunkerley’s Method to Find the
15t Natural Frequency



Dunkerley’s formula gives the approximate value of the
fundamental frequency of a composite system in terms of the
natural frequencies of its component parts. It 1s derived by
making use of the fact that the higher natural frequencies of most
vibratory systems are large compared to their fundamental
frequencies.

To derive Dunkerley’s formula, consider a general n-degree-of-
freedom system whose eigenvalues can be determined by solving
the frequency equation:

Or

For a lumped-mass system with a diagonal mass matrix, Eq.1

becomes,
1 0 O aip A2 aiz3l[my O 0
—— 0 1 0]+ ]%1 Az azs“ 0 my O] = {0}
“lo 0 1 az; A3z Azl 0 0 mg



That 1s :-

(__ + a;1my) a12m2 aizms
a21m1 (_ + azzmz) a23m3 — O ......... eq.2
1
az;My A3,m,; (== + azsms)

The expansion of Eq.2 leads to:

(L)g — (a;ymy + ayom, + azzms) (ﬁ)z + o =0 cverrenennnn eq.3

w2

. . . . . 1
This 1s a polynomaial equatlon of ntt degree in (E) Let the roots of
Eq.3 be denoted (wl2 : !
1

(1)22

9w2




2
Equating the coefficient of (i) in Eqgs.3 and 4 gives:

w2

1 1

1
+ + =AMy +a,,My + A32M2 eevvvnnrnnnn... eq.o
w12 w2 w32 117771 227102 3371%3

In most cases, the higher frequencies w,,w; are considerably
larger than the fundamental frequency w,; and so,

1 e 1
W;2 Nk

Thus, Eq.5 can be approximately written as:

(1)_12 E a11m1 + a22m2 + a33m3 ................ eq.6

This equation 1s known as Dunkerley’s formula. The
fundamental frequency given by Eq.6 will always be smaller
than the exact value. In some cases, 1t will be more convenient fo

rewrite Eq.6 as:



1 1 1 1
=~ —— +

> > S erreseeainn.
w11 Wy W33

W2

where a)llz =1/ aimq = k“/ m, denotes the natural frequency of

a single-degree of freedom system consisting of mass m; and
spring of stiffness k,;.



Example:

Estimate the fundamental natural frequency of a simply supported beam carrying three identical
equally spaced masses, as shown in Fig,

Solution: The flexibility influence coefficients

3 1P

M T oss Er P T a8 EI

Using my = m> = my = m, Eq. 6  thus gives

1 3 1 3 \ml® mil?
— = | = — + = |— = 0.04427 —
(15ﬁ )

w] 48 256 ) ET El
El
wy = 475375 | |—
mi
: : ET
This value can be compared with the exact value of the fundamental frequency, 4.9326 ?
m

m] H"Iz m3

1 1 [
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Iterative Technique to Find the Lower
and Higher Natural Frequency




The iterative technique assumes that the natural frequencies
are distinct and well separated such that w; < w, < - < w,.

The i1teration process to find the fundamental natural
frequency 1s stepped as follows:

1. Selecting a trial vector.
2. Pre-multiply the trial vector by the [a][M].
3. Normalize the resulting column vector, usually by making

one of 1its components equal to unity.

4. The normalized column vector is pre-multiplied by [a][M] to
obtalin a third column vector.

5. Normalize the third vector in the same way as before and
becomes still another trial column vector.

The process 1s repeated until the successive normalized column
vectors converge to a common vector.

The convergence of the process can be explained as follows:



For multiple degrees of freedom with free vibration, the matrix
equation of motion is:

Pre-multiplying eq.1 by [K]!:

(K17 M]{E} + [K]HK{x} =

(K17 M]3+ [IT{x} =0
But [K]™! = [a] then:
[al[M{}}+{x}=0.............. eq.2

If harmonic vibration occurs:



By substituting eq.3 into eq.2:

—w?[a][M]{x}+{x} =0
Or
{x};s1 = w?[a]l[MI{x}; cevvvennnnnn.n. eq.4

Where (1) 1s denotes to the iteration no.

The eq.4 after iteration will converge to the fundamental natural
frequency.



If we want to converge to the higher natural frequency, the
1teration process 1s stepped as follows:

1.
2.
3.

Selecting a trial vector.

Pre-multiply the trial vector by the dynamic matrix [D].
Normalize the resulting column vector, usually by making
one of its components equal to unity.

The normalized column vector 1s pre-multiplied by [D] to
obtain a third column vector.

Normalize the third vector in the same way as before and
becomes still another trial column vector.

The convergence of the process can be explained as follows:

Pre-multiplying eq.1 by [M]~1:



by substituting eq.3 into eq.6:

—w?{x} + [DI{a} = 0
Or

(i1 == D1 e,

w
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Torsional Vibration



The study of torsional vibration of rotors is very important
especially in applications where high power transmission and
high speed are present. Torsional vibrations are predominant
whenever there are large discs on relatively thin shafts (e.g.,
the flywheel of a punch press). Torsional vibrations may original
from the following forces:

(1) Inertia forces of reciprocating mechanisms (e.g., due to
pistons in IC engines),

(i1) Impulsive loads occurring during a normal machine cycle
(e.g., during operations of a punch press),

(i11) Shock loads applied to electrical machinery (such as a
generator line fault followed by fault removal and automatic
closure),

(iv) Torques related to gear mesh frequencies, the turbine blade
and compressor fan passing frequencies, etc.;

(v) A rotor rubs with the stator.



For machines having massive rotors and flexible shafts (where
system natural frequencies of torsional vibrations may be close to,
or within, the source frequency range during normal operation)
torsional vibrations constitute a potential design problem area.

In such cases designers should ensure the accurate prediction of
machine torsional frequencies, and frequencies of any torsional
load fluctuations should not coincide with torsional natural
frequencies. Hence, determination of torsional natural frequencies
of the rotor system is very important and in the present lecture we

shall deal with 1t 1n detail.



A Simple Rotor System with a Single Disc Mass

Consider a rotor system as shown Figure.l. The shaft is
considered as mass-less and it provides torsional stiffness.
The disc 1s considered as rigid and has no flexibility.

If an initial disturbance is given to the disc in the torsional
mode (about its longitudinal or polar axis) and allow it to
oscillate 1its own, 1t will execute free vibrations.

The free oscillation will be simple harmonic motion with a
unique frequency, which 1s called the torsional natural
frequency of the rotor system.

7/ k; Iy
é Ca,é kte( (Ipé

(a) (b)

Figure.1




From the theory of torsion of the shaft (Timoshenko and Young,
1968), we have:
T GJ . nD*
kt - -

Where

k., torsional stiffness "™/, ;)

torque (N.m)

angular displacement (rad)

modulus of rigidity (GPa)

rotor length (m)

rotor diameter (m)

polar second moment of area of the shaft cross-section (m*)

polar mass moment of inertia of the disc (kg. m?)

BN\DNQmﬂ

From the free body diagram of the disc as shown in Figure.1(b),
we have

Z External torque of disc = Ipé

~k0=1,0 or LI+kO=0 .ccoeovrne. eq.2



Equation (6.2) is the equation of motion of the disc for free
torsional vibrations. The free (or natural) vibration has a simple

harmonic motion (SHM). For SHM of the disc, we have
6 =0@sinw,t sothat 6=—-Qw,?sinw,t
and B = -, 20.uncennnnnnn. eq.3

where @ is the amplitude of the torsional vibration, and w,,; is the
torsional natural frequency. On substituting eq.3 into eq.2, we get

_wntzlpg + kte — O
Or (—wn2l, + k)0 =0

But 6 # 0, it gives

— ke _ /ﬂ
a)nt—\/;— Ly T eq.4

which 1s similar to the case of single-DOF spring-mass system in
where the polar mass moment of inertia and the torsional
stiffness replace the mass and the spring stiffness, respectively.



A Two-Disc Torsional Rotor System

A two-disc torsional system 1s shown in Figure.2. In this case
the whole of the rotor is free to rotate as the shaft is mounted on
frictionless bearings. Hence, it is a free-free end condition, and
the application of which can be found in an aircraft when it is
flying and whole structure has torsional vibrations due to
aerodynamic forces.

k

G ——mC

I A Frictionless bearings —* ;

Figure.2 A two-disc torsional system

(01—02)k, (0,—0,)k,
él’ 91 C C C Céz, 02
- ]pl — ng
(a) Disc 1 (b) Disc 2

Figure.3 Free body diagrams of discs



From the free body diagram of discs as shown in Figure.3, we
have

z External torque of disc = Iplél , —(0, — 0,)k; = Iplél
Iplél +(01 _Hz)kt — O ................ eq.5
And
z External torque of disc =1, 6, , —(0, — 01)k = I, 6,
Ipzéz +(92 _Hl)kt — O ................ eq.6

Noting eq.5, eq.6 can be assembled in a matrix form as
L, 0]|(a ke —k ]{9 }
451 1 t t 1
.+ =0
[ 0 ij {92} ke ke 116,

By using eigen value method , we get:

L, +1, )k
=0 and —\/(p1 p2)Ke

wn t1

nt Ipllpz



Equivalent torsional system for stepped shaft

Figure.4 shows a stepped shaft with two large discs at ends
with I, and I, . It 1s assumed that the rotor has free-free

boundary conditions and the polar mass moment of inertia of
shaft 1s negligible as compared to two discs at either ends of the
shaft. ]

P2

Figure.4 Two discs with a stepped shaft

In such cases the actual shaft should be replaced by an
unstepped equivalent shaft for the purpose of the analysis as
follows:



Equivalent torsional geared system

In actual practice, it 1s rare that the rotor system has a single shaft
(with either uniform or stepped cross sections) with multiple discs as
we analyzed 1n previous sections. In some machine the shaft may not
be continuous from one end of the machine to the other, but may
have a gearbox installed at one or more locations. Hence, shafts will
be having different angular velocities as shown in Figure.5. For the
purpose of analysis the geared system must be reduced to system
with a continuous shaft so that they may be analyzed for torsional
vibrations by methods as described in preceding sections.

:_Einion | | Angleof twist :

Shaft 1 \LLEEp . I | 0., =0, |

7771 Angle of twist, 0, : | Equivalent |

6 Disc 1 :

i | w,, 0, | Equivalent |
Disc 1 i |

| \}\1\1 Shaft 2 | \I\I\] | shaft 2 |

| [F47 k, | /77 | . ks |

| o, | 7 w4, 04 e2="2/p2 |

| Gear i o I |

(Gear _ _ _ _ _ Die? ] R

h

Fig.5 (a) Actual geared system (b) An equivalent system
without geared system
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Holzer’s Method



Holzer's method is essentially a trial-and-error scheme to
find the mnatural frequencies of undamped, damped,
semidefinite, fixed, or branched vibrating systems involving

linear and angular displacements.

The method can also be programmed for computer applications.
A trial frequency of the system 1s first assumed, and a
solution 1s found when the assumed frequency satisfies the
constraints of the system. This generally requires several
trials. Depending on the trial frequency used, the fundamental
as well as the higher frequencies of the system can be

determined. The method also gives the mode shapes.



Consider the undamped torsional semidefinite system shown in
Fig.1. The equations of motion of the discs can be derived as

follows:
0
”2
rl k:z m
.- 1]
Shaft 1 kj/ Shaft 2 u
L3
Figure.1
Iplél + ktl (61 — 92) — U tieeeeenccccnns eq.].
Ipzéz + ktl (92 — 61) +kt2 (02 — 83) — U teteecccccnccccnns eq2
Ip3é3 + ktz (93 — 02) L eq.3

Since the motion 1s harmonic 1n a natural mode of vibration, we
assume that § = @sinw,,t in Egs. (1) to (3) and obtain:



w21p191 — ktl(gl - 02) ............... eq4
w21p292 — ktl (92 - 61) +kt2 (02 - 83) .................. eq5
w21p393 —_ ktz (93 — 92) ................ eq.G

Summing these equations gives:

1 A0 = 0., eq.7

Equation(7) states that the sum of the inertia torques of the
semidefinite system must be zero. This equation can be treated as
another form of the frequency equation, and the trial frequency
must satisfy this requirement.

In Holzer's method, a trial frequency w 1s assumed, and 6, 1is
arbitrarily chosen as unity.
Next, 6, 1s computed from Eq.4, and then 65 is found from Egq.5.

Thus we obtain;



2(Ipq+I
Oy = 0, — EBD e eq.10
t1
These values are substituted in Eq.7 to verify whether the
constraint 1s satisfied. If Eq.7 1s not satisfied, a new trial value of is

assumed and the process repeated.

When the calculation 1is M,= M,
repeated with other values of 4
the resulting graph appears as
shown 1n Fig.2.

From this graph, the natural
frequencies of the system can
be i1dentified as the values of 0
w at which M, = 0.

0.19 = 107

LLLL LT,
»

X,

, wy = 1224.7
The amplitudes 6; (1, 2, ..., :
n) corresponding to the _
natural frequencies are the [0.63>10° .
Figure.2

mode shapes of the system.




Example: The arrangement of the compressor, turbine, and
generator in a thermal power plant i1s shown 1n Fig.3. Find the
natural frequencies and mode shapes of the system.

Stiffness, Stiffness,
k. = 4 MN-m/rad k»= 2 MN-m/rad
l_‘_‘_‘_'_""‘---h '_""‘-'—-._.___'
Compressor - Turbine Generator _
I)1=8 kg.m’ I,,=6 kg.m? I,3=4kg.m’
Figure.3

Solution: This system represents an unrestrained or free-free
torsional system. Table.1 shows 1ts parameters and the
sequence of computations. The calculations for the trial

frequencies w = 0, 10, 20, 700 and 710 are 20, 700, shown 1n
this table.



_ Trial Table.1
Parameters
ol the System Quantity 1 2 3 71 72
0 10 20 700 710
w” 0 100 400 490000 504100
Station 1:
I,y =38 0, 1.0 1.0 1.0 1.0 1.0
kyp =4 x10° M, =w’l,0, 0 800 3200 0.392E7 0.403E7
Station 2;
M
I, =6 @, =1 - s:” 1.0 0.9998 0.9992 0.0200 —0.0082
1
kp =2 X10° My =My tw?l,0;, 0 1400 5598 0.398E7 0.401 E7
Station 3:
M
I3 =4 @ =0, - ﬁ’z 1.0 0.9991 0.9964 ~1.9690 —2.0120
Cp2
K;3=0 Mgy = Mp +w?l,30; 0 1800 7192 0.119E6 —0.494E5
'1'he quantity M,; denotes the torque to
the right of Station.3 (generator), which
wa = TS

must be zero at the natural
frequencies. Figure.2 shows the graph
of versus closely spaced trial values of
are used in the vicinity of to obtain
accurate values of the first two flexible
mode shapes, shown in Fig.4. Note that
the value w = 0 corresponds to the rigid
body rotation.
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