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1ST LECTURE

Basic Concepts



 Rotor dynamics
is a specialized branch of applied

mechanics concerned with the behavior and
diagnosis of rotating structures. It is commonly
used to analyze the behavior of structures
ranging from jet engines and steam turbines to
auto engines and computer disk storage.



 Rotor
is a moving component of an mechanical rotating

system in the turbine, electric motor, electric
generator, or alternator. Its rotation is due to the
produced torque around the rotor's axis.



 Bearings
In rotor systems where bearings are far more

flexible than the shaft, it is the bearings which will
have the greatest influence on the motion of the rotor.
Such rotors may be idealized as the rigid rotor. It is
assumed that the shaft has no flexibility, and bearings
are assumed to behave as linear springs and dampers,



 Couplings
Turbine to Gear box : Most of the manufacturers are

using flexible coupling , the reason might be offset
alignment, High speed (5000–10000rpm) and the
flexible couplings with the distance piece can bare up to
2–3 mm Misalignment.
Gear Box to Generator : Rigid coupling and Flexible

coupling..
In Higher Capacity turbines
, Turbines are Directly
Coupled to Generator at
3000Rpm , so Rigid couplings are used.
Angular and parallel alignment must be more

accurate in Rigid coupling shafts than Flexible
couplings.



 Mathematical Model
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2ND LECTURE

Calculation of Equivalent Second 
Moment of Area for Stepped Shaft



An approximate method is provided where by the
fundamental natural frequency of a non-uniform cross-
sectional shaft may be determined with reasonable
accuracy.

The essential part of Rayleigh's method is the assumption
of a dynamic deflection curve and the application of the
energy method to determine the fundamental frequency.

If therefore, the resulting deflection curve for a stepped
shaft could be replaced with a uniform shaft, having an
equivalent second moment of area, such that the resulting
deflection is not too far removed from the true shape, then
the calculated natural frequency using the approximate
deflected shape will be sufficiently accurate for general
purposes.

Equivalent inertia technique



 Equivalent 2nd moment of area for over hanged 
rotor

Consider the stepped cantilever as illustrated in Fig.(1). The
cantilever may be sub-divided into divisions equal to the
number of changes in the shaft cross-section, applying to the
right hand side of each section the equivalent static loading
and couple produced by end load (W) The equations for
deflection and slope for a uniform cantilever loaded at one
end are:
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Deflection due to an end loadൌ ௐయ

ଷாூ

Deflection due to an end couple ൌ ெమ

ଶாூ

Slope due to an end loadൌ ௐమ

ଶாூ

Slope due to an end loadൌ ெ
ாூ

Where:

W = applied end load (N)

L = beam length (m)

E = young modulus of the beam material

I = second moment of area of a uniform cross-sectioned beam

M = applied end moment

eq.1



By using eq.1 , it is possible to determine the deflections for a stepped shaft 
at stations (1) , (2) and (3) in fig.1 as follows:

At station (3):

ଷܻ ൌ ݊݅ݐ݈݂ܿ݁݁ܦ ൌ ௐሺయିమሻయ

ଷாூయ
 ሺௐమሻሺయିమሻమ

ଶாூయ
……………eq.2

ଷߠ ൌ ݈݁ܵ ൌ ௐሺయିమሻమ

ଶாூయ
 ሺௐమሻሺయିమሻ

ாூయ
……………eq.3

At station (2):
ଶܻ ൌ ݊݅ݐ݈݂ܿ݁݁ܦ ൌ ௐሺమିభሻయ

ଷாூమ
 ሺௐభሻሺమିభሻమ

ଶாூమ
 ଷܻ  ଶܮଷሺߠ െ ଵሻܮ ……………eq.4

ଶߠ ൌ ݈݁ܵ ൌ ௐሺమିభሻమ

ଶாூమ
 ሺௐభሻሺమିభሻ

ாூమ
 ଷߠ ……………eq.5

At station (1):

ଵܻ ൌൌ
ௐయ

ଷாூ
 ଶܻ  ଵܮଶߠ ……………eq.6



If equations (2 up to 5) are substituted into eq.6 , then expanding the 
produced equation and cancelling the identical terms, the equation of 
deflection can be written as:

ଵܻ ൌ
ௐ
ଷா

భయ

ூభ
 ሺమయିభ

య
ሻ

ூమ
 ሺయయିమ

య
ሻ

ூయ
………….. eq.7

Consider fig.2 a cantilever with a uniform cross-section, the deflection at 

the free end will be expressed as:

ܻ ൌ
ௐ

య

ଷாூ
………….. eq.8     (்ܮ ൌ ଷሻܮ

After equating eqs. 7 & 8, the equivalent second moment of inertia for the 
stepped shaft will be obtained from the following equation:




య

∑ ಽ
యషಽషభ

య



భ

………....... eq.9  (n = the number of rotor stations)



If the shaft section between the two bearings in fig.(3) is now
considered, the initial assumption made for this section of shaft
was at the position where dy/dx = 0 the shaft could be
considered as being encastre, in practice the problem would be
in finding this position. However, provided the loading is
spread approximately over the entire shaft system, it would not
be unreasonable to use the center of gravity as the position
where the cantilever may be considered as encastre.

 Equivalent 2nd moment of area for the rotor 
between two bearing

W

a b
ࡾ ࡾ

A B

Fig.3



Hence the deflected cantilever can be equated to the deflection
of a simply supported beam with the loading off-set to one side.

Further, by averaging the inertias of the two cantilevers the
equivalent inertia for the complete system may be deduced.

Consider a simply supported beam subjected under load W as
illustrated in Fig. (3). The reactions RA and RB can be determined
by taking the algebraic summation of the moments about the
point B and A respectively. Thus:

ܴ ൌ
ௐ
ା

			ܽ݊݀											ܴ ൌ
ௐ
ା

…………… eq.10

The center of gravity for the simply supported beam shown in
Fig. (3) is at the point of the applied load W.

Hence, relaying on the basic assumption designated previously,
the deflected beam can be considered as two cantilevers being
encastre at the section where the load W is applied.



Consider Fig.(4). The deflection of the left cantilever due to an
end load RA is:

ൌߜ																																								
ோಲయ

ଷாூಽ
…………. eq.11

Similarly, the deflection of the Right Cantilever due the end
load RB is:

ൌߜ																																								
ோಳయ

ଷாூೃ
…………. eq.12

where, IeL is the equivalent second moment of area for the left.
stepped cantilever.
IeR is the. equivalent second moment of area for the right
stepped cantilever.

W
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Fig.4



By substituting eqs.10 into eqs. 11 & 12 , ߜ and ߜ become:

ߜ ൌ
ௐయ

ଷாூಽሺାሻ
ߜ   & ൌ

ௐయ

ଷாூೃሺାሻ
…………… eq.13

If fig.(4) is again plotted with the lines AC, EG, BD, CB and CGD 
as illustrated in fig.(5) 

Ea bA B
F

C DG

Fig.5

The line EG will represent the deflection of the simply
supported beam at the point E where the load W is applied.
Hence from the similarity of the of the two triangles ABC and
EBF, EF can be determined. That is:

ாி

ൌ ா


gives , ܨܧ ൌ ா 


……………. eq.14



Similarly, from the similarity of the triangles GCF and DCB, FG 
can be found. Thus:

ܩܨ ൌ ீ 


………………… eq.15
But ܤܣ ൌ ܦܥ ൌ ܧܣ  ܤܧ ൌ ܽ  ܾ
ܥܣ ൌ ߜ and ܦܤ ൌ 	ߜ
ܩܥ ൌ ܧܣ ൌ ܽ	 and ܦܩ ൌ ܤܧ ൌ ܾ ……………. eq.16

By sub. eq.16 into eqs. 14 & 15 , EF and FG become:

ܨܧ ൌ ఋೌ
ା

and    ܩܨ ൌ ఋ್
ା

…………… eq.17

But ܩܧ ൌ ܨܧ  ܩܨ …………….. eq.18
Then;

ܩܧ ൌ ఋೌ
ା

 ఋ್
ା

…………….. eq.19
And from eq.13 and eq.19 , EG becomes:

ܩܧ ൌ ௐమయ

ଷாூಽሺାሻమ
 ௐమయ

ଷாூೃሺାሻమ
…………….. eq.20



From eq.9 , IeL and IeR can be expressed as follows:

ܫ ൌ
య

∑ ಽ
యషಽషభ

య



భ

ೌ

ோܫ							݀݊ܽ						 ൌ
య

∑ ಽ
యషಽషభ

య



భ

್

	 ……. eq.21

Then from eq.21 and eq.20 , eq.21 becomes:
ܩܧ ൌ ௐ

ଷா ା మ ܾଶ ∑ యିషభయ

ூ

ଵ


 ܽଶ ∑ యିషభయ

ூ

ଵ


………. eq.22

The deflection of a uniform simply supported beam subjected 
under load W can be expressed as follows:

ௐߜ ൌ ௐ
ଷா

మమ

ሺାሻூಶ
……………. eq.23

From equating eqs. 22 and 23 and cancelling the identical terms,
IE can be expressed as follows:

ா
ሺାሻమమ

మ ∑ ಽ
యషಽషభ

య



భ

ೌ
ାమ ∑ ಽ

యషಽషభ
య



భ

್

………………. eq.24
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3RD & 4TH LECTURES 

 

Rayleigh method for estimation of 
the fundamental natural frequency 



Rayleigh’s method can be applied to find the fundamental 

natural frequency of continuous systems. This method is much 

simpler than exact analysis for systems with varying 

distributions of mass and stiffness. Although the method is 

applicable to all continuous systems, 

we shall apply it only to beams in this section, consider the beam 

shown in Fig. (1).  

 

 

 

 

 

 

 

 

In order to apply Rayleigh s method, we need to derive 

expressions for the maximum kinetic and potential energies and 

Rayleigh s quotient. The kinetic energy of the beam can be 

expressed as: 

Fig.(1) 



𝑇 =
1

2
 𝑤 2
𝑙

0
𝑑𝑚 =

1

2
 𝑤 2
𝑙

0
𝜌𝐴(𝑥)𝑑𝑥 ………….. eq.1 

 

The maximum kinetic energy can be found by assuming a 

harmonic variation 𝑤 𝑥, 𝑡 = 𝑊(𝑥) cos𝜔𝑡 : 
 

𝑇𝑚𝑎𝑥 =
𝜔2

2
 𝑊2(𝑥)
𝑙

0
𝜌𝐴(𝑥)𝑑𝑥…………….. eq.2 

 

The potential energy of the beam V is the same as the work done in 

deforming the beam. By disregarding the work done by the shear 

forces, we have 

 

𝑉 =
1

2
 𝑀 𝑑𝜃
𝑙

0
……………. eq.3 

 

Where M is the bending moment given by 𝑀 = −𝐸𝐼
𝑑2𝑤

𝑑𝑥2
 

And 𝜃 is the slope of the deformed beam given by 𝜃 =
𝜕𝑤

𝜕𝑥
  

Thus Eq.(3) can be rewritten as:  



𝑉 =
1

2
 𝐸𝐼

𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑥2
𝑑𝑥 =

𝑙

0

1

2
 𝐸𝐼

𝜕2𝑤

𝜕𝑥2

2

𝑑𝑥
𝑙

0
 …………… eq.4 

 

Since the maximum value of w(x, t) is W(x), the maximum value of 

V is given by 

𝑉𝑚𝑎𝑥 =
1

2
 𝐸𝐼

𝑑2𝑊(𝑥)

𝑑𝑥2

2

𝑑𝑥
𝑙

0
 ………….. eq.5 

 
By equating 𝑇𝑚𝑎𝑥  to 𝑉𝑚𝑎𝑥  we obtain Rayleigh s quotient: 

 

𝜔2 =
𝐸𝐼

𝜌𝐴

 
𝑑2𝑊(𝑥)

𝑑𝑥2

2

𝑑𝑥
𝑙

0

  𝑊(𝑥)2𝑑𝑥
𝑙

0

  ………………. eq.6 

Whereas the same formula for lumped rotor system is: 

𝜔 =
𝑔  𝑚𝑖𝑊(𝑥)𝑖

𝑛
𝑖=1

 𝑚𝑖𝑊(𝑥)𝑖
2𝑛

𝑖=1

 ……………. eq.7 

Where: 

𝑚𝑖  is the mass or load applied at the ith station 

𝑊(𝑥)𝑖 is the deflection of the beam at the ith station 

g is the gravitational acceleration, its unit depends on W(x)i units. 



Useful formula for beam deflection noting that y(x) = W(x): 
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5TH LECTURE 

 

Flexibility Influence Coefficients 
Matrix and Stiffness Matrix 



  Development of the stiffness matrix using stiffness influence 

coefficients is straight-forward. For mechanical systems, the 

calculation of stiffness influence coefficients requires the 

application of the principles of statics and little algebra.  

 

  However, the calculation of a column of stiffness influence 

coefficients for a structural system modeled with (n) degrees of 

freedom requires the solution of (n) simultaneous equations.  

  This leads to significant computation time for systems with 

many degrees of freedom.  

 

 Flexibility influence coefficients provide a convenient alternative. 

They are easier to calculate than stiffness influence coefficients 

for structural systems and the knowledge of them is sufficient for 

solution of the free-vibration problem.  

 

  If the stiffness matrix, K, is nonsingular, then its inverse exists. 

The flexibility matrix, A, is defined by 

 

𝐴 =  𝐾−1  …………….. eq.1 



    The elements of K are determined by using stiffness influence 

coefficients. Analogously, flexibility influence coefficients can be 

used to determine A. The flexibility influence coefficient (aij) is 

defined as the displacement of the particle whose displacement is 

represented by (xi) when a unit load is applied to the particle 

whose displacement is represented by (xj) and no other loading is 

applied to the system. If (xj) represents an angular coordinate, 

then a unit moment is applied (see Figure.1). 

 

 

 

 

 

 

 

  Suppose an arbitrary set of concentrated loads {𝑓1, 𝑓2, … . . , 𝑓𝑛} is 

applied statically to an nDOF system. The load fi is applied to the 

particle whose displacement is represented by (xi) . 

Using the definition of flexibility influence coefficients, (xj) is 

calculated from: 

Fig.(1) 

𝒇1 𝒇2 𝒇3 

𝒙1 𝒙2 𝒙3 



𝑥𝑗 =  𝑎𝑗𝑖𝑓𝑖
𝑛
𝑖=1  ………….. eq.2 

 

So, for three d.o.f , eq.2 becomes: 

𝑥1 = 𝑎11𝑓1 + 𝑎12𝑓2 + 𝑎13𝑓3 
𝑥2 = 𝑎21𝑓1 + 𝑎22𝑓2 + 𝑎23𝑓3 
𝑥3 = 𝑎31𝑓1 + 𝑎32𝑓2 + 𝑎33𝑓3 

And in matrix form: 
𝑥1
𝑥2
𝑥3

=

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

𝑓1
𝑓2
𝑓3

 

𝑥 = 𝑎 𝑓  ………….. eq.3 

 
Where 𝑎  is the influence coefficient matrix of flexibility influence 

coefficient matrix. And 𝐴 = 𝑎  

Pre-multiply eq.3 by 𝑎 −1 : 
 𝑎 −1 𝑥 = 𝑎 −1 𝑎 𝑓  

𝑓 = 𝑎 −1  𝑥  …………. eq.4 

  
But 𝑓 = 𝑘  𝑥  ………… eq.5 

comparison eq.4 and eq.5 gives:  𝑘 = 𝑎 −1  or  𝑎 = 𝑘 −1 



Useful formula for beam deflection noting that y(x) = W(x): 
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6TH LECTURE 

 

Eigen Values and Eigen Vectors 
for the Rotor 



  for the free vibration of the undamped system of several degrees 

of freedom, the equations of motion expressed in matrix form 

become: 

 

𝑀 𝑥 + 𝐾 𝑥 = 0    ……………. eq.1 

 

Where  

𝑀 =

𝑚11 𝑚12 . . .
.
.

𝑚𝑛1 𝑚𝑛2 … 𝑚𝑛𝑛

= 𝑚𝑎𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥  

 

𝐾 =

𝑘11 𝑘12 …

⋮
𝑘𝑛1 𝑘𝑛2 ⋯ 𝑘𝑛𝑛

= 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥  

 

𝑋 =

𝑥1
𝑥2.
..
𝑥𝑛

= 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥  



 If we pre-multiply eq.1 by 𝑀−1, we obtain the following terms: 

𝑀−1𝑀 = 𝐼 𝑎 𝑢𝑛𝑖𝑡 𝑚𝑎𝑡𝑟𝑖𝑥  

𝑀−1𝐾 = 𝐷 𝑎 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑎𝑡𝑟𝑖𝑥  

and 

𝐼𝑋 + 𝐷𝑋 = 0   ……………. eq.2 

 

  The matrix 𝐷 is referred to as the system matrix, or the dynamic 

matrix since the dynamic properties of the system are defined by 

this matrix. 

   Assuming harmonic motion 𝑋 = −𝜆𝑋 , where 𝜆 = 𝜔2 , eq.2 

becomes: 

𝐷 − 𝜆𝐼 𝑋 = 0   …………… eq.3 

The characteristic equation of the system is the determinant 

equated to zero, or 

𝐷 − 𝜆𝐼 = 0  ………….. eq.4 
 

The roots 𝜆𝑖  of the characteristics equation are called 

eigenvalues, and the natural frequencies of the system are 

determined from them by the relationship: 

𝜆𝑖 = 𝜔2
𝑖  …………… eq.5 



  By substituting 𝜆𝑖 into the matrix equation, eq.3 , we obtain the 

corresponding mode shape 𝑋𝑖 which is called the eigenvector. 

Thus for an n-degrees of freedom system, there will be n 

eigenvalues and n eigenvectors. 

  It is also possible to find the eigenvectors from the adjoint matrix 

of the system. If for conciseness, we make the abbreviation 

𝑩 = 𝑫− 𝝀𝑰 and start with definition of the inverse 

 

𝐵−1 =
1

𝐵
𝑎𝑑𝑗 𝐵 ………….. eq.6 

We can pre-multiply by 𝐵 𝐵  to obtain:         𝐵 𝐼 = 𝐵 𝑎𝑑𝑗 𝐵 

 

Or in terms of the original expression for B 

 

𝐷 − 𝜆𝐼 𝐼 = 𝐷 − 𝜆𝐼 𝑎𝑑𝑗 𝐷 − 𝜆𝐼  …………….. eq.7 

 

If now we let 𝜆 = 𝜆𝑖 , an eigenvalue, then the determinant on the 

left side of the equation is zero and we obtain: 

 

0 = 𝐷 − 𝜆𝑖𝐼 𝑎𝑑𝑗 𝐷 − 𝜆𝑖𝐼  …………….. eq.8 

 



The above equation is valid for all 𝜆𝑖 and represents n equations 

for the n-degrees of freedom system. Comparing eq.8 with eq.3 

for the ith mode 

 

𝐷 − 𝜆𝑖𝐼 𝑋 𝑖 = 0 

 

We recognize that the adjoint matrix, 𝑎𝑑𝑗 𝐷 − 𝜆𝑖𝐼  , must consist 

of columns, each of which is the eigenvector 𝑋𝑖 (multiplied by an 

arbitrary constant).  

 

The chosen column which represents the eigenvector for the 

eigenvalue under consideration must satisfy the following 

conditions: 

1- The chosen column must satisfy the shape of the mode shape 

under consideration. 

2- The chosen column must contain the highest no. of unity.     



Finding of  Adj [A] 
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7TH LECTURE 

 

Dunkerley’s Method to Find the 
1st Natural Frequency 



  Dunkerley’s formula gives the approximate value of the 

fundamental frequency of a composite system in terms of the 

natural frequencies of its component parts. It is derived by 

making use of the fact that the higher natural frequencies of most 

vibratory systems are large compared to their fundamental 

frequencies. 

  To derive Dunkerley’s formula, consider a general n-degree-of-

freedom system whose eigenvalues can be determined by solving 

the frequency equation: 

 

− 𝐾 +𝜔2 𝑀 = 0     
Or 

−
1

𝜔2 𝐼 + 𝑎 𝑀 = 0  ……………. eq.1 

 

For a lumped-mass system with a diagonal mass matrix, Eq.1 

becomes, 

−
1

𝜔2

1 0 0
0 1 0
0 0 1

+

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

= 0  



That is :- 

(−
1

𝜔2 + 𝑎11𝑚1) 𝑎12𝑚2 𝑎13𝑚3

𝑎21𝑚1 (−
1

𝜔2 + 𝑎22𝑚2) 𝑎23𝑚3

𝑎31𝑚1 𝑎32𝑚2 (−
1

𝜔2 + 𝑎33𝑚3)

= 0  ……… eq.2 

 

The expansion of Eq.2 leads to: 

 
1

𝜔2

3
− 𝑎11𝑚1 + 𝑎22𝑚2 + 𝑎33𝑚3  

1

𝜔2

2
+ ……… = 0  ………….. eq.3 

 

This is a polynomial equation of nth degree in (
1

𝜔2) Let the roots of 

Eq.3 be denoted (
1

𝜔1
2 , 

1

𝜔2
2 , 

1

𝜔3
2) as: 

 
1

𝜔2 −
1

𝜔1
2  

1

𝜔2 −
1

𝜔2
2  

1

𝜔2 −
1

𝜔3
2 =  

1

𝜔2

3

−
1

𝜔1
2 +

1

𝜔2
2 +

1

𝜔3
2  

1

𝜔2

2
…eq.4 

 



   
Equating the coefficient of 

1

𝜔2

2
in Eqs.3 and 4 gives: 

 
1

𝜔1
2 +

1

𝜔2
2 +

1

𝜔3
2 = 𝑎11𝑚1 + 𝑎22𝑚2 + 𝑎33𝑚3 …………… eq.5 

 

In most cases, the higher frequencies 𝜔2 , 𝜔3  are considerably 

larger than the fundamental frequency 𝜔1 and so, 

 
1

𝜔𝑖
2
<<

1

𝜔1
2
 

Thus, Eq.5 can be approximately written as: 

 
1

𝜔1
2 ≅ 𝑎11𝑚1 + 𝑎22𝑚2 + 𝑎33𝑚3 ……………. eq.6 

 

   This equation is known as Dunkerley’s formula. The 

fundamental frequency given by Eq.6 will always be smaller 

than the exact value. In some cases, it will be more convenient to 

rewrite Eq.6 as: 



1

𝜔1
2
≅

1

𝜔11
2
+

1

𝜔22
2
+ 

1

𝜔33
2
 ………….. eq.7 

 

where 𝜔11
2 = 1

𝑎11𝑚1
 = 𝑘11

𝑚1
  denotes the natural frequency of 

a single-degree of freedom system consisting of mass 𝑚1  and 

spring of stiffness 𝑘11. 



Example: 

6 
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8TH & 9TH LECTURES 

 

Iterative Technique to Find the Lower 

and Higher Natural Frequency 



  The iterative technique assumes that the natural frequencies 

are distinct and well separated such that 𝜔1 < 𝜔2 < ⋯ < 𝜔𝑛 . 
 

  The iteration process to find the fundamental natural 

frequency is stepped as follows: 

 

1. Selecting a trial vector. 

2. Pre-multiply the trial vector by the 𝑎 𝑀 . 

3. Normalize the resulting column vector, usually by making 

one of its components equal to unity.  

4. The normalized column vector is pre-multiplied by 𝑎 𝑀  to 

obtain a third column vector. 

5. Normalize the third vector in the same way as before and 

becomes still another trial column vector.  

 

The process is repeated until the successive normalized column 

vectors converge to a common vector. 

 

The convergence of the process can be explained as follows: 



For multiple degrees of freedom with free vibration, the matrix 

equation of motion is: 

 

𝑀 𝑥 + 𝐾 𝑥 = 0 ………… eq.1 

 

Pre-multiplying eq.1 by 𝐾 −1: 

 

𝐾 −1 𝑀 𝑥 + 𝐾 −1 𝐾 𝑥 = 0 

 

𝐾 −1 𝑀 𝑥 + 𝐼 𝑥 = 0 

 

But 𝐾 −1 = 𝑎  then: 

 

𝑎 𝑀 𝑥 + 𝑥 = 0 ………….. eq.2 

 

If harmonic vibration occurs: 

 

𝑥 = −𝜔2 𝑥  …………… eq.3 

 



   
By substituting eq.3 into eq.2: 

 

−𝜔2 𝑎 𝑀 𝑥 + 𝑥 = 0 

Or 

𝑥 𝑖+1 = 𝜔2 𝑎 𝑀 𝑥 𝑖 ……………. eq.4 

 

Where (i)  is denotes to the iteration no.  

 

The eq.4 after iteration will converge to the fundamental natural 

frequency. 



If we want to converge to the higher natural frequency, the 

iteration process is stepped as follows: 

 

1. Selecting a trial vector. 

2. Pre-multiply the trial vector by the dynamic matrix 𝐷 . 

3. Normalize the resulting column vector, usually by making 

one of its components equal to unity.  

4. The normalized column vector is pre-multiplied by 𝐷  to 

obtain a third column vector. 

5. Normalize the third vector in the same way as before and 

becomes still another trial column vector.  

 

The convergence of the process can be explained as follows: 

  

Pre-multiplying eq.1 by 𝑀 −1: 

 

𝑀 −1 𝑀 𝑥 + 𝑀 −1 𝐾 𝑥 = 0 …………….. eq.5 

 

But 𝐷 = 𝑀 −1 𝐾  

𝐼 𝑥 + 𝐷 𝑥 = 0 ……………. eq.6 



 by substituting eq.3 into eq.6: 

 

−𝜔2 𝑥 + 𝐷 𝑥 = 0 

Or  

𝑥 𝑖+1 =
1

𝜔2
𝐷 𝑥 𝑖 ……………. eq.7 
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10TH , 11TH & 12TH LECTURES 

 

Torsional Vibration 



  The study of torsional vibration of rotors is very important 

especially in applications where high power transmission and 

high speed are present. Torsional vibrations are predominant 

whenever there are large discs on relatively thin shafts (e.g., 

the flywheel of a punch press). Torsional vibrations may original 

from the following forces: 

 

 (i) Inertia forces of reciprocating mechanisms (e.g., due to 

pistons in IC engines),  

 (ii) Impulsive loads occurring during a normal machine cycle 

(e.g., during operations of a punch press),  

 (iii) Shock loads applied to electrical machinery (such as a 

generator line fault followed by fault removal and automatic 

closure),  

 (iv) Torques related to gear mesh frequencies, the turbine blade 

and compressor fan passing frequencies, etc.;  

 (v) A rotor rubs with the stator.  



  For machines having massive rotors and flexible shafts (where 

system natural frequencies of torsional vibrations may be close to, 

or within, the source frequency range during normal operation) 

torsional vibrations constitute a potential design problem area.  

 

   In such cases designers should ensure the accurate prediction of 

machine torsional frequencies, and frequencies of any torsional 

load fluctuations should not coincide with torsional natural 

frequencies. Hence, determination of torsional natural frequencies 

of the rotor system is very important and in the present lecture we 

shall deal with it in detail. 

 



   
A Simple Rotor System with a Single Disc Mass 

 

 Consider a rotor system as shown Figure.1. The shaft is 

considered as mass-less and it provides torsional stiffness. 

The disc is considered as rigid and has no flexibility.  

  If an initial disturbance is given to the disc in the torsional 

mode (about its longitudinal or polar axis) and allow it to 

oscillate its own, it will execute free vibrations. 

  The free oscillation will be simple harmonic motion with a 

unique frequency, which is called the torsional natural 

frequency of the rotor system. 

 

𝑘𝑡 𝐽 

𝜃, 𝜃  𝐼𝑝𝜃  𝑘𝑡𝜃 

Figure.1 

𝐼𝑝 



From the theory of torsion of the shaft (Timoshenko and Young, 

1968), we have: 

𝑘𝑡 =
𝑇

𝜃
=

𝐺𝐽

𝑙
     𝑤𝑖𝑡ℎ  𝐽 =

𝜋𝐷4

32
 …………….. eq.1 

Where 

𝑘𝑡     torsional stiffness (𝑁.𝑚 𝑟𝑎𝑑 ) 
𝑇      torque (𝑁.𝑚) 
𝜃      angular displacement 𝑟𝑎𝑑  

𝐺      modulus of rigidity (𝐺𝑃𝑎) 

𝑙       rotor length (m) 

𝐷      rotor diameter (m) 

𝐽       polar second moment of area of the shaft cross-section (𝑚4) 

𝐼𝑝      polar mass moment of inertia of the disc (𝑘𝑔. 𝑚2) 

 

From the free body diagram of the disc as shown in Figure.1(b), 

we have 

 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑜𝑟𝑞𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐 =𝐼𝑝𝜃  

−𝑘𝑡𝜃 = 𝐼𝑝𝜃      or     𝐼𝑝𝜃 + 𝑘𝑡𝜃 = 0   ……………. eq.2 



Equation (6.2) is the equation of motion of the disc for free 

torsional vibrations. The free (or natural) vibration has a simple 

harmonic motion (SHM). For SHM of the disc, we have 

 

𝜃 = ∅sin 𝜔𝑛𝑡 𝑡      so that     𝜃 = −∅𝜔𝑛𝑡
2 sin 𝜔𝑛𝑡 𝑡    

 

               and           𝜃 = −𝜔𝑛𝑡
2𝜃………….. eq.3 

where ∅ is the amplitude of the torsional vibration, and 𝜔𝑛𝑡 is the 

torsional natural frequency. On substituting eq.3 into eq.2, we get 

 

−𝜔𝑛𝑡
2𝐼𝑝𝜃 + 𝑘𝑡𝜃 = 0 

 

Or                  −𝜔𝑛𝑡
2𝐼𝑝 + 𝑘𝑡 𝜃 = 0 

 

But 𝜃 ≠ 0, it gives 

𝜔𝑛𝑡 =
𝑘𝑡

𝐼𝑝
=

𝐺𝐽

𝑙𝐼𝑝
 …………….. eq.4 

  which is similar to the case of single-DOF spring-mass system in 

where the polar mass moment of inertia and the torsional 

stiffness replace the mass and the spring stiffness, respectively. 



A Two-Disc Torsional Rotor System 

   A two-disc torsional system is shown in Figure.2. In this case 

the whole of the rotor is free to rotate as the shaft is mounted on 

frictionless bearings. Hence, it is a free-free end condition, and 

the application of which can be found in an aircraft when it is 

flying and whole structure has torsional vibrations due to 

aerodynamic forces. 

 

Figure.2 A two-disc torsional system 

𝜃1 𝜃2 

Figure.3 Free body diagrams of discs 

𝜃 1, 𝜃1 𝜃 2, 𝜃2 

(𝜃1−𝜃2)𝑘𝑡 (𝜃2−𝜃1)𝑘𝑡 



From the free body diagram of discs as shown in Figure.3, we 

have 

 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑜𝑟𝑞𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐 = 𝐼𝑝1𝜃
 
1   , −(𝜃1 − 𝜃2)𝑘𝑡 = 𝐼𝑝1𝜃

 
1  

𝐼𝑝1𝜃
 
1  +(𝜃1 −𝜃2)𝑘𝑡 = 0 ……………. eq.5 

And 

 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑜𝑟𝑞𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐 =𝐼𝑝2𝜃
 
2   , −(𝜃2 − 𝜃1)𝑘𝑡 = 𝐼𝑝2𝜃

 
2 

𝐼𝑝2𝜃
 
2  +(𝜃2 −𝜃1)𝑘𝑡 = 0 ……………. eq.6 

 

Noting eq.5, eq.6  can be assembled in a matrix form as 
𝐼𝑝1 0

0 𝐼𝑝2

𝜃 1
𝜃 2

+
𝑘𝑡 −𝑘𝑡
−𝑘𝑡 𝑘𝑡

𝜃1
𝜃2

= 0 

 

By using eigen value method , we get: 

 

𝜔𝑛𝑡1
= 0           𝑎𝑛𝑑      𝜔𝑛𝑡2

=
(𝐼𝑝1 + 𝐼𝑝2)𝑘𝑡

𝐼𝑝1𝐼𝑝2
 



Equivalent torsional system for stepped shaft 

  Figure.4 shows a stepped shaft with two large discs at ends 
with 𝐼𝑝1  and 𝐼𝑝2 . It is assumed that the rotor has free-free 

boundary conditions and the polar mass moment of inertia of 

shaft is negligible as compared to two discs at either ends of the 

shaft. 

 

 

 

 

 

  

   
 

In such cases the actual shaft should be replaced by an 

unstepped equivalent shaft for the purpose of the analysis as 

follows:  

 
1

𝑘𝑡𝑒
=

1

𝑘𝑡1
+

1

𝑘𝑡2
+

1

𝑘𝑡3
 ……………… eq.7 

Figure.4 Two discs with a stepped shaft 



  In actual practice, it is rare that the rotor system has a single shaft 

(with either uniform or stepped cross sections) with multiple discs as 

we analyzed in previous sections. In some machine the shaft may not 

be continuous from one end of the machine to the other, but may 

have a gearbox installed at one or more locations. Hence, shafts will 

be having different angular velocities as shown in Figure.5. For the 

purpose of analysis the geared system must be reduced to system 

with a continuous shaft so that they may be analyzed for torsional 
vibrations by methods as described in preceding sections. 

Equivalent torsional geared system  

Fig. 5 (a) Actual geared system (b) An equivalent system 

without geared system 

𝒏 = 𝜽𝟏
𝜽𝟐
  

𝜽𝟐 

𝝎𝟏, 𝜽𝟏 

𝝎𝟐, 𝜽𝟐 

𝜽𝒆𝟐 = 𝜽𝟏 

𝝎𝟏, 𝜽𝟏 
𝒌𝒆𝟐 =

𝒌𝟐
𝒏𝟐
  

𝑰𝒑𝒆𝟐 =
𝑰𝒑𝟐

𝒏𝟐
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13TH , 14TH & 15TH LECTURES 

 

Holzer’s Method 



  Holzer’s method is essentially a trial-and-error scheme to 

find the natural frequencies of undamped, damped, 

semidefinite, fixed, or branched vibrating systems involving 

linear and angular displacements. 

  

  The method can also be programmed for computer applications. 

A trial frequency of the system is first assumed, and a 

solution is found when the assumed frequency satisfies the 

constraints of the system. This generally requires several 

trials. Depending on the trial frequency used, the fundamental 

as well as the higher frequencies of the system can be 

determined. The method also gives the mode shapes. 

 



  Consider the undamped torsional semidefinite system shown in 

Fig.1. The equations of motion of the discs can be derived as 

follows: 

 

 

 

 

 

 

 

 

 

𝐼𝑝1𝜃 1 + 𝑘𝑡1 𝜃1 − 𝜃2 = 0 …………… eq.1 

𝐼𝑝2𝜃 2 + 𝑘𝑡1 𝜃2 − 𝜃1 +𝑘𝑡2 𝜃2 − 𝜃3 = 0 ……………… eq.2 

𝐼𝑝3𝜃 3 + 𝑘𝑡2 𝜃3 − 𝜃2 = 0 …………….eq.3 

 

Since the motion is harmonic in a natural mode of vibration, we 

assume that 𝜃 = ∅sin𝜔𝑛𝑡 𝑡  in Eqs. (1) to (3) and obtain: 

Figure.1 

𝐼𝑝1 𝐼𝑝2 
𝐼𝑝3 



𝜔2𝐼𝑝1𝜃1 = 𝑘𝑡1 𝜃1 − 𝜃2  …………… eq.4 

𝜔2𝐼𝑝2𝜃2 = 𝑘𝑡1 𝜃2 − 𝜃1 +𝑘𝑡2 𝜃2 − 𝜃3  ……………… eq.5 

𝜔2𝐼𝑝3𝜃3 = 𝑘𝑡2 𝜃3 − 𝜃2  …………….eq.6 

 

Summing these equations gives: 

 𝜔2𝐼𝑝𝑖𝜃𝑖
3
𝑖=1 = 0………………. eq.7 

 

Equation(7) states that the sum of the inertia torques of the 

semidefinite system must be zero. This equation can be treated as 

another form of the frequency equation, and the trial frequency 

must satisfy this requirement. 

 

In Holzer’s method, a trial frequency 𝜔 is assumed, and 𝜃1  is 

arbitrarily chosen as unity. 

Next, 𝜃2 is computed from Eq.4, and then 𝜃3 is found from Eq.5. 

Thus we obtain: 



𝜃1 = 1  …………….. eq.8 

𝜃2 = 𝜃1 −
𝜔2𝐼𝑝1

𝑘𝑡1
 ……………… eq.9 

𝜃3 = 𝜃2 −
𝜔2(𝐼𝑝1+𝐼𝑝2)

𝑘𝑡1
  ………………. eq.10 

These values are substituted in Eq.7 to verify whether the 

constraint is satisfied. If Eq.7 is not satisfied, a new trial value of is 

assumed and the process repeated. 

  When the calculation is 

repeated with other values of 

the resulting graph appears as 

shown in Fig.2.  

  From this graph, the natural 

frequencies of the system can 

be identified as the values of 

𝝎 at which 𝑴𝒕 = 𝟎.    
  The amplitudes 𝜃𝑖 (1, 2, … , 

n) corresponding to the 

natural frequencies are the 

mode shapes of the system. 
Figure.2 



Example: The arrangement of the compressor, turbine, and 

generator in a thermal power plant is shown in Fig.3. Find the 

natural frequencies and mode shapes of the system. 

 

 

 

 

 

 

 

 

 

 

 

Solution: This system represents an unrestrained or free-free 

torsional system. Table.1 shows its parameters and the 

sequence of computations. The calculations for the trial 

frequencies 𝜔 = 0, 10, 20, 700 and 710 are 20, 700, shown in 

this table.  

Figure.3 

𝑰𝒑𝟏=8 kg.m2 𝑰𝒑𝟐=6 kg.m2 𝑰𝒑𝟑=4 kg.m2 



The quantity 𝑀𝑡3 denotes the torque to 

the right of Station.3 (generator), which 

must be zero at the natural 

frequencies. Figure.2 shows the graph 

of versus closely spaced trial values of 

are used in the vicinity of to obtain 

accurate values of the first two flexible 

mode shapes, shown in Fig.4. Note that 

the value 𝜔 = 0 corresponds to the rigid 

body rotation. Figure.4 

Table.1 

𝑰𝒑𝟏  

𝑰𝒑𝟐  

𝑰𝒑𝟑  

𝝎𝟐𝑰𝒑𝟏𝜽𝟏  

𝝎𝟐𝑰𝒑𝟐𝜽𝟐  

𝝎𝟐𝑰𝒑𝟑𝜽𝟑  


	Rotor Dynamics 1st
	Rotor Dynamics 2nd
	Rotor Dynamics 3&4
	Rotor Dynamics 5
	Rotor Dynamics 6
	Rotor Dynamics 7
	Rotor Dynamics 8&9
	Rotor Dynamics 10,11&12
	Rotor Dynamics 13,14&15

