Subject : Programming (|)
Weekly Hours : Theoretical: 1 UNITS: 3

Tutorial:

Experimental : 1

week

1.

10.

11.

12.
13.

14.

Contents

Introduction about (windows)
Mouse

Icons

Desktop

Taskbar
My Computer

Shortcut Keys

Paint

WordPad

Introduction about (word)
Main Window

Page Setting

Text Editting

Font Formatting
Paragraph Formatting
Copy & Paste

Spell Check

Bullets & Numbering
Header & Footer
Page Numbers
Tables

Printing

Introduction about (power Point)

New Presentation
Slides Show
Background
Inserting Objects
Custom Animation
View Show
Printing
Introduction about (Excel)
Worksheet

Table Design
Functions

Format

Chart Type

Cell Name

Data

Introduction about (internet)
Interne Services

Network Classification
Connection Methods
Search Engines

Google

(1) dsen g ase
3: Gl gl 1: ook e sl Cle Ll
358l

1 e
 giaall & o)

(windows) ¢e deite -1
EJ&S\
ey
) s

pleall Loy 5 2
My Computer su
Search &al

ceiflaall s ol) jlaia) 3
Paint sl

WordPad ¢laaiul; de ikl
(Word) ge daia 4
Gadaill dgal

daaall Gilalac)
il a3
Ll Gaus 5
il (st
il slrall Ja3
2Oy (e
(ol 5 (a5l 2wl
dascall Jidg Ll .6
Gladiall a8 53
Jslaall
il delib
(power Point) oe e 7
i e oLl
A a e @)k
oyl dls e .8
daiaia 35); ?_\53“:\
il i jall Aol
(Excel) e 4eiis .10
endl 48

Jsaal) asaais slac)
d‘}ﬂ‘} Yl

Gatill A1
Al o gua
YLl 5 LA dpens
el acld 12
(Internet) ce s 13
i Y Cladd aa)
AE) Cayieas
iYL Juaiyl Gl

Google @34l 14

15.

16.

17.

18.
19.

Programming Languages

Algorithms :

Definition , conversion problem to algorithm
Flowcharting

Symbols , conversion algorithm to flowcharts ,
looping Branching , Nesting

Programming :

Constants and variables , Statements , I/0
Branching , looping and counters , library
Functions , Simple Graphics

Application

Study different application in mechanical
engineering , starting from writing the problem
to writing the program

dae) sl

Dbl sal

L) (I Al Jasas ¢ Ly pas

Al cldalsll)

Al Glaladie () g)l sadl Jysad ¢ sa)ll

R EORN|
Lc\P\g\}JBJY\dAcM\ cLL\\).\a_"mS\JC'_u\)ﬂ\
o ¢ A€l J1sall ¢ clalaall s iy sall ¢ e il

"..” o E

E

5 Ao il Jim 8 i il) 53
el 2 5 e g Alladl) 2SS,

.15
.16

A7

.18
19

Chapter 1 - Introduction to computer

Chapter 1
(Introduction to computer)

A Computer components is divided mainly into :
1 — Hardware
2 — software
1 — Hardware :

a — Input units (I/U)
Examples : Keyboard
Mouse
Microphone.

b — Main memory (Ram)
¢ — Central Processing Unit (CPU)

d — Output Units
Examples : Monitor
Printer
Speakers

E — Secondary memory (input/output units)
Examples : Hard disk
Floppy disk
Flash ram

Chapter 1 - Introduction to computer

OUTPUT
UNITS

INPUT
UNITS
\ 4
| INOUT
p MEMORY * UNITS
A
Y
CPU

Block Diagram For Data Transfer Among
Computer Units

2 — Software

a — Operating system
Examples : Windows

Dos
Unix

b — Compilers
Examples : Visual Basic

Pascal
Fortran

¢ — Packages
Examples : Win word

Photo shop
Computer games

Chapter 2 - Flowchart

Chapter 2
Flowchart

FLOWCHART Symbols

() START
END

INPUT
OUTPUT

PROCESS

DECISSION

CONNECTOR

Chapter 2 - Flowchart

Example 1 : Draw the flow chart to calculate the area of a square rectangle ?

(START)

A 4
Read
Length

A 4

Area= Length

Write
Area

END

Chapter 2 - Flowchart

Example 3 : Draw the flowchart to find the sum of numbers from 1 100

(START)

y
N=1
Sum =0

0 |

Sum = Sum + N
N=N-+1

A 4

NO Yes
@ Write Sum
«— — >

End

Chapter 2 - Flowchart
Example 4 : Draw the flowchart to find the sum of oddnumbers from 1 100

(START)

y
N=1
Sum =0

0 |

Sum = Sum + N
N=N+2

NO Yes
@ Write Sum
«— — >

End

A 4

Chapter 2 - Flowchart

Example 5 : Draw the flowchart to find the sum of even numbers from 1 100

(START)

y
N=0
Sum =0

0 |

Sum = Sum + N
N=N+2

NO Yes
@ Write Sum
«— — >

End

A 4

Chapter 2 - Flowchart
Example 6 : Draw the flowchart to read Sthumber then find the average ?

(START)

y

Counter =0
Sum =0

0 |

Read
Number

A 4

A 4

Sum = Sum + Number
Counter = counter + 1

NO Yes
Write
D E— — ¥ (Sum / 50)

End

Chapter 3 -Running FORTRAN 90 programs

Chapter 3
To write anew FORTRAN program follow the following steps

1 — After executing Fortran 90 compiler the following screen will appear

"= Microsoft Developer Studio - [InfoViewer Topic]
@F\Ie Edit Wiew Insert Build Tools window Help

8| |ed] & |mm@] Sls|ce]] = ma [F
[£ o
% @ Farran PowerSlalion version 4.0 v ta] seeniso~ | b &

+-§ Getting Startad with Fortran PowsrSt
+ @ MS Developer Studio User's Guide f Logical constants
+-§® Progiammer's Guide
+-§® Reference

+ @ Samples

+ e Build Erars Yaour compiler may have non-default logical kinds; these may be used, far example, for staring logical arrays more compactly.
+ e Fortran 90 for Scientists and Enginee
+ @ ReadMe
+ Q Copyright

The default kind of lagical type has twa literal constants: TRUE. and .FALSE. {upper- or lowercase). The value of the default kind
parameter is returned in the usual way, by KIND (| . TRUE.)

< | k3

" @ Infoview

|\ Build 4 Tebug %, Findin Files 4, Profie Tal | v
Ready
‘start. CEGSQo®@Ee@

2 — From File menu select NEW -> PROJECT WORKSPACE -> Console application after entering
the project name then choose Create

“.j Microsoft Developer Studio - [InfoViewer Topic !IE E
[

2| S| - |Rl@| <e|) B ETE]
ez | =1 =m0 | r

@ Forlian PowsrStation version 4.0 4]] seeniso~| te| K|
= @ Getling Started with Fartran PowerSt FILE
& MS Developer Studio User's Guide | | Glossary A
1 &% Programmer's Guide
5 @ Fefuarcs S NAME ~
+eSamples s arment th necifie omn
&% Build Errors . L - - n
1 6 Fortian 90 for Scientists and Enginee | | MACASGARC SIS
@ Readde
1§ Copyright TH Twpe Name: /
~
a B | Cancel
A ms identify the active window by
N Help
A
A o Plattomis: tine ot function reference
Static Library o
Al
Kiwin Applicati
A Huickiin Application = ced or defined after it has space
all Lacation:
Standard Graphics Applice ,—
. v F:AFORTRANLECTY Browse.
Indicates whether an allocatable array or pointer is allocated. An allocation status is ane of allocated, deallocated, or undefined. An
undefined allocation status means an array can no longer be referenced, defined, allocated, or deallocated. See also association
status
< | 3
b P Inkevisw Argument keyword v
|\, Build { Debug 3, Find in Files %, Profie el | v
Ready

sstat CEGQ COeR®ee

]

Chapter 3 -Running FORTRAN 90 programs

3 -The following screen will appear then choose New Source file

"= Microsoft Developer Studio - imadx - [InfoViewer To

@F\Ie Edit Wiew Insert Build Tools Window Help E

Source | |cp] x [E|@] olefc]e] =] 5] e fE
New Source File bdx - Win32 Debug x| B 4] J

New

= B 4| vt Seecalso~ w@
Glossary A
R -
action statement -
A statement that specifies a computational action. L
active screen buffer
The screen buffer that is currently displayed in a console's windaw,
active window
Atop-level window of the application with which the user is working. Windows operating systems identify the active window by
highlighting its title bar and border,
Actual argument
An expression, variable, procedure, or alternate return specifier which is specified in a subroutine or function reference
Allocatable array
Anared array which has the ALLOCATABLE attribute. An array has shape and can be referenced or defined after it has space
allocated to it
Allocation status
Indicates whether an allocatable array or pointer is allocated. An allocation status is one of. allocated, deallocated, or undefined. An
undefined allocation status means an array can no longer be referenced, defined, allocated, or deallocated. See also association
status.
" B Fileview | @ Infoview Arg keyword 2
M herre et P Ve U ¥ TSt e ST e SISV SV USRS WIS PPN Rt Ky S Fy ™
-
Build Debug },_Findin Filss 'y, Profile Tal | v

Creates a new source file

sstat. CFEBQCcOBAW@

4 — Write the source code then
File -> save as -> file name
5 — Compile the source code by choosing
Build - Compile filename
6 — If the source program is error free then execute the program by choosing
Build 2 Execute program name

*., Microsoft Developer Studio - imadx - [p1.190]

File Edit Wiew Insert | Buld Tools Window Help

BEEE e ot | ol gl el [

Build imadx.exe

F2] 2] imads - win32 Rebuild Al Al+FE Foy

Batch Build. .
[imadx files -

Update Al Dependencies. .
Debug »
Execute imadx.exe Chrl+F5
Settings...
Carfigurations. .

Subprojects...
et Default Configuration.

SOURCE
PROGRAM
AREA

" B FileView [Infoview T

———————————Configuration. imads - $in3Z Debug—————————————
Linking
imadx.exe — 0 erroris). 0 warning(s)

|\ Build { Debug % Findin Files 3 Profie T« | v

Lr 4, Col 8

i4 start rfresQ cemae

i i Fortp1 - Mics

Yo

)
2)
3)
4)

Chapter 3 -Running FORTRAN 90 programs

SUMMERY:

To write a program using FORTRAN 90 programming language,
follow the following steps

Create a project workspace. FILE 2> NEW - Project Workspace

Write the source program. (Inside the source program area)
Compile the source program. BUILD - COMPILE
Execute the program. BUILD - EXECUTE

AR

Chapter 4 - Introduction to Programming using FORTRAN 90

CHAPTER 4
Introduction to Programming using

FORTRAN 90

These worksheets aim to provide an introduction to
programming. The language chosen for this module 1is
FORTRAN 90. This 1is Dbecause FORTRAN is particularly
suitable for mathematicians and engineers ; 1t 1s also
very widely available. The skills you acquire working
through these notes can be applied to any computing
language. The concepts you will learn are shared 1in

common with every other computing language.

Contents

THE BASICS

1 AIMS

3 RUNNING YOUR FIRST FORTRAN 90 PROGRAM
.4 PROGRAM STRUCTURE

5 MORE ON INPUT AND OUTPUT

6 MORE DATA TYPES - INTEGER AND CHARACTER
MAKING DECISIONS2.1 AIMS

ASSIGNMENT

ARITHMETIC

INTRINSIC FUNCTIONS

MAKING DECISIONS

PROGRAM STYLE

MORE ON DECISION MAKING2.8 OTHER LOGICAL OPERATORS
MULTIPLE CONDITIONS

N M MM M MMM DMV PR P PR R R R

O J4 o0 U1 b W DN

vy

Chapter 4 - Introduction to Programming using FORTRAN 90
.10 THE SIMPLE IF STATEMENT

.11 IMPORTANT NOTE - TESTING FOR ZERO
LOOPS

AIMS

MIXING VARIABLE TYPES

THE DO LOOP

NESTED DO LOOPS

o b~ W N R

USING LOOPS TO DO SUMMATION
USING FILES AND EXTENDING PRECISION
AIMS

READING FROM FILES

WRITING TO FILES

EXTENDING THE PRECISION

MAGNITUDE LIMITATIONS

o U b W N B

CONVERGENCE - EXITING LOOPS ON A CONDITION
ARRAYS AND FORMATTED I/O

ATIMS

ARRAYS5.3 ARRAY MAGIC

MULTI DIMENSIONAL ARRAYS

FORMATTING YOUR OUTPUT

.1 Integer Specification

.2 Floating point Specification

.3 Exponential Specification

.4 Character Specification

o O o1 n L1 L1 & N R

IMPLIED DO LOOP TO WRITE ARRAYS

SUBROUTINES AND FUNCTIONS

.1 AIMS

.2 RE-USING CODE - THE SUBROUTINE

.3 ARGUMENTS TO SUBROUTINES6.4 USER DEFINED FUNCTIONS
ADVANCED TOPICS7.1 AIMS

NS o0 oo 11O LT LB BB DD BB WWW W W W DD

\A2

Chapter 4 - Introduction to Programming using FORTRAN 90

7.2 ARRAY FUNCTIONS
7.3 WRITING REAL PROGRAMS - FLOW CHARTSDE-BUGGING TIPS

1 The Basics
1.1 Aims
By the end of this worksheet, you will be able to:
Create and run a FORTRAN 90 program
Understand basic program structure
Start to deal with programming errors
Start to understand real, 1integer and character
variable types.
Save a copy of your output in Word.
Always ensure that your program files have a .£90
extension
1.3 Running your first FORTRAN 90 Program

Exercise 1.1

Type in the following exactly as shown:
'My first program
program first
print *,'This is my first program'
end program first

Execute the program

You will get FORTRAN to check your program for errors.
If it finds any problems, it will give you the details.
If you have typed in the program exactly as shown above,
an executable file will be generated (first.exe).

Save your program first!

Ve

Chapter 4 - Introduction to Programming using FORTRAN 90
1.4 Program Structure

Examine the following short program:
program sum !'a: name of program
'an example of program structure !'b: a comment
real :: answer,x,y 'c: declarations
print *, 'Enter two numbers' !'d: output
read *, x l'e: input
read *, y l'e: input
answer=x+y !f :arithmetic
print *, 'The total is ', answer !g: output

end program sum 'h: end of program

There are a number of general points here:
The program 1s made up of a number of lines. Each line
is called a statement.
Each statement 1s made up of
* variable names e.g. answer, X, VY
* oOoperators e.g. +,- etc

* keywords e.g. read, print

The statements are executed sequentially.
Let's break the program down, line by line:
a) The name of the program. Keep it reasonably short and
meaningful.
b) A comment explaining the purpose of the program.
Comments are indicated by an exclamation mark. All text
to the right of an exclamation mark 1s ignored by the
compiler. Programmers use comments to help them remember

how a program works. Use of appropriate comments 1in

Vo

Chapter 4 - Introduction to Programming using FORTRAN 90
programs aids wunderstanding and 1is good practice. You

will get extra marks for using comments!

c) Variables - answer, x and y are used to store floating
point numbers - we 1indicate this by declaring them as
real.

d) print *, outputs to the screen - the asterisk means

use the default number of decimal places when the number
1s written to the screen.

e) We read information from the keyboard and store the
values in x and vy.

f) Do some arithmetic and store the answer in answer.

g) Output the result to the screen

h) Conclude the program

1.5 More on Input and Output

Exercise 1.2
Open a new file and call it 10.£90.
Type in the following program:
program io
real :: x,y,z
print *, 'enter the values x,y and z'
read *, x,y,2z
print *, 'the values you typed are for z,y,x are: ',z,y,x

end program io

Execute it
You can enter the numbers one at a time and press the
Enter key each time.

Execute the program again

1

Chapter 4 - Introduction to Programming using FORTRAN 90

This time type all three numbers on one line separated
by commas.
Look at the print statement
print *, 'the wvalues you typed are for z,y,x are: ',z,y,X
In this statement, we are outputting four separate
things, a literal string of characters, 'the wvalues you
typed are for z,y,x are: '
and the wvariables 2z, vy, and x. We may output several

items at one time, provided they are separated by commas.

Exercise 1.3
The following program has a number of errors.
Create a new file called bug.f90 and then type in the
following program exactly as shown.
program bug

this program 1is full of errors

real :: a,b,c
a=>b+ c
read *,c

print *,a
end program simple
The compiler will report two error messages when it
attempts to compile. Each error generates a message.
Correct the two errors.
Run
There is now one further error, there will be a yellow
warning alert. Watch the screen carefully! The window
will close and then the program will start to execute.
Something 1is not correct, however.. the program will

"hang". It is actually waiting for you to input a value,

\AY

Chapter 4 - Introduction to Programming using FORTRAN 90
because of the line read *,c. To the user of the program,
this is not at all obvious - they may have thought that
the program has crashed!

Type in a number then press enter

The program returns an strange value. This 1is an
"execution time" error.

We need to find out what the warning message was.
Click the "compile" button

Correct the program to give b a wvalue, and then
execute the program again.

There is still a problem. This time, it is a problem
with the program's logic.
Need a Hint? The program statements are executed
sequentially.
a=b+c
read *, c
print *, a
The statement a=b+c doesn't make sense, as at this stage
of the program, we haven't yet given a wvalue to c.
Important points to note

There are two types of errors associated with this
program: compiler errors and run-time errors.

The program is also user-unfriendly. The program waits
for input without telling the user what is needed.
Fix the run time error by:

read in a value for Db

correct the order of the statements

make the program more user-friendly,

So far, we have only wused real (floating point

numbers) 1in our programs. We can also specify that

A

Chapter 4 - Introduction to Programming using FORTRAN 90

numbers are integer and character. Program convert,
below, demonstrates their wuse. Within a given range,
integers are always represented exactly whereas the
precision of real numbers is limited by the architecture
of the machine. The real variable type gives us 7 figure
decimal precision. (If this doesn't seem enough - don't
worry we'll come back later on when we examine how to
increase the number of digits of precision in Section 4).
Character variables hold strings of characters like

'A happy day was had by all'

'Yes'

N

'3 + 4 equals 7'

When the character wvariable 1s declared, we show the
maximum length that the string can occupy by following
the name by a * then 1ts maximum length. The example
below has a maximum length of 10 characters allowed for a
person's name - this might not always be enough! You have

to make a judgment here.

program convert

!This example shows the use of integer and character
variables.

implicit none

integer :: pounds ,pence ,total

character :: name*10

print *,'What is your name?'

read *,name

print *, 'Hi ' ,6name,'! Enter number of pounds and pence'

read *, pounds ,pence

AR

Chapter 4 - Introduction to Programming using FORTRAN 90
total =100 * pounds + pence
print *,'the total money in pence is ', total

end program convert

NOTE Notice the inclusion of the line
implicit none

By including it in your program, FORTRAN will check that
you have properly declared all your variable types. 1In
the bad old days of programming, declaration of variables
was thought to be unnecessary and the old FORTRAN
compilers used an implicit convention that integers have
names starting with the letters in the range i - n, all
the others being real. FORTRAN still allows you to do
this if we don't include the line, implicit none. Time
has shown that one of the commonest reasons for error 1in
a program 1s the incorrect use of variables.

Always use implicit none at the start of every program.

Exercise 1.4

With the program convert in section 1.5 as a guide,
write a program to test out everything you've learned so
far. You might include different types of variables, for
example real, integer, and character. Include 1input and
output wusing read and print. An example might be a
program that asks people questions, including things like
their age and name and so on. It could, for example,
print out their year of birth with a suitable message.

It's up to you, just use your imagination.

Chapter 4 - Introduction to Programming using FORTRAN 90

2 Making Decisions

2.1 Aims

By the end of this worksheet, you will be able to:
Do arithmetic
Start to use FORTRAN intrinsic functions
Begin to understand program flow and logic
Know how to test for zero - important!

Learn more about good programming style

2.2 Assignment

When we start programming, the similarity Dbetween
mathematical equations and FORTRAN statements can be
confusing.

Consider the following FORTRAN statements:

X = 2 Store the value 2 in memory location x
y = 3 Store the value 3 in memory location y
z = x + y Add the values stored in memory location

x and y and store the result in memory location z

A\

In mathematics, X = 2”7 means that the wvariable x 1is
equal to 2. In FORTRAN it means “store the value 2 in the
memory location that we have given the name x”.

The significance of this is made clearer by the following
equation in mathematics:

X + y =z

In mathematics, this means that the left hand side of the
equation is equal to the right hand side.

In FORTRAN, this expression 1s meaningless: there 1is no

memory location "x+y" and so it would lead to a compiler

error.

vy

Chapter 4 - Introduction to Programming using FORTRAN 90
Rule - there can only ever be ONE variable name on the

left hand side of an equals sign

Exercise 2.1

Write a program which reads in two numbers a and Db.
Get the program to swap the wvalues around so that the
value that was 1in a 1s now 1in b, and print out the
result. Hint you need to declare a third wvariable for
intermediate storage of the data
2.3 Arithmetic

The arithmetic operators are

+,- plus and minus
*,/ multiply and divide
** exponentiation (raise to the power)
() brackets

The order of precedence in FORTRAN is 1identical to
that of mathematics.

Unlike algebra, the operator must always be present xy
is not the same as x*y

Where operations are of equal precedence they are
evaluated left to right

Consecutive exponentiations are evaluated right to
left

We can override the order of evaluation by use of
brackets
Exercise 2.2
The following program 1is an example of the use of
arithmetic.

program calculate

Yy

Chapter 4 - Introduction to Programming using FORTRAN 90
implicit none

! a simple calculator

real :: x,y,z,answer

x=1.5

y=2.5

z=3.5

answer=x+y/z

print *,'result is ' ,6answer

end program calculate

2.4 Intrinsic Functions

FORTRAN is especially useful for mathematical
computation Dbecause of its rich library of inbuilt
functions (intrinsic functions). We shall mention a few
briefly here:
function name type of argument type of result Definition
sin(x) real real sine
cos (x) real real cosine
tan(x) real real tangent
atan (x) real real arctangent
abs (x) real/integer real/integer absolute value
sgrt(x) real real square root
exp (x) real real ex
log(x) real real loglOx
Trigonometric functions are calculated in radians (1
radian = 180/Pi degrees).
There are, of course, many more, and this 1list doesn't
cover all FORTRAN variable types. The following example
shows the use of some of the inbuilt functions.

program trig

vy

Chapter 4 - Introduction to Programming using FORTRAN 90
implicit none

real :: a,pi

print *,'Enter an angle between 0 and 90
read *, a

pi=4.0*atan(1.0)

print *,'the sine of ',a,' is ',6sin(a*pi/180)

end program trig

2.5 Making Decisions

So far, our programs have worked as little more than

basic calculators. The power of programming comes in when

we have to make decisions. Copy the example program,

test.f90, to your own file space. See 1if
understand what is going on.

program test

implicit none

luse of a simple menu

real :: x,y,answer

integer :: choice

!set up the menu - the user may enter 1, 2 or 3
print *, 'Choose an option'

print *,'l Multiply'

print *,'2 Divide'

print *,'3 Add'

read *,choice

x=3.4

y=2.9

'the following line has 2 consecutive

lequals signs - (no spaces in between)

if (choice = = 1) then

ye

you can

Chapter 4 - Introduction to Programming using FORTRAN 90

answer=x*y

print *, 'result = ', answer
end if
if (choice = = 2) then

answer=x/y

print *,'result = ' ,6answer
end if
if (choice = = 3) then

answer=x+y
print *,'result = ',6 answer
end if

end program test

The bolded lines in the above program are called if .. end
if statements. They work like this:

1if (condition 1s true) then

execute this line and this and so on until we get to
end if

It follows that 1f the condition 1is NOT true then the
code 'jumps' to the next statement following the 'end
if'. The statements between the if and the end if are
deliberately indented, this makes the program easier to
read.

We use two consecutive equals signs (no space 1in the
middle) to test for equality. Compare

if (choice == 3) then test

choice = 3 assignment

Exercise 2.3

Examine program test above. The line

Yo

Chapter 4 - Introduction to Programming using FORTRAN 90
print *,'result = ',answer 1is repeated several times. Is
this a good idea? Can you modify the program to make it

more efficient?

2.6 Program Style
A good program:

Uses comments appropriately to explain what 1is
happening.

Uses indentation to make the program easier to read.

Uses meaningful variable names.

Uses sensible prompts to let the user know what is
going on.

Uses implicit none at the start of every program.

Is efficient!

If you want to get maximum marks for your assignments
keep the above points firmly 1n mind. It i1s not enough
just to get a program to work!

2.7 More on decision making In our test.f90 above, there
was a problem if the user entered a value that wasn't
catered for by the program. What happens 1if the user
doesn't enter one of the values 1, 2 or 37
We are going to look at a new structure, called 1f, else,
endif that handles this situation.
Examine the following code snippet:

if (choice = = 1) then

do something

else 1f (choice = =2) then

do something else

else

1

Chapter 4 - Introduction to Programming using FORTRAN 90
do this if nothing else satisfies the conditions
end 1if
2.8 Other logical operators
So far, all our tests have been for equality. There are
several tests we can make:
= = equal to (there is no space between the equals signs)
/ = not equal to
< less than
<= less than or equal to

> greater than

>= greater than or equal to

2.9 Multiple Conditions
Suppose we need to test if x 1s greater than y and y
1s greater than z. There are different ways of doing

this:

if (x > y) then
if (y > z) then
do something
end 1f

end 1if

This can also be handled by the following:

if (x >y .and. y > z) then

do something

end if

If we wanted to check whether a number were less than a

given value or greater than a given value we could write:

yv

Chapter 4 - Introduction to Programming using FORTRAN 90
if (x < 10 .or. x > 20) then
do something

end 1if

Exercise 2.4
Write a program that reads a
keyboard. Get the program to decide whet
the wvalue of the number 1is greater
than 1
or 1is greater than 1 but less than 10

or is outside of both these ranges

number from the
her:

than 0 but less

Print out a suitable message to inform the user.

2.10 The simple if statement
There 1s a simpler, one line
statement. Say we Jjust wanted to pri

message such as

print *, 'enter a positive number'

read *, num

if (num <0) stop

if (num < 10) print *, 'less than 10'
if (num > 10) print *, 'greater than 10

print *,'It is a positive number'

This snippet also introduces a useful,

stop - it simply stops the program.
2.11 Important note - testing for zero

Suppose that you wish to test whether a

zero. The test

YA

form of the if

nt out a simple

simple statement

real variable is

Chapter 4 - Introduction to Programming using FORTRAN 90
if (x = = 0) then ...
is not a satisfactory test. Although integer numbers are
held
exactly by the computer, real numbers are not.
The way around this is to test if the absolute wvalue of
the variable is less than some small
predefined value. For example:
if (abs(x) < .000001) then
print *,’No zero values! Please enter another number’
read *, X

end if

3 Loops
3.1 Aims

By the end of this worksheet, you will be able to:

Understand more about the use of real and 1integer
variables and how to use a mixture of data types 1in
expressions

Understand how to re-use code by looping

Know how to control the number of times a section of

code is executed by using a do loop

3.2 Mixing variable types
Exercise 3.1
program divide

implicit none

integer :: x

real :: y

x =1

y = x/3

Y4

Chapter 4 - Introduction to Programming using FORTRAN 90

print *, y

end program divide
And run it. This program produces the following output:
0.00000

Something odd is happening. The problem is the line:
y=x/3

FORTRAN evaluates the right hand side of the assignment
first using integer arithmetic, because both x and 3 are
integer. 1 divided by 3 cannot be stored as an integer,
and so the wvalue 0 is returned. The result, 0, is then
converted to a real number and the assigned to y.

Replace the line in program divide

x = 1 by

x = 10

Your output should now be:

3.00000

Can you see what 1s happening? FORTRAN is keeping the
integer part of the answer and throwing the rest away.

To get over this problem, we have to signal to FORTRAN
that we want it to calculate the right hand side of the
expression using real arithmetic. If we want to keep x as
integer data type, we could re-write our expression as
follows:

y=x/3.0

The presence of a real number on the right hand side
causes the right hand side of the expression to be
evaluated using floating point arithmetic. Actually, the
problem 1is even more complicated! Where we have an
expression like

y=x * ((2**1)/3)

Chapter 4 - Introduction to Programming using FORTRAN 90
where x and y are real and 1 i1s integer, FORTRAN computes
the result in stages:

First 1t calculates (2**1)/3 and evaluates 1t as an
integer number, then multiplies the result by x and

evaluates it as real.

Exercise 3.2

program check

!Tnteger and real arithmetic
implicit none

real :: x,y

integer 1

x=2.0

i=2

y=x* ((2**i)/3)

print *,y

y=x*((2.0**1i) /3)

print *,y

end program check

and examine 1its output. Make sure you understand why

this is happening.

3.3 The do loop
Unless we are able to re-execute code, we might as
well use a calculator.. Now we start to take advantage of

the power of the computer.
Exercise 3.3

program loop

implicit none

¥y

Chapter 4 - Introduction to Programming using FORTRAN 90
integer :: 1

do i=0,20

print *,i

end do

end program loop

Run the program. It prints out the numbers from 0 to 20
in steps of 1.
Note:

i is called a loop counter. In this example, it has a
start value of zero.

All the statements within the do and end do are
executed. In this example there 1s just the one
statement, ie print.

Each time the statements are executed, the loop
counter, i, 1s incremented by 1.

When the wvalue of 1 is 20, the loop terminates, and
the program resumes after the end do.

Change the do statement in program loop as follows:

do i = 50,70,2

Run the program. What happens?

The third argument in the do statement, is the increment
step. If omitted, the value is taken as 1.

Loops can also decrement: try this

do i = 5,-5,-2

Exercise 3.4
Using a do loop to generate integer wvalues of x
between -10 and 10 in steps of 1, write a program that

constructs a table of wvalues of

vy

Chapter 4 - Introduction to Programming using FORTRAN 90

y=1.0/x

What happened when x had the wvalue zero? Use an 1if, end
if to test for the condition that gives the incorrect
value, and print out an appropriate message.

Division by zero is one of the commonest reasons for a

program to fail.

3.4 Nested Do Loops

We want to construct a table of values for z where
z = XYy
for values of x in the range 1 to 2 in steps of 0.5 and
y 1in the range 1 to 2 in steps of 0.5

Work through the next exercise which illustrates this:

Exercise 3.5
program xytab
implicit none
'constructs a table of z=x/y for values of x from 1 to 2 and

'y from 1 to 4 in steps of .5

real :: x, y, z
print *, ' x y z'
do x =1,2
doy=1,4,0.5

z = x/y

print *, x,y,z
end do

end do

end program xytab
Examine its output. Notice the use of the first print to

give a heading to the table.

vy

Chapter 4 - Introduction to Programming using FORTRAN 90

3.5 Using loops to do summation

Earlier on, we discussed the idea of assignments.

x = 1.0

means store the value 1.0 in the memory location called
X.

If we had the following code:

x = 1.0

x =x + 1.0

print *, x

Can you guess what value would be printed out for x?

The answer would be 2.0.

Bearing 1in mind the definition of an assignment, the
statement

x = x +1.0

means “add 1.0 to the value currently stored in memory
location x and then store the result in memory location

144

X

Exercise 3.6
program increment
implicit none
integer :: 1
real :: x
x=1.0
do i=1,10

x=x+1.0

print *, i,x
end do

end program increment

ye

Chapter 4 - Introduction to Programming using FORTRAN 90

Note carefully that we have set the initial value of x
outside of the do loop. Why have we done this? If you
aren't sure - change the code to put the line x = 1.0
inside the loop - then examine the output.

It 1s important to understand that 1if we use
constructions such as x = x + 1.0, then it is wvital to
initialize x to some value. If we don't, it is possible
that the value might be set to any random number. Run the
program, make a note of the final value of x then put an
exclamation mark in front of the x = 1.0 statement and

run the program again.

Exercise 3.7
Edit the line x = x + 1.0 in program increment.f90, and
change it to x = x * 1. Re-run the program and examine
the output. What 1is significant mathematically about the
sequence of numbers that has been generated?
4 Using Files and Extending Precision
4.1 Aims
By the end of this worksheet, you will be able to:

Read from and write to files

Use extended precision

4.2 Reading from files

In the real world, most of the data we use for our
programs will be kept 1in files. We Jjust need a
modification to the read statement that we are already
familiar with to do this.

This program reads 3 numbers from a file <called

'mydata.txt' into an array.

¥o

Chapter 4 - Introduction to Programming using FORTRAN 90

program readdata

implicit none

'reads data from a file called mydata. txt

real :: x,y,z

open(10,file="mydata. txt')

read(10,*) x,y,z

print * ,x,y,z

end program readdata

The new material here are the lines

open (10, file="mydata.txt"')

read (10, *) x,vy,z

The open statement 1links the file called 'mydata.txt'
with an 1input device numbered 10 (it doesn't have to be
10, 1t could be any positive 1integer). To read from
device 10, we just use 1t as the first argument in the

read statement.

Exercise 4.1

Write a program that reads data from evenodd.txt one line
at a time. Check if each number is even or odd and print
out a suitable message. One way to check if a number is
even or odd is to use the mod intrinsic function, 1like
this..

if (mod(num,2)>0) then...

mod returns the remainder of the first argument divided
by the second. If the return value 1is greater than =zero,
then the number must be odd. Check program evenodd.f90 to

see if you are correct.

¥

Chapter 4 - Introduction to Programming using FORTRAN 90
4.3 Writing to files
This is a similar idea to reading from files. We need

a new statement, though, instead of print, we use write.

program io2

!illustrates writing arrays to files
implicit none

real :: num

integer :: i
open(12,file="myoutput')
do i = 1,100

num = i/3.0

write(12,*) nums

end do

print *, 'finished'

end program io2

Exercise 4.2

Write a program which reads in numbers from a file one at
a time. If the number is positive, it should store it in
a file called 'positive.txt' and negative numbers 1in a

file called 'negative.txt'.

4.4 Extending the precision

So far, we have used two types of variables, real and
integer. The problem so far, as you will have noticed on
output, is that we are extremely limited by the number of
significant digits that are available for computation.
Clearly, when we are dealing with iterative processes,

this will lead rapidly to errors. We can, however, extend

yv

Chapter 4 - Introduction to Programming using FORTRAN 90
the precision available from the single ©precision
default, which gives us 6 figure decimal precision to 15

figures by using a new specification for real numbers.

program extended

implicit none

integer, parameter :: ikind=selected real kind(p=15)
real (kind=ikind) :: sum,x
integer :: i

sum=0.0

do i=1,100

x=1i

sum = sum + 1.0/ (x**6)

end do

print *, sum

end program extended

produces the following output:

1.01734306196
Don't be put off by the odd looking code. In practice,
the way of setting up this extended precision, 1is pretty
much the same for every program.
We state the precision we want by the argument p

integer, parameter :: ikind=selected real kind(p=15)

in this case, 15 decimal places. ikind is a new data type
— a parameter. FORTRAN returns a
value to the parameter ikind that will be adequate to
provide 15 digit precision. This code will work on any
machine irrespective of the architecture. Valid wvalues

for p are 6, 15 and 18. The default value for p is 6. If

YA

Chapter 4 - Introduction to Programming using FORTRAN 90

you ask for more precision than 18 digits, the compiler
will complain with an error message. Try changing the
values of p and see what effect this has on the output.
Note Unlike variables, parameters may not change once
they are declared. We declare that the wvariables are
using extended precision by

real (kind=ikind) :: sum,Xx

4.5 Magnitude limitations

We have already observed that there is a limitation of
the accuracy with which we can do calculations in FORTRAN
(and 1indeed, any, computer language). There are also
limitations on the magnitude of a number. The various
magnitude and precision 1limits are summarized 1in the

following table:

Value of p Decimal places Range
6 6 (default) +£1038

15 15 £10307

18 18 £104931

Exercise 5.3

Try 1nputting various values for the variable maxpower
(eg 400)

One interesting construct 1is

print *,1,2.0 ikind**i

Here, we are telling the compiler that the real constant
2.0 1s also using extended precision. Check what happens

if you select extended precision (option 3) and enter a

¥4

Chapter 4 - Introduction to Programming using FORTRAN 90

value of maxpower of 400. See what happens if you rewrite
the line to be

print *,1i,2.0**1i

Run the program again and enter the same values. Can you

explain what is going on?

4.6 Convergence - exiting loops on a condition In the
program extended.f90, we found the sum of
.==10161xxx

It 1s wuseful to determine at what point such sums
converge to a steady value - otherwise we may make
arbitrary assumptions about the summation range.

Later on we'll come back to this when we learn about
the WRITE statement, and output formatting.
61lx
will be too small to contribute to the sum. At this point
we should exit the loop otherwise the program will do
more computation than is required.
One way to do this 1is to compare the wvalue of the
variable sum with 1its previous value, and 1f the
difference between the two is very small, then exit the

loop.

program whileloop

implicit none

integer, parameter :: ikind=selected real kind(p=15)
real (kind=ikind) :: sum,previoussum,x,smallnumber,error
integer :: 1i

sum=0.0

previoussum=0.0

Chapter 4 - Introduction to Programming using FORTRAN 90

smallnumber = 10.0** (-15.0)

do i=1,1000

x=i

sum = sum + 1.0 /(x**6)

error=abs (sum-previoussum)

if (error<smallnumber) then

print *,'sum ', sum,' number of loops ',i
exit

end if

previoussum = sum

end do

end program whileloop

IMPORTANT NOTE

In the real world, we have to make choices about the
amount of precision we need to work to. It 1s pointless
asking for 15 digits of precision if, for example, we can

only take a measurement to + or - 1% accuracy!

It is not necessary to always use a loop counter in a do
loop. If we don't actually specify a counter, the program

will loop forever. Constructs like this are OK:

smallnumber = .0000001
do
print *, 'enter a positive number '

read *, number
if (number <= smallnumber) exit

end do

€y

Chapter 4 - Introduction to Programming using FORTRAN 90
The disadvantage is that, if you get the code wrong, you
run the risk of the program looping forever - generally

it's safer to use a loop counter!

5 Arrays and Formatted I/O
5.1 Aims

By the end of this worksheet you will be able to:

Understand the use of arrays
Improve the appearance of your output
5.2 Arrays
Let us imagine that we want to find the average of 10

numbers. One (crude) method is shown in the next program.

program av
real :: x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,average

read *, x1,x2,x3,x4,x5,x6,x7,x8,x9,x10

average= (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10) /10

print *, 'the average is ',6average

print *, 'the numbers are:'

print *, x1

print *, x2

print *, x3

print *, x4

print *, x5

print *, x6

print *, x7

print *, x8

£y

Chapter 4 - Introduction to Programming using FORTRAN 90
print *, x9
print *, x10

end program av

This approach is messy, involves a lot of typing and is
prone to error. Imagine if we had to deal with thousands
of numbers!

The way around this is to use arrays. An array 1s a list
that we can access through a subscript. To indicate to
FORTRAN that we are using an array, we just specify its

size when we declare it.

real, dimension (100) ::x
x(1l) = 3
X (o66) = 4

This snippet of code allocates 100 memory locations to
the array x. To access an individual location, called an
array element, we use a subscript - here we are assigning
the number 4 to the 66th element of array x and 3 to the
lst element.

Now let's return to program av at the start of this
worksheet, we'll re-write i1t using an array.

program av2

implicit none

real ,dimension(10) :: x

real :: average,sum

integer :: 1

print *, 'enter 10 numbers'

sum=0.0

ey

Chapter 4 - Introduction to Programming using FORTRAN 90
do i=1,10
read *, x(i)
sum=sum+x (i)
end do
average=sum/10
print *, 'the average is ', average
print *, 'the numbers are'
print *,x
end program av2
Notice that if we type
print*, x
the program will print out the entire contents of the
array.
The additional benefit of this program 1is that with very
few changes, we could make 1t deal with any number of
items 1in our list. We can 1mprove on this still further

by making use the parameter data type:

program av3
'just change the value of the parameter to change the
size of the l'array

implicit none

integer, parameter :: imax = 10
real,dimension(imax) :: x

real :: average,sum

integer :: 1i

print *, 'enter’ ,imax, ' numbers'
sum=0.0
do i=1,imax

read *, x(i)

123

Chapter 4 - Introduction to Programming using FORTRAN 90

sum=sum+x (i)
end do
average=sum/imax
print *, 'the average is ',6average
print *, 'the numbers are'
print *,x
end program av3
Note this 1s an example of good programming. The code 1is
easily maintainable - all we have to do to find an
average of a list of numbers of any size 1is Jjust to
change the size of the parameter 1imax. We can also
allocate the size of the array at run time by dynamically
allocating memory.
The following program demonstrates the use of arrays
where we do not know the size of the array.
program alloc
implicit none
integer, allocatable,dimension(:):: wvector

'note syntax - dimension(:)
integer :: elements,i
print *,'enter the number of elements in the vector'
read *,elements
allocate (vector (elements))

lallocates the correct amount of memory
print *,' your vector is of size ',elements,'. Now enter
each element'’
do i=1l,elements

read *,vector (i)
end do

print *,'This is your vector'

€0

Chapter 4 - Introduction to Programming using FORTRAN 90
do i=1l,elements

print *,vector (i)

end do

deallocate (vector)

'tidies up the memory

end program alloc

The program 1is called alloc.f90 and can be copied from
the web page. Note 1in particular the bolded lines. The
new way of declaring the array vector tells the compiler
that it is allocatable - ie the size will be determined
at run time.

We shall look at this further in Section 7.

Exercise 5.1

"Write a program that asks the user how many numbers
they want to enter, call this value imax. Allocate imax
elements to two arrays, a and b. Read in imax numbers to
a and do the same to b. Print out the arrays a, b and

print out the sum of a and b.

5.3 Array magic
One of the benefits of arrays 1is that you can easily
do operations on every element by using

simple arithmetic operators.

program ramagic
implicit none
real ,dimension(100) :: a,b,c,d

open(10,file="'f:\data.txt')

€1

Chapter 4 - Introduction to Programming using FORTRAN 90
read(10,*) a

b=a*10

c=b-a

d=1

print *, 'a= ',a

print *, 'b= ',b

print *, 'ec= ',c

print *, 'd= ',d

end program ramagic

Exercise 5.3

Write a program that fills a 10 element array x with
values between 0 and .9 in steps of .1. Print the wvalues
of sin(x) and cos(x) using the properties of arrays to

simplify your program.

5.4 Multi dimensional arrays

The arrays we have looked at so far have been one
dimensional, that is a single 1list of numbers that are
accessed using a single subscript. In concept, 1
dimensional arrays work 1in a similar way to vectors. We
can also use two dimensional arrays which conceptually
are equivalent to matrices.
So, for example,

Integer, dimension(5,5) :: a

sets up a storage space with 25 integer locations.
The next program creates a 2 dimensional array with 2
rows and 3 columns. It fills all locations in column 1

with 1, columns 2 with 2, column 3 with 3 and so on.

gV

Chapter 4 - Introduction to Programming using FORTRAN 90
program twodra

implicit none

integer,dimension(2,3) :: a

integer ::row,col,count

count = 0

!creates an array with 3 cols and 2 rows
!sets col 1 to 1, col2 to 2 and so on

do row=1l,2

count=0

do col =1,3

count=count+1l

a(row,col)=count

end do
end do
do row=1l,2

do col =1,3

print *,a(row,col)

end do
end do

end program twodra

FORTRAN actually allows the use of arrays of up to 7
dimensions, a feature which is rarely needed. To specify
a extended ©precision 3 dimensional array b with
subscripts ranging from 1 to 10, 1 to 20 and 1 to 30 we
would write:

real (kind=ikind),dimension(10,20,30) :: b

Exercise 5.4

€A

Chapter 4 - Introduction to Programming using FORTRAN 90
Using a 4*4 array create an identity matrix, that 1is, a

matrix of the form:

1 000
0100
0010
0001

and output it. Wouldn't 1t be nice i1if we could actually
output the matrix elements in rows and columns? At the

end of this section we shall see exactly how to do this.

5.5 Formatting your output
You may now be wondering if there is any way to have
better control over what your output looks 1like. So far
we have been using the default output option - that's
what the *'s are for in the write and print statements:
write (10,*) x,vy,z

print *, 'program finished'

Exercise 5.5
program format
implicit none

'demonstrates use of the format statement

integer, parameter :: ikind=selected real kind(p=15)
real , dimension(4) :: x

integer, dimension(4) :: nums

integer :: 1

real (kind=ikind) ,dimension(4) :: computed

'fill up the arrays with something
doi=1,4

€9

Chapter 4 - Introduction to Programming using FORTRAN 90
nums (i) = i * 10

computed (i) = cos(0.1%*i)

x(1i) = computed(i)

end do

print *, 'nums - integer'

write(*,1l) nums

1 format(2i10)

print *, 'x - real'

write(*,2) x

2 format(£f6.2)

print *, 'computed - double precision'
write(*,3) computed

3 format (£20.7)

end program format

You can see that the write and format statements come 1n
pairs.

write (output device, label) wvariable (s)

label format (specification)

We are using in this example a * as the output device -
in other words, the screen.

The format statement can actually go anywhere in the
program, but by convention we usually place them Jjust
after the associated write or all together at the end of
the program. It's just a matter of taste.

The tricky part here 1is the specification. There are
different specifications for integer, real, and character
variables.

5.5.1 Integer Specification

General form : nim

Chapter 4 - Introduction to Programming using FORTRAN 90

Right justified

m 1is the number of character spaces reserved for
printing (including the sign if there is one)

If the actual width is less than m, blanks are printed

n 1is the number of integers to output per line. If

omitted, one number is output per line.

5.5.2 Floating point Specification
General form : nfm.d

Right justified

m 1s the number of character spaces reserved for
printing (including the sign if there
is one), and the decimal point.

If the actual width is less than m, blanks are printed

n is the number of real numbers to output per line. If
omitted, one number is output per line.

d is the number of spaces reserved for the fractional
part of the number - filled with 0's if fewer spaces are
needed. If the fractional part is too wide it is rounded.
If the total width for output (m) 1is too small, FORTRAN
will just output *'s.

Rule m >= width of the integer part plus d plus
1 (space for decimal point) plus

1 (space for sign - if negative)

Essentially, make m nice and wide and you won't have any
trouble!
5.5.3 Exponential Specification

General form nEm.d

03

Chapter 4 - Introduction to Programming using FORTRAN 90
Alternative specification for outputting real
d is the number of decimal places
m is the total width of the field including the sign
(if any), the character E and its sign, the decimal point
and the number of places of decimals. Again make m nice
and wide to ensure the field is properly printed out.
n is the number of exponential numbers to output per
line. If omitted, one number is output per line.
Example
real :: a,b
a = sqgrt(5.0)
b = -sgrt(a)
write(*,10) a,b
10 format (2E14.5)
produces:
0.22361E+01 -0.14953E+01

5.5.4 Character Specification

General form nAm
n is the number of strings to print

m is the maximum number of characters to output

Example:
program chars
implicit none
character ::a*10,b*10
a='hello'
='goodbye'
write(*,10) a,b
10 format(2al0)

oy

Chapter 4 - Introduction to Programming using FORTRAN 90

end program chars

Exercise 5.6

Using the format specifications in format.f90 as a guide,
produce a table of

X ex
where 0, for values of x in increments of 0.1. Write your
output to a file called myoutput. Ensure that your output
lines up neatly in columns.

1..x

5.6 Implied Do Loop to write arrays

So far, the method we have used for input and output of
arrays 1s:

integer :: col,row

real :: ra(l10,10)

'using do loop

do row = 1,10

do col = 1,10

read *, ra(row,col)

write(*,*) ra(row,col)

end do

end do
The trouble with this method is that the rows and columns
are not preserved on output. An alternative, and neater
method 1is to use an 1implied do loop 1n the write

statement.

real :: ra(10,10)

integer :: row,col

oy

Chapter 4 - Introduction to Programming using FORTRAN 90
'use implied do

do row = 1,10

do col = 1,10

read *, ra(row,col)

end do

end do

do row=1l,10

write(*,10) (ra(row,col),col=1,10)

end do

10 format (10£5.1)

Exercise 5.7
In Exercise 5.4 vyou wrote a program to produce and
identity matrix. Apply what you know about formatting now

to make a neatly formatted matrix onscreen.

6 Subroutines and Functions

6.1 Aims

By the end of this worksheet you will be able to:
Understand the wuse of subroutines and functions to

make your code more efficient and easier to read.

6.2 Re-using code - the subroutine
Examine the following program
program output

implicit none

real,dimension(3) :: a,b,c
character :: answer*l

!initialise arrays

a=1.5

0¢

Chapter 4 - Introduction to Programming using FORTRAN 90

b=2.5

c = 3.5

write(*,1) 'a',a

print *, 'type y to continue or any other key to finish'
read *, answer

if (answer /= 'y') stop

write(*,1) 'b',Kkb

print *, 'type y to continue or any other key to finish'
read *, answer

if (answer /= 'y') stop

write(*,1) 'c',c

print *, 'type y to continue or any other key to finish'
read *, answer

if (answer /= 'y') stop

write(*,1l) 'a*b*c',a * b * c

1 format(a,3£8.3)

end program output

The program sets up some arrays and then outputs them. At
three stages in the program (bolded), it asks whether it
should continue; 1t stops 1f the answer 1s not 'y'.
Notice that the three bolded parts of the code are
identical.

Simple enough - but look at the amount of code! Most of
it is the same - wouldn't it be nice to re-use the code
and cut down on the typing? The answer 1is to use

subroutines.

program outputl

implicit none

(o]e]

Chapter 4 - Introduction to Programming using FORTRAN 90
real,dimension(3) :: a,b,c

!initialise arrays

a=1.5
b=2.5
c = 3.5

write(*,1) 'a',a
call prompt()
write(*,1) 'b',b
call prompt()
write(*,1) 'c',c
call prompt ()
write(*,1l) 'a*b*c',a * b * ¢

1 format(a,3£8.3)
end program outputl

V+4++++++++++++ -+
subroutine prompt ()

'prompts for a keypress
implicit none
character answer*l
print *, 'type y to continue or any other key to finish'
read *, answer
if (answer /= 'y') stop
end subroutine prompt
Examine the code, each time we use type

call prompt ()

the program jumps to the line

subroutine prompt ()

then executes each 1line of the code it finds in the
subroutine until it reaches the line

end subroutine prompt

o1

Chapter 4 - Introduction to Programming using FORTRAN 90

and then returns to the main program and carries on where
it left off.

The program 1is much easier to understand now. All the
code for prompting is in one place. If we ever need to
change the code which prompts the user to continue, we
will only ever need to change 1t once. This makes the

program more maintainable.

6.3 Arguments to subroutines

We have seen that subroutines are very useful where we
need to execute the same bit of code repeatedly.

The subroutine can be thought of as a separate program
which we can call on whenever we wish to do a specific
task. It is independent of the main program - it knows
nothing about the wvariables used in the maln program.
Also, the main program knows nothing about the wvariables
used in the subroutine. This can be useful - we can write
a subroutine using any variable names we wish and we know
that they will not interfere with anything we have
already set up in the main program.

This immediately poses a problem - what if we want the
subroutine to do calculations for us that we can use in
the main program? The following program uses arguments to

do just that.

Example: a program that calculates the difference in
volume between 2 spheres.
program vols

!Calculates difference in volume of 2 spheres

ov

Chapter 4 - Introduction to Programming using FORTRAN 90

implicit none

real :: radl,rad2,voll,vol2

character :: response

do
print *, 'Please enter the two radii'
read *, radl,rad2
call volume (radl,voll)
call volume (rad2,vol2)
write(*,10) 'The difference in volumes is, ',abs(voll-
vol2)
10 format(a,2£10.3)
print *, 'Any more? - hit Y for yes, otherwise hit any
key'
read *, response
if (response /= 'Y' .and. response /= 'y') stop

end do

end program vols

subroutine volume (rad,vol)

implicit none

real :: rad,vol,pi

!calculates the volume of a sphere

pi=4.0*atan(1.0)

vol=4./3.*pi*rad*rad*rad

ITt's a 1little quicker in processing to do r*r*r than
rx*x31

end subroutine wvolume

When the program reaches the lines

call volume (radl,voll)

oA

Chapter 4 - Introduction to Programming using FORTRAN 90
It jumps to the line

subroutine volume (rad,vol)

The values, radl and voll are passed to the subroutine.
The subroutine calculates a value for the volume and when
the line

end subroutine volume

is reached, the value of the volume 1is returned to the
main program

Points to notice - these are very important - please read
carefully

You may have several subroutines 1in your program.
Ideally, a subroutine should do a specific task -
reflected by its name.

All the variables in subroutines, apart from the ones
passed as arguments, are 'hidden' from the main program.
That means that you can wuse the same names 1n your
subroutine as in the main program and the values stored
in each will be unaffected - wunless the variable 1is
passed as an argument to the subroutine.

It 1is very easy to forget to declare variables in
subroutines. Always use implicit none in your subroutines
to guard against this.

All the variables in the subroutine must be declared.

The positioning of the arguments (in this case, rad
and vol) is important. The
subroutine has no knowledge of what the variables are
called in the main program. It
is vital that the arguments agree both in position and

type. So, if an argument to the

o4

Chapter 4 - Introduction to Programming using FORTRAN 90
subroutine 1s real in the main program, it must also be
real in the subroutine.

If an argument to the subroutine is an array, it must
also be declared as an array in

the subroutine.

Exercise 6.1

Write a program that calculates the difference 1in
area between two triangles. Your program should prompt
the wuser for the information it needs to do the
calculation. Use a subroutine to calculate the actual

area. Pass information to the subroutine using arguments.

6.4 User Defined Functions

We have already met FORTRAN intrinsic functions like
abs, cos, sgrt. We can also define our own functions -
they work in a similar way to subroutines.
As an example, let's write a program (func.f90) that does
some trigonometry. As vyou know, the trig routines in
FORTRAN use radians, not degrees - so it would be nice to
write a function that does all the conversion for us.
print *,'Enter a number'

read *, a

pi=4.0*atan (1.0)
print *,'the sine of ',a,' is ',sin(a*pi/180)
In this snippet, we are having to code the conversion
from degrees to radians directly into the main part of
the program. That's OK for a 'one-off', but what if we
needed to do the conversion several times. Now look at

this:

Chapter 4 - Introduction to Programming using FORTRAN 90

program func

!demonstrates use of user defined functions

implicit none

integer, parameter :: ikind=selected real kind(p=15)
real (kind=ikind) :: deg,rads

print *, 'Enter an angle in degrees'

read *, deg

write(*,10) 'sin ' ,sin(rads (deqg))

write(*,10) 'tan

' ,tan (rads (deg))
write(*,10) 'cos = ',cos(rads(deqg))
10 format(a,£10.8)

end program func

function rads (degrees)

implicit none

integer, parameter :: ikind=selected real kind(p=15)
! returns radians

real (kind=ikind) :: pi,degrees,rads
pi=4.0_ikind*atan (1.0 _ikind)
rads=(degrees*pi/180.0_ ikind)

end function rads

What we have done, 1in effect, 1s to create our own
function rads, which is used in an identical way to the
intrinsic ones you have used already like sqgrt, cos, and
abs.
When the line

write(*,10) 'sin = ',sin(rads(deq))

is reached, the program jumps to

A

Chapter 4 - Introduction to Programming using FORTRAN 90

function rads (degrees)
the wvalue, degrees, 1s passed to the function. The
function does some computation, then finally returns the
calculated value to the main program with the line
rads=(degrees*pi/180.0 ikind)
Note carefully that it doesn't return the wvalue 1in the
argument list (as does a subroutine) but actually assigns
the value to 1ts own name rads.

The function rads converts the value of the argument,
degrees, to radians.

Notice that we must declare the data type of the
function both in the main program, and in the function
itself as if it were a variable.

Functions return one value. This value, when
calculated, 1is assigned to the name of the function as 1if
it were a variable -

rads=(degrees*pi/180.0 ikind)

Exercise 6.2
Write a program that includes a function called
real function average(n,list)
where n 1s integer and 1s the number of items 1in the
list, and list is a real array.
Write suitable code for reading the numbers from a file
(or keyboard), and output the average of the numbers.
Exercise 6.3

Write a program that allows a user to enter the size
of a square matrix. In the program write a subroutine to
compute a finite difference matrix. Ensure your output is

neatly formatted in rows and columns.

1y

Chapter 4 - Introduction to Programming using FORTRAN 90

So, for a 10 by 10 matrix, we expect output to look like

this

2-1 0 0 0 0O 0O 0 0 O

-1 2-1 0 O O O O O O
o-1 2-1 0 0 0O 0 0 O
o 0-1 2-1 0 0O O 0 O
o 0 0-1 2-1 0 O 0 O
o 0 0 0-1 2-1 0 0 O
c 0 0 0 0-1 2-1 0 O
o 0 0 0 0 0-1 2 -1 0
o o0 0 0 0 0 0-1 2 -1
o 0o 0 0o o o o0 o0-1 2

7 Advanced Topics
7.1 Aims
By the end of this worksheet you will be able to:

Use array functions

Create larger programs aided by "Flow Charts"
7.2 Array Functions

FORTRAN provides a number of intrinsic functions that

are useful for working with arrays. Among these are some
which are specifically aimed at working with matrices and

vectors.

MATMUL Matrix/vector Matrix multiplication of two
matrices or a matrix and a vector.

DOT PRODUCT Vector Scalar (dot) product of two vectors
TRANSPOSE Matrix Transpose of a matrix MAXVAL Any array
Maximum value of an array, or of all the elements along a

specified dimension of an array.

y

Chapter 4 - Introduction to Programming using FORTRAN 90

MINVAL Any array Minimum value of an array, or of all the
elements along a specified dimension of an array.

SUM Any array Sum of all the elements of an array, or of
all the elements along a specified dimension of an array.
Program matrixmul.f90, demonstrates the wuse o0f these
functions. Additionally, it includes two subroutines that
are likely to Dbe wuseful when handling matrix/array
manipulations:

fill array which fills the array elements and outputra
which prints the wvalues of the array elements to the
screen. This program is also an example of dynamic memory

allocation.

program matrixmul

!demonstrates use of matmul array function and dynamic
lallocation of array

real, allocatable, dimension(:,:) :: ral,ra2,ra3
integer :: size

!initialize the arrays

print*, 'Shows array manipulation using SQUARE arrays.'
print*, 'Allocate the space for the array at run time.'
print*, 'Enter the size of your array'

read *, size

allocate(ral (size,size) ,ra2(size,size) ,ra3(size,size))
print*, 'enter matrix elements for ral row by row'

call fill array(size,ral)

print*, 'enter matrix elements for ra2 row by row'

call fill array(size,ra2)

'echo the arrays

print *,'ral'

e

Chapter 4 - Introduction to Programming using FORTRAN 90
call outputra(size,ral)

print *,'ra2'

call outputra(size,ra2)

!demonstrate the use of matmul and transpose intrinsic
! functions

ra3=matmul (ral, ra2)

print *, 'matmul of ral and ra2'

call outputra(size,ra3)
ra3=transpose (ral)

print *,'transpose of ral'

call outputra(size,bra3)
deallocate(ral,ra2,ra3)

end program matrixmul

subroutine outputra(size,ra)
implicit none

'will output a real square array nicely

integer :: size,row,col
real,dimension(size,size) :: ra
character :: reply*l

do row =1,size
write(*,10) (ra(row,col),hcol=1l,size)
10 format (100£10.2)

'as we don't know how many numbers are to be output, specify

'more than we need - the rest are ignored

end do

print¥*, '

print*, 'Hit a key and press enter to continue'
read *,reply

end subroutine outputra

10

Chapter 4 - Introduction to Programming using FORTRAN 90

subroutine fill array(size, ra)
implicit none

1fills the array by prompting from keyboard
integer :: row,col,size

real :: num

real, dimension(size,size) :: ra
do row=1l,size

do col=1l,size

print *, row,col

read *,num

ra (row,col)=num

end do

end do

end subroutine fill array

Exercise 7.1

Write a program to read in 2 square matrices (of any
size). Confirm that the matrices obey the rule
(AB) T = B TAT

where AT is the transpose of matrix A.

Exercise 7.2

Write a program that will read a 3 X 3 matrix from a
data file. In the program, include a subroutine that will
generate any cofactor cof of the matrix mat. Call the
subroutine cofactor and use these arguments:
subroutine cofactor (i, j,mat, cof)
implicit none

real :: mat(3,3),minor(2,2),cof

by

Chapter 4 - Introduction to Programming using FORTRAN 90
integer :: elrow,elcol

! cof - the cofactor of matrix mat for element i,]

Exercise 7.3
Use the program you developed Exercise 7.2 to

calculate the determinant of a 3 X 3 matrix.

7.3 Writing REAL programs - Flow Charts

Now that vyou know all the main elements of FORTRAN
90, you are 1in a position to apply your skills to writing
REAL programs. Unlike most of the exercises 1in these
worksheets, REAL programs tend to be rather large. 1In
large programs, the underlying logic can often be
difficult to follow.
It helps, therefore, both in the devising of a program
and later in its maintenance, to have a plan of what you
intend the program to do. Let’s take, as an example, a
program that works like a calculator.
The flowchart is shown on the next page. The logic of the
program, as a whole, 1s clear. Details 1like what will

happen in the subroutines is glossed over at this stage.

De-bugging Tips

Symptoms and probable causes
Have you got rounding errors?

e Don’t do floating point calculations using integers
Are your calculations completely wrong?

e Initialise all your variables - don’t forget arrays!

I\

Chapter 4 - Introduction to Programming using FORTRAN 90
* Make sure your arrays are big enough to hold all the
data.
e Check that arguments passed to subroutines agree
exactly in size, type and position

Is the program’s logic working the way it should?
* You must not test floating point numbers for equality.
Example:
if (x == 1) then
does not work.
. Should vyou Dbe using the absolute value of a
calculation? Example:
if (abs(x-y)<.00001) then
 Don’t have overly elaborate logical tests. It’s
probably better to test one or two things at a time
rather than this sort of thing...
if (((x.AND.y).OR.z > 10).0R. (.NOT. xx < 0)) then ..
you might think you understood it when you wrote 1it, but
imagine trying to figure out what’s happening 1f the
program breaks!
Wise precautions and time saving tips
 Don't try and write a complicated program all at once.
Write it a piece at a time
and check that each piece is working correctly before
doing the next bit.
e Use ‘implicit none’ at the start of all programs and
subroutines.
e« If you program needs data to be entered by the user,
you will save hours of time by taking the trouble to read
in the data from a file rather than have the user - 1ie

you key in the numbers. If you don’t want to read from a

A

Chapter 4 - Introduction to Programming using FORTRAN 90
file then you can assign the numbers directly 1in the
program.

e Always do a test for ‘division by zero’ when dividing.

e« BE NEAT! Good programming 1is 1like plain speaking -

there’s no mileage in tricky, difficult to read code.

How to find the bugs
Use a print statement to print out the values within the
program — take a look at this code..
Xx = x + 1
z = xX * vy
print *, ‘debug statement 1 value of x ,vy,z', X,V,Z

do ii =1,10

z = X * 11
if (ii == 5) then

print *, ‘debug do loop value of z when I = 5" ,z
end if

end do

if (z>2000) then
print *, ‘debug statement - z>2000 value of z ',z
stop

end 1if

Notice how we can print out values of specific variables,

stopping the program if necessary.

a8

Program Structure (f ;J3)sd aolomud alzdl JSuad!

DS b JUI sy
program sum z.lsaJl awl
real -: answer,X,y {ciixldl dadydl of jasdiedl dojy=S
print *, "Enter two numbers"™ olede (oo 3ylaxdl dbladl Jde ylgbl

C™™") oo Laisy |

read *, X audlisdl d>gd INS G0 x saidad! 3 dogleo Bl 438
read *, y adliedl d>gd JY5 o v pariad) 3 Loglzro Fs 48
answer=x+y {olus Lddae sf j2

print *, "The total 1s ", answer Lolwadl ddasd! 30 e lub
end (ool b bghs 351) ol doles

iy Program syl Tau of 0)sd dresad! Ll golidls

END 5y Lusy

Arithmetic dLolwaxdl olsidazd!
2 Lluxldl O Llodedl

+,- plus and minus z kJly zaxJ|
*,/ multiply and divide iewildly oall
** exponentiation (raise to the power) Y|
() brackets gl 31
Olesolodl go 49 Jgorn 92 LaSy olui¥) OLiwd gaxdy

Variables ol jxiadl

Integer :: QsusS Oo) Lraxaldl LadyJl Of yuriadl g
Examples (1 ,99 , -99 ,10)
Real :: QoS dg290) Ldudnldl Lad it of juriadl duwgd

Examples (1.5 ,99.325 , -99.3 ,10.7)

Intrinsic Functions LJsiadl JI g4l
Ldstadl J1gadl g 534S Lo gaxs Of 33)sd Lrasydl Lid dy5
DoJU Jow e Lgie Badilus Lgol diiw!l poyaadd aalS S
sSin(X) ouxJdl
CosS(X) plad cuxJl

tan(x) JbJdi
atan(x) JbJI S lzo
abs(X) Lilhadl dauidl

SArE(X) g5l 5dnd
INt(X) s sue o drizxadl Lol Jeo Jgant]
Example int(7.4) 2> 7
Mod(a/b) Lewidl S Je Jgaxl]
Example mod(17/4) > 1
Ol wan odel Lyl gidly Loladl Jigudl b dodsiuwaldl Lyl o3l zaax
Radian (1 radian = 180/P1 degrees). (sS3
program trig Lol g3 wlad Joexid JUio
real :: a,pi
print *,"Enter an angle between 0 and 90"
read *, a
pi=4.0*atan(1.0)
print *,"the sine of ",a,” is ",sin(a*pi1/180)
end
Making decision I 3831 dLxS|
IT statement
Do Lt delsdl Liaall
IT (condition) Then
byidl gixs Il b Jaxdl de gaxs
Else
byidl Ghxl pde > b Jaxdl Lo gaxs
Endif

o2 byidl b Ledsiuweldl L3N]
== equal to 35/ g Lluwaeld
/= not equal to ggluws ¥
< less than (- JI
<= less than or equal to sylws oI G J3I
> greater than g-o jus|I
>= greater than or equal to sgluon oI (o uS|
Example
iT (y > z) then
byidl gixd 131 sddied! Jaxdl
end 1f
The do loop
O dds Juexdl g dde gl ddaxe A 1 S5 Gl a5 8 AR g8
Do .. LOOp af asiw!l JI G0 O yall
Lolaldl diall
DO variable=sv,ev,step
ol Sus
Sv = start value _Jy¥1 dLesill
Ev = end value & ;u3Y1 Lol
Step = sshs JS uxy Boloidl Ll L
Ldlw ol Lu2gn §55 o) oS odel auddl zuax) da>do g
Examplel
Do k = 1,10
5y Sadl Joox S|
End do
el daud eSSy O g0 bydie Jumdl ST odel JUaJdl b
K (,2,3,....,10)
Sobas JS 5 1 soluiy ol I SIdl O ghs o §ghs JS b

3

Example2
Do k = 1,10,2
8y St Joaxd |
End do
el daud eSSy O s dwas Juxdl ST odel JUadl b
K (1,3,5,7,9)
Bohs JS 3 2 5aloiy ol ol SEIl &) ghs o §ehas JS B
Examplel
Do k = -10,1,-1
8y St Joax |
End do
paaiadl el eSSy Of g Bdie Juaxdl ST ode!| JUadl b
K (10,9,8,7,...-,1)
ohs JS 5 (-1) 5aluiy ¢l I SEl O ghs g §shs JS b
Arrays oligiaall
BoSTIdl 5 Ldadl g JUGe ode o] o dxogadl b OLSgdanll
Examples :
Real :: A(5) _udadl adydl goddl golods 5]
2ACL)
A(2)
AC3)
A(4)
A(S)

Integer :-: B(20) asxaldl adydl ¢oidl o L5 20 Jaxd

(Bl Aalica Mal) oy grall jn ALLIS A (e Lgilaladin 9 90) i) 98 Aad dgaly Ao i il
To write anew FORTRAN program follow the following steps

1 — After executing Fortran 90 compiler the following screen will appear

“=i Microsoft Developer Studio - [InfoViewer Topic] I E‘E
x

ﬁFile Edit Wiew Insert Build Tools Window Help

= 2|@] & [|m|e] s|od | =] |5 el =
[= i

& @ Fortian PowerStation version 4.0 B 4] »] 2] seeniso-|te| &
+- & Getting Started with Fortran PowerSt
) §® MS Developer Studio User's Guide b Logical constants
* Q ;mfg'ammerm“'de The default kind of logical type has twa literal constants: TRUE. and .FALSE. {uppet- or lowercase). The value ofthe default kind
* % Se E'T”‘:e parameter is returned in the usual way, by KIND | .TRUE.)
o amples
® Q Build Errars Your cormpiler may have non-default logical kinds; these may be used, for example, for staring logical arrays more compactly.
+ Q Fortran 90 for Scientists and Enginee
+ &% ReadMe
@ Copyright

& | 3

" @ Infoview
|, Build { Debug 5, _Find in Files_J, Profie Tl | v

Ready

istat L EGQ-c@@Ee

2 — From File menu select NEW -> PROJECT WORKSPACE -> Console application after entering the project name then
choose Create

" Microsoft Developer Studio - [InfoViewer Topic]
f@ File Edit view Insert Buld Tools Window Help

BECEBEC DR BT
&~ | E T

@ Fortran PowerStation version 4.0 v 2] seessavr)”
@ Gitting Started with Forran PowerSt FILE
@ M5 Developer Studio User's Guide | | Clossary A
@ Promammer's Guide
@ Reference action statement NAME e
@ Samples
@ Buid Enors 0
@ Fortran 90 for Scientists and Enginee
@ Readle
@ Coppicht Create |
[] ptosion Cancel
Help s identify the active window by
hi
A
Al Pl tine of function reference
[w]Win32
A
iickin Applicatis
A Quickiin &pplcation = ced or defined after it has space
all Location:
. Standard Braph\:sApph:cv EFORTRANLECTS T
Indicates whether an allocatable array or pointer is allocated. An allocation status is one of. allocated, deallocated, or undefined. An
undefined allocation status means an array can no longer be referenced, defined, allocated, or deallocated. See also association
status
< | E]
2 visten e et oot e et e s s
[=|
4 Build { Debug 5, Find in Files 3, Prafile el | 3

Tistat CEGQ@CORE®

=il M

3 -The following screen will appear then choose New Source file

dio - imadx - [InfoViewer Topic]

New

Tools Window Help

Source /] | EEEETE
e Sonree Py - /élDehug | HIU'@ ‘E”

4 »| .| Seensov | !{‘-l EI
Glossary A
. -~

action statement =

A statement that specifies a computational action. L

active screen bhuffer

The screen buffer that is currently displayed in a console's window,

active window

Atop-level window of the application with which the user is working. Windows operating systems identify the active window by

highlighting its title bar and border.

Actual argument

An expression, variable, procedure, or alternate return specifier which is specified in a subroutine or function reference

Allocatable array

Anared array which has the ALLOCATABLE attribute. An array has shape and can be referenced or defined after ithas space

allocated to it

Allocation status

Indicates whether an allocatable aray or pointer is allocated. An allocation status is one of. allocated, deallocated, or undefined. An

undefined allocation status means an array can no longer be referenced, defined, allocated, or deallocated. See also association

status.

B Fileview | B Infoliiew I Arg keyword

PATTpp b o W b i e ewen diien cnfaesnn bafree oo nnele cine Becesseed & b ind s et s oo e b
=
-

A+, Buitd { Debug %, Find in Files 3, Profie 7 Tal | 3

Creates a new source file
‘4 start

4 — Write the source code then
File -> save as -> file name
5 — Compile the source code by choosing
Build = Compile filename
6 — If the source program is error free then execute the program by choosing

Build = Execute program name

" Microsoft Developer Studio - imadx - [p1.f90]

File Edit View Insert | Build Tools Window Help

2= = Corlep1 [s e Y

Build imad:x exe

2| imads -win32 Rebuid Al Alb+Fe 711
Batch Build...
[imadx files -
Update Al Dependencies...
Debug 13
Execute imadx.exe Chrl+Fs
Settings. ..

Configurations...
Subprojects. .
Set Defauit Configuration. .

SOURCE PROGRAM

AREA

" B Fileiew [@ Inioview . f

————————————Configuration. imadx — Win32 Debug———-———————————
Linking
imadz.exe — 0 error(s). 0 warning(s)

M, Build { Debug % Findin Fiss 3, Profie Tl | [

Lnd, Col 8

CEG@cORE O

| h Fortpt -

SUMMERY:

To write a program using FORTRAN 90 programming language, follow the
following steps

1) Create a project workspace. FILE & NEW = Project Workspace

2) Write the source program. (Inside the source program area)

3) Compile the source program. BUILD > COMPILE
Program P1 4) Execute the program. BUILD -> EXECUTE
Integer:: K,Sum :\JJSM :\.‘3.4‘
Do K = 1,100 . . .

Lbadl Jgn 25100 1 32eY) ¢ sene dag¥ i) bl an) (1
Sum =Sum + K e‘&“gd‘ﬂ)}é@ﬂ\w

End do Do Loop
Print *,Sum
End

Sum=0

i DoK=1,100 Write Sum

Sum = Sum+K

End

Program P2

Integer:: K,S

L i g g Al Rl (i 5 0 Aol b) Ll s

Y Y ETX =X+ X m oo, X

S=1

o *’D
Start
Do K=

sk k)
Y= Y X*+*

S=4 S=1
End do v

Print *;Suffead X,n

End
DoK=1,n,2 >__7/Write Y /
4

Y=Y +S5*XS ‘

/

End

S=5*(-1)

pladiily (o)) 53) 98 dae pall dall il J5a &5 100 ... 1 el & gane Ay bt Llad (2

Do Loop

Integer:: K,Sum

Sum=0
Do K=1,100
Sum =Sum + K ¢
i Do K=1,100 Write Sum
End do
Print *,Sum Sum = Sum+K

End

Aty () i) 58 Aaa) Aall aladall Jsa 23 4000 Alalad) Jad) Baladd) an) (3

Do ... Loop N ED C D S X"
Y=7
Program P2 s=1
Integer:: K,S 3
Real :: Y,X Read X.n
Y=7
A
Read *,X,n
y
Do K = 1,100 Y=Y+ 5 End
Y=Y + X S=5*(-1)
$=S%*(-1)
A
End do End Do
Print *,Sum
End

Program P2

Real :: X, Y

Integer :: K,S

Read *,X,n

DoK=1,N.2
Y=Y+K/X*s
$=-S

Enddo

Print *,Y

End

ForX=2,N=7

n | X K S Y

7 |2 0
1 -1 0-(1/2)
3 1 0-(1/2)+(3/2%)
5 -1 0-(1/2)+(3/2%-(5/2%)
7 1 0-(1/2)+(3/2%) +(5/2°) +(7/2)
9 -1

Y=—(1/2)+(3/2°) +(5/2°) +(7/2))

10

(4

stat Program P2

Real :: X, Y

Integer :: K,S

Read *,X,n

DoK=1,N
Y=Y+K/ X *s
$=-8§

Enddo

FarK=1.n ——-aq-lf Write Y
e — { Print *,Y

' L B
: End
Y=YeKIX 'S \ Enc
s

read xn

5=-§
forX=2,N=4

n | X K S Y

4 2 0
1 -1 0-(1/2)
2 1 0-(1/2)+(2/2%
3 -1 0-(1/2)+(2/2%-(3/2%)
4 1 0-(1/2)+(2/2) +(3/2°) + (4/2)
5 -1

Y==(1/2)+(2/2°) +(3/2°) + (4/2))

11

HAIl algal) £12Y 90 () i s? Aava) Ay el S (17

Adlisa alae) 10 8818 e
Aty a8 Y| £ gana Al @

: @UJ,J\
NUM = aaad) o)) (i
Nsum = ul.ul\ KK e

K = sl dlae

Program P1

Real :: Num, Nsum

Integer :: K
Nsum =0
Dok=1,10

Read *,Num

IF(Num<0)Then
Nsum = Nsum + Num
ENDIF
Enddo
Print *," Nsum =",Nsum

End

12

Program P1

Real :: Num, Nsum
Integer :: K, Ncnt
Nsum =0

Nent =0
Dok=1,10

Read *,Num
IF(Num<0)Then
Nsum = Nsum + Num
Ncnt=Ncnt +1
ENDIF

Enddo

Print *," Naverage =", Nsum / Ncnt

End

A1 algal) #1090 I A sR Aa) Aady el iSS) (8

Adlise Mae) 10 8812 o
Al dlasy) Jara dag)

D gl

NUM = a3 & Gal
Nsum = 4ludl JasY) £ sana
K= sl alas
Nent = Adlad) a8) slas

Nsum / Ncnt = Jazall

13

FAIl algal) £12¥ 90 (Ol ius? Ao sal) dbdy el 3S) (9

Adlisa alae) 10 8818 e
Al dlasY) Jara dag)
Aaa gall dlasY) Jaxa Aoyl e

;@AUJ,J\

= danl)) u'éJﬁNUM

= 4Ll ey £ gazaNsum

= 4 gall Jl2eY) £ garaPsum

= J\JSSS\ Aas K

= dulad) alaeY) e Nent

= daagall ey e Pent

= 4l daeY) JeaNsum / Nent
4a gall 32eY) JasPsum / Pent

Program P1
Real :: Num, Nsum
Integer :: K, Ncnt
Nsum =0
Nent =0
Dok=1,10
Read *,Num
IF(Num<0)Then
Nsum = Nsum + Num
Ncnt=Ncnt+1
Else
Psum = psum + Num
Pcnt=pcnt +1
ENDIF
Enddo
Print *," Naverage =", Nsum / Ncnt, "Paverage ", Psum / Pcnt

End
14

s o5 am 5 30 ALY 5 L i) ol Y1 Jae sl 5 48 ghome 8 aliia o3 50 861l ss¥) Lalidll sl (10
Do loop alaaiuly () 5 58 Ayl Axd) Jaladdll

@ Sumo = g2 aBY) £ gana
Sume = g2 ad Y £ gara

Codd = 48 ald) 2

Ceven = a3 a8 Y e

Sumo=0
codd=10 Program EvenOdd
SUME=0 Integer :: k,Ceven,Codd
) Real :: Sumo,Sume.Num(50)
ceven=10 SumO =0
v Sume =0
Codd =0
(Do k=150 > Ceven =0
¥ Do k=1,50
Read *,Num(k)
Read Mumilk) End do
Do k=150
Y If (mod(Num(k)) = 0) then
End do Sume =Sume + Num

Codd =Ceven +1

]] . Endif
Do k=150 rite sumelceve write sumo/cod If (mod(Num(k)) .NE. 0) then

Sumo = Sumo + Num
Codd =Codd +1

End Endif
Enddo
Write *,” odd Average = “,Sumo/Codd
Write *,”Even Average = “,Sume/Ceven
Y End

mod{Mumik))=0 3ume = sume + numik;

CRVEN = ceven +1

Sumo = sumao + num(k;

codd=codd +1

15

Jsn o ALl W8 Y1 5 dn sall w8 Y Jina dlaul 5 36 shne b Calida o) 50 86l il lwi¥) Lladal s y)(11

Sump=10

cpos=10

sumn=10

cneg=10

Y

(Dok=150 >

¥

Read Mumik)

Y
End do

(Do k=150 write sumplcpo write sumn/cne

Sumn = sumn + numik

cneg=cneg +1

Sump = sump + numik

cpos=cpos + 1

End

16

DO ... Loop plaaiuly () 55) 68 daa pall dad) Laladdl)

Sump = &bl ald Y1 £ gane
Sumn = 4 gall a8 Y £ gara
Cneg = I e\ﬁji\ e
Cpos = da gal) REGH IR

Program P4
Integer :: k,Cpos,Cneg
Real :: Sump,Sumn.Num(50)

Sumn =0
Sump =0
Cneg =0
Cpos =0
Do k =1,50
Read *,Num(k)

End do

Do k =1,50

If (Num(k) >= 0) then
Sump =Sump + Num(k)
Cpos =Cpos +1

Endif

If (Num(k) < 0) then
Sumn = Sumn + Num(k)
Cneg =Cneg +1

Endif

Enddo

Write *,” Average heg
“,Sumn/Cneg

Write *,” Average pos

DO ...L0OP #haainls ¢ si s sh Aavasall Aaly el (M aladall Jsm o et 230 (g & sSia alag¥ eV aladdll an) (12

Program Fact

Integer :: K,Num,Fact

Fact=1

Do K =2,Num
Fact = Fact * K

End do

Print *,”Factorial =”,Fact

End

Jl.\.g\j :\é‘..‘.\‘zj\); 3\;)&50 Ec\)_"i_‘ C_Al_a)_a .J_.)_‘I_l_lj 3_11_:_<. (13
(L stanll Al adnu) Gsa) Jaxaell

program prog7
Integer::C
Real :: Temp,AVGTEMP,Sum
Sum=0
doc=1,50
print *, "Please input Temp",C
Read *, Temp
Sum =Sum + Temp
enddo
Avgtemp = sum / 50
print *, "Average = ",Avgtemp

end
17

program prog8

Integer::C
Real :: Temp(50),AVGTEMP,Sum
Sum=0

doc=1,50

print *, "Please input Temp",C
Read *, Temp(c)

enddo

doc=1,50

Sum = Sum + Temp(c)

enddo
Avgtemp = sum / 50
print *, "Average = ",Avgtemp

end

18

(14

e) yal Cuc_ﬁ)_’ 1i4a1%, 4 LS

	Programming I -1
	Programming I -2

