
Subject : Programming (I) 1(برمجة : موضوع(
 Weekly Hours : Theoretical: 1 UNITS: 3 3 : الوحدات1: نظري :الأسبوعية الساعات
 Tutorial:

 :مناقشة

 Experimental : 1 1: عملي

week Contents الأسبوع المحتويات

1. Introduction about (windows)
Mouse
Icons
Desktop

)windows (نمقدمة ع
 الفارة

 الايقونات
 سطح المكتب

1.

2. Taskbar
My Computer

 شريط المهام
 My Computerنافذة

 Searchالبحث

2.

3. Shortcut Keys
Paint
WordPad

 حاختصارات لوحة المفاتي
 Paintالرسام

 WordPadالطباعة باستخدام

3.

4. Introduction about (word)
Main Window
Page Setting
Text Editting

)Word (مقدمة عن
 واجهة التطبيق

 اعدادات الصفحة
 تحرير النص

4.

5. Font Formatting
Paragraph Formatting
Copy & Paste
Spell Check
Bullets & Numbering

 تنسيق الخط
 تنسيق النص

 نقل المعلومات
 مدقق الاملاء

 التعداد الرقمي والنقطي

5.

6. Header & Footer
Page Numbers
Tables
Printing

 راس وذيل الصفحة
 ترقيم الصفحات

 الجداول
 طباعة المستند

6.

7. Introduction about (power Point)
New Presentation
Slides Show

)power Point(مقدمة عن
 انشاء عرض تقديمي

 طرق عرض الشرائح

7.

8. Background
Inserting Objects
Custom Animation

 يق خلفية الشريحةتنس
 ادراج آائنات في شريحة

 استخدام حرآة مخصصة

8.

9. View Show
Printing

 تشغيل العرض ألتقديمي
 طباعة العرض ألتقديمي

9.

10. Introduction about (Excel)
Worksheet
Table Design
Functions

)Excel (مقدمة عن
 ورقة العمل

 اعداد وتصميم الجدول
 ادلات والدوالالمع

10.

11. Format
Chart Type
Cell Name

 التنسيق
 الرسوم البيانية

 تسمية الخلايا والمجالات

11.

12. Data 12 قواعد البيانات.
13. Introduction about (internet)

Interne Services
Network Classification
Connection Methods
Search Engines

)Internet(مقدمة عن
 اهم خدمات الانترنت

 تصنيف الشبكات
 طرق الاتصال بالانترنت

 محرآات البحث

13.

14. Google الموقعGoogle 14.

15. Programming Languages 15 لغات البرمجة.

16. Algorithms :
Definition , conversion problem to algorithm

 :الخوارزميات
 الى خوارزمية تعريفها ، تحويل المسألة

16.

17. Flowcharting
Symbols , conversion algorithm to flowcharts ,
looping Branching , Nesting

 المخططات الانسيابية
 الرموز ، تحويل الخوارزميات الى مخططات انسيابية

17.

18. = = 18.
19. Programming :

Constants and variables , Statements , I/O
Branching , looping and counters , library
Functions , Simple Graphics

 : البرمجة
الثوابت والمتغيرات ، الجمل ، جمل الإدخال والإخѧراج ،
التفرعات ، الدورات والعدادات ، الدوال المكتبية ، رسوم

 مبسطة

19.

20. = = .20
21. = = 21.
22. = = 22.
23. = = 23.
24. = = 24.
25. Application

Study different application in mechanical
engineering , starting from writing the problem
to writing the program

 :تطبيقات
دراسة تطبيقات مختلفة في حقل الهندسة الميانيكية وابتدءا

 بكتابة المسالة ومن ثم آتابة البرنامج

25.

26. = = 26.
27. = = 27.
28. = = 28.
29. = = 29.
30. = = 30.

Chapter 1 - Introduction to computer

Chapter 1
(Introduction to computer)

A Computer components is divided mainly into :

1 – Hardware

2 – software

1 – Hardware :

 a – Input units (I/U)
 Examples : Keyboard

 Mouse
 Microphone.

 b – Main memory (Ram)

 c – Central Processing Unit (CPU)

 d – Output Units
 Examples : Monitor

 Printer
 Speakers

 E – Secondary memory (input/output units)
 Examples : Hard disk
 Floppy disk

 Flash ram

١

Chapter 1 - Introduction to computer

2 – Software

 a – Operating system
 Examples : Windows
 Dos
 Unix

 b – Compilers
 Examples : Visual Basic
 Pascal
 Fortran

 c – Packages
 Examples : Win word

 Photo shop
 Computer games

MEMORY

CPU

INPUT
UNITS

OUTPUT
UNITS

IN/OUT
UNITS

Block Diagram For Data Transfer Among
Computer Units

٢

Chapter 2 - Flowchart

Chapter 2
Flowchart

START
END

INPUT
OUTPUT

PROCESS

DECISSION

CONNECTOR

FLOWCHART Symbols

٣

Chapter 2 - Flowchart

Example 1 : Draw the flow chart to calculate the area of a square rectangle ?

START

Read
Length

Area = Length 2

Write
Area

END

٤

Chapter 2 - Flowchart

Example 3 : Draw the flowchart to find the sum of numbers from 1 …. 100

START

N = 1
Sum = 0

Sum = Sum + N
N = N + 1

N > 100 Write Sum

End

1

1

YesNO

٥

Chapter 2 - Flowchart

Example 4 : Draw the flowchart to find the sum of odd numbers from 1 …. 100

START

N = 1
Sum = 0

Sum = Sum + N
N = N + 2

N > 100 Write Sum

End

1

1

YesNO

٦

Chapter 2 - Flowchart

Example 5 : Draw the flowchart to find the sum of even numbers from 1 …. 100

START

N = 0
Sum = 0

Sum = Sum + N
N = N + 2

N > 100 Write Sum

End

1

1

YesNO

٧

Chapter 2 - Flowchart

Example 6 : Draw the flowchart to read 50 number then find the average ?

START

Counter = 0
Sum = 0

Sum = Sum + Number
Counter = counter + 1

Counter
>= 50

Write
(Sum / 50)

End

1

1

YesNO

Read
Number

٨

Chapter 3 -Running FORTRAN 90 programs

Chapter 3
To write anew FORTRAN program follow the following steps
1 – After executing Fortran 90 compiler the following screen will appear

2 – From File menu select NEW -> PROJECT WORKSPACE -> Console application after entering
the project name then choose Create

FILE
NAME

٩

Chapter 3 -Running FORTRAN 90 programs

3 -The following screen will appear then choose New Source file

4 – Write the source code then
File -> save as -> file name

5 – Compile the source code by choosing
 Build � Compile filename
6 – If the source program is error free then execute the program by choosing
 Build � Execute program name

New
Source

SOURCE
PROGRAM
AREA

١٠

Chapter 3 -Running FORTRAN 90 programs

SUMMERY:
To write a program using FORTRAN 90 programming language,

follow the following steps

1) Create a project workspace. FILE ���� NEW ���� Project Workspace

2) Write the source program. (Inside the source program area)

3) Compile the source program. BUILD ���� COMPILE

4) Execute the program. BUILD ���� EXECUTE

١١

Chapter 4 - Introduction to Programming using FORTRAN 90

CHAPTER 4
Introduction to Programming using

FORTRAN 90

These worksheets aim to provide an introduction to
programming. The language chosen for this module is
FORTRAN 90. This is because FORTRAN is particularly
suitable for mathematicians and engineers ; it is also
very widely available. The skills you acquire working
through these notes can be applied to any computing
language. The concepts you will learn are shared in
common with every other computing language.

Contents :
1 THE BASICS
1.1 AIMS
1.3 RUNNING YOUR FIRST FORTRAN 90 PROGRAM
1.4 PROGRAM STRUCTURE
1.5 MORE ON INPUT AND OUTPUT
1.6 MORE DATA TYPES – INTEGER AND CHARACTER
2 MAKING DECISIONS2.1 AIMS
2.2 ASSIGNMENT
2.3 ARITHMETIC
2.4 INTRINSIC FUNCTIONS
2.5 MAKING DECISIONS
2.6 PROGRAM STYLE
2.7 MORE ON DECISION MAKING2.8 OTHER LOGICAL OPERATORS
2.9 MULTIPLE CONDITIONS

١٢

Chapter 4 - Introduction to Programming using FORTRAN 90

2.10 THE SIMPLE IF STATEMENT
2.11 IMPORTANT NOTE – TESTING FOR ZERO
3 LOOPS
3.1 AIMS
3.2 MIXING VARIABLE TYPES
3.3 THE DO LOOP
3.4 NESTED DO LOOPS
3.5 USING LOOPS TO DO SUMMATION
4 USING FILES AND EXTENDING PRECISION
4.1 AIMS
4.2 READING FROM FILES
4.3 WRITING TO FILES
4.4 EXTENDING THE PRECISION
4.5 MAGNITUDE LIMITATIONS
4.6 CONVERGENCE – EXITING LOOPS ON A CONDITION
5 ARRAYS AND FORMATTED I/O
5.1 AIMS
5.2 ARRAYS5.3 ARRAY MAGIC
5.4 MULTI DIMENSIONAL ARRAYS
5.5 FORMATTING YOUR OUTPUT
5.5.1 Integer Specification
5.5.2 Floating point Specification
5.5.3 Exponential Specification
5.5.4 Character Specification
5.6 IMPLIED DO LOOP TO WRITE ARRAYS
6 SUBROUTINES AND FUNCTIONS
6.1 AIMS
6.2 RE-USING CODE – THE SUBROUTINE
6.3 ARGUMENTS TO SUBROUTINES6.4 USER DEFINED FUNCTIONS
7 ADVANCED TOPICS7.1 AIMS

١٣

Chapter 4 - Introduction to Programming using FORTRAN 90

7.2 ARRAY FUNCTIONS
7.3 WRITING REAL PROGRAMS - FLOW CHARTSDE-BUGGING TIPS

1 The Basics
1.1 Aims

By the end of this worksheet, you will be able to:
.. Create and run a FORTRAN 90 program
.. Understand basic program structure
.. Start to deal with programming errors
.. Start to understand real, integer and character
variable types.
.. Save a copy of your output in Word.
 Always ensure that your program files have a .f90
extension
1.3 Running your first FORTRAN 90 Program
Exercise 1.1

.. Type in the following exactly as shown:
!My first program
program first
print *,'This is my first program'
end program first
.. Execute the program
.. You will get FORTRAN to check your program for errors.
If it finds any problems, it will give you the details.
If you have typed in the program exactly as shown above,
an executable file will be generated (first.exe).
.. Save your program first!

١٤

Chapter 4 - Introduction to Programming using FORTRAN 90

1.4 Program Structure
Examine the following short program:

program sum !a: name of program
!an example of program structure !b: a comment
real :: answer,x,y !c: declarations
print *, 'Enter two numbers' !d: output
read *, x !e: input
read *, y !e: input
answer=x+y !f :arithmetic
print *, 'The total is ', answer !g: output
end program sum !h: end of program

There are a number of general points here:
.. The program is made up of a number of lines. Each line
is called a statement.
.. Each statement is made up of
• variable names e.g. answer, x, y
• operators e.g. +,- etc
• keywords e.g. read, print

.. The statements are executed sequentially.
Let's break the program down, line by line:
a) The name of the program. Keep it reasonably short and
meaningful.
b) A comment explaining the purpose of the program.
Comments are indicated by an exclamation mark. All text
to the right of an exclamation mark is ignored by the
compiler. Programmers use comments to help them remember
how a program works. Use of appropriate comments in

١٥

Chapter 4 - Introduction to Programming using FORTRAN 90

programs aids understanding and is good practice. You
will get extra marks for using comments!
c) Variables - answer, x and y are used to store floating
point numbers – we indicate this by declaring them as
real.
d) print *, outputs to the screen – the asterisk means
use the default number of decimal places when the number
is written to the screen.
e) We read information from the keyboard and store the
values in x and y.
f) Do some arithmetic and store the answer in answer.
g) Output the result to the screen
h) Conclude the program
1.5 More on Input and Output

Exercise 1.2
.. Open a new file and call it io.f90.
.. Type in the following program:
program io
real :: x,y,z
print *, 'enter the values x,y and z'
read *, x,y,z
print *, 'the values you typed are for z,y,x are: ',z,y,x
end program io

.. Execute it

.. You can enter the numbers one at a time and press the
Enter key each time.
.. Execute the program again

١٦

Chapter 4 - Introduction to Programming using FORTRAN 90

.. This time type all three numbers on one line separated
by commas.
Look at the print statement
print *, 'the values you typed are for z,y,x are: ',z,y,x
In this statement, we are outputting four separate
things, a literal string of characters, 'the values you
typed are for z,y,x are: '
and the variables z, y, and x. We may output several
items at one time, provided they are separated by commas.

Exercise 1.3
The following program has a number of errors.
.. Create a new file called bug.f90 and then type in the
following program exactly as shown.
program bug
this program is full of errors
real :: a,b,c
a = b + c
read *,c
print *,a
end program simple
The compiler will report two error messages when it
attempts to compile. Each error generates a message.
.. Correct the two errors.
.. Run .
.. There is now one further error, there will be a yellow
warning alert. Watch the screen carefully! The window
will close and then the program will start to execute.
Something is not correct, however… the program will
"hang". It is actually waiting for you to input a value,

١٧

Chapter 4 - Introduction to Programming using FORTRAN 90

because of the line read *,c. To the user of the program,
this is not at all obvious – they may have thought that
the program has crashed!
.. Type in a number then press enter
.. The program returns an strange value. This is an
"execution time" error.
.. We need to find out what the warning message was.
Click the "compile" button
.. Correct the program to give b a value, and then
execute the program again.
.. There is still a problem. This time, it is a problem
with the program's logic.
Need a Hint? The program statements are executed
sequentially.
a=b+c
read *, c
print *, a
The statement a=b+c doesn't make sense, as at this stage
of the program, we haven't yet given a value to c.
Important points to note
.. There are two types of errors associated with this
program: compiler errors and run-time errors.
.. The program is also user-unfriendly. The program waits
for input without telling the user what is needed.
Fix the run time error by:
.. read in a value for b
.. correct the order of the statements
.. make the program more user-friendly,

So far, we have only used real (floating point
numbers) in our programs. We can also specify that

١٨

Chapter 4 - Introduction to Programming using FORTRAN 90

numbers are integer and character. Program convert,
below, demonstrates their use. Within a given range,
integers are always represented exactly whereas the
precision of real numbers is limited by the architecture
of the machine. The real variable type gives us 7 figure
decimal precision. (If this doesn't seem enough – don't
worry we'll come back later on when we examine how to
increase the number of digits of precision in Section 4).
Character variables hold strings of characters like
'A happy day was had by all'
'Yes'
'N'
'3 + 4 equals 7'
When the character variable is declared, we show the
maximum length that the string can occupy by following
the name by a * then its maximum length. The example
below has a maximum length of 10 characters allowed for a
person's name – this might not always be enough! You have
to make a judgment here.

program convert
!This example shows the use of integer and character
variables.
implicit none
integer :: pounds ,pence ,total
character :: name*10
print *,'What is your name?'
read *,name
print *, 'Hi ',name,'! Enter number of pounds and pence'
read *, pounds ,pence

١٩

Chapter 4 - Introduction to Programming using FORTRAN 90

total =100 * pounds + pence
print *,'the total money in pence is ',total
end program convert

NOTE Notice the inclusion of the line
implicit none

By including it in your program, FORTRAN will check that
you have properly declared all your variable types. In
the bad old days of programming, declaration of variables
was thought to be unnecessary and the old FORTRAN
compilers used an implicit convention that integers have
names starting with the letters in the range i – n, all
the others being real. FORTRAN still allows you to do
this if we don't include the line, implicit none. Time
has shown that one of the commonest reasons for error in
a program is the incorrect use of variables.
Always use implicit none at the start of every program.

Exercise 1.4
With the program convert in section 1.5 as a guide,

write a program to test out everything you've learned so
far. You might include different types of variables, for
example real, integer, and character. Include input and
output using read and print. An example might be a
program that asks people questions, including things like
their age and name and so on. It could, for example,
print out their year of birth with a suitable message.
It's up to you, just use your imagination.

٢٠

Chapter 4 - Introduction to Programming using FORTRAN 90

2 Making Decisions
2.1 Aims
By the end of this worksheet, you will be able to:
.. Do arithmetic
.. Start to use FORTRAN intrinsic functions
.. Begin to understand program flow and logic
.. Know how to test for zero – important!
.. Learn more about good programming style

2.2 Assignment
When we start programming, the similarity between

mathematical equations and FORTRAN statements can be
confusing.
Consider the following FORTRAN statements:
x = 2 Store the value 2 in memory location x
y = 3 Store the value 3 in memory location y
z = x + y Add the values stored in memory location
x and y and store the result in memory location z
In mathematics, “x = 2” means that the variable x is
equal to 2. In FORTRAN it means “store the value 2 in the
memory location that we have given the name x”.
The significance of this is made clearer by the following
equation in mathematics:
x + y =z
In mathematics, this means that the left hand side of the
equation is equal to the right hand side.
In FORTRAN, this expression is meaningless: there is no
memory location "x+y" and so it would lead to a compiler
error.

٢١

Chapter 4 - Introduction to Programming using FORTRAN 90

Rule – there can only ever be ONE variable name on the
left hand side of an equals sign .

Exercise 2.1
Write a program which reads in two numbers a and b.

Get the program to swap the values around so that the
value that was in a is now in b, and print out the
result. Hint you need to declare a third variable for
intermediate storage of the data
2.3 Arithmetic
The arithmetic operators are

+,- plus and minus
*,/ multiply and divide
** exponentiation (raise to the power)
() brackets
.. The order of precedence in FORTRAN is identical to
that of mathematics.
.. Unlike algebra, the operator must always be present xy
is not the same as x*y
.. Where operations are of equal precedence they are
evaluated left to right
.. Consecutive exponentiations are evaluated right to
left
.. We can override the order of evaluation by use of
brackets
Exercise 2.2
The following program is an example of the use of
arithmetic.
 program calculate

٢٢

Chapter 4 - Introduction to Programming using FORTRAN 90

 implicit none
! a simple calculator
 real :: x,y,z,answer
 x=1.5
 y=2.5
 z=3.5
 answer=x+y/z
 print *,'result is ',answer
 end program calculate

2.4 Intrinsic Functions
FORTRAN is especially useful for mathematical

computation because of its rich library of inbuilt
functions (intrinsic functions). We shall mention a few
briefly here:
function name type of argument type of result Definition
sin(x) real real sine
cos(x) real real cosine
tan(x) real real tangent
atan(x) real real arctangent
abs(x) real/integer real/integer absolute value
sqrt(x) real real square root
exp(x) real real ex
log(x) real real log10x
Trigonometric functions are calculated in radians (1
radian = 180/Pi degrees).
There are, of course, many more, and this list doesn't
cover all FORTRAN variable types. The following example
shows the use of some of the inbuilt functions.
program trig

٢٣

Chapter 4 - Introduction to Programming using FORTRAN 90

 implicit none
 real :: a,pi
 print *,'Enter an angle between 0 and 90'
 read *, a
 pi=4.0*atan(1.0)
 print *,'the sine of ',a,' is ',sin(a*pi/180)
 end program trig

2.5 Making Decisions
So far, our programs have worked as little more than

basic calculators. The power of programming comes in when
we have to make decisions. Copy the example program,
test.f90, to your own file space. See if you can
understand what is going on.
 program test
 implicit none
!use of a simple menu
 real :: x,y,answer
 integer :: choice
!set up the menu – the user may enter 1, 2 or 3
 print *,'Choose an option'
 print *,'1 Multiply'
 print *,'2 Divide'
 print *,'3 Add'
 read *,choice
 x=3.4
 y=2.9
!the following line has 2 consecutive
!equals signs – (no spaces in between)
 if (choice = = 1) then

٢٤

Chapter 4 - Introduction to Programming using FORTRAN 90

 answer=x*y
 print *,'result = ',answer
 end if
 if (choice = = 2) then
 answer=x/y
 print *,'result = ',answer
 end if
 if (choice = = 3) then
 answer=x+y
 print *,'result = ',answer
 end if
 end program test

The bolded lines in the above program are called if … end
if statements. They work like this:
if (condition is true) then
execute this line and this and so on until we get to …
end if
It follows that if the condition is NOT true then the
code 'jumps' to the next statement following the 'end
if'. The statements between the if and the end if are
deliberately indented, this makes the program easier to
read.
We use two consecutive equals signs (no space in the
middle) to test for equality. Compare
if (choice == 3) then test
choice = 3 assignment

Exercise 2.3
Examine program test above. The line

٢٥

Chapter 4 - Introduction to Programming using FORTRAN 90

 print *,'result = ',answer is repeated several times. Is
this a good idea? Can you modify the program to make it
more efficient?

2.6 Program Style
A good program:
.. Uses comments appropriately to explain what is
happening.
.. Uses indentation to make the program easier to read.
.. Uses meaningful variable names.
.. Uses sensible prompts to let the user know what is
going on.
.. Uses implicit none at the start of every program.
.. Is efficient!

If you want to get maximum marks for your assignments
keep the above points firmly in mind. It is not enough
just to get a program to work!
2.7 More on decision making In our test.f90 above, there
was a problem if the user entered a value that wasn't
catered for by the program. What happens if the user
doesn't enter one of the values 1, 2 or 3?
We are going to look at a new structure, called if, else,
endif that handles this situation.
Examine the following code snippet:
if (choice = = 1) then
 do something
 else if (choice = =2) then
 do something else
 else

٢٦

Chapter 4 - Introduction to Programming using FORTRAN 90

 do this if nothing else satisfies the conditions
 end if
2.8 Other logical operators
So far, all our tests have been for equality. There are
several tests we can make:
= = equal to (there is no space between the equals signs)
/ = not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

2.9 Multiple Conditions
Suppose we need to test if x is greater than y and y

is greater than z. There are different ways of doing
this:

 if (x > y) then
 if (y > z) then
 do something
 end if
 end if

This can also be handled by the following:
if (x > y .and. y > z) then
do something
 end if
If we wanted to check whether a number were less than a
given value or greater than a given value we could write:

٢٧

Chapter 4 - Introduction to Programming using FORTRAN 90

 if (x < 10 .or. x > 20) then
 do something
 end if

Exercise 2.4
Write a program that reads a number from the

keyboard. Get the program to decide whether:
.. the value of the number is greater than 0 but less
than 1
.. or is greater than 1 but less than 10
.. or is outside of both these ranges
Print out a suitable message to inform the user.
2.10 The simple if statement

There is a simpler, one line form of the if
statement. Say we just wanted to print out a simple
message such as

 print *, 'enter a positive number'
 read *, num
 if (num <0) stop
 if (num < 10) print *, 'less than 10'
 if (num > 10) print *, 'greater than 10'
print *,'It is a positive number'

This snippet also introduces a useful, simple statement
stop – it simply stops the program.

2.11 Important note – testing for zero
Suppose that you wish to test whether a real variable is
zero. The test

٢٨

Chapter 4 - Introduction to Programming using FORTRAN 90

if (x = = 0) then ….
is not a satisfactory test. Although integer numbers are
held
exactly by the computer, real numbers are not.
The way around this is to test if the absolute value of
the variable is less than some small
predefined value. For example:
if (abs(x) < .000001) then
 print *,’No zero values! Please enter another number’
 read *, x
 end if

3 Loops
3.1 Aims

By the end of this worksheet, you will be able to:
.. Understand more about the use of real and integer
variables and how to use a mixture of data types in
expressions
.. Understand how to re-use code by looping
.. Know how to control the number of times a section of
code is executed by using a do loop

3.2 Mixing variable types
Exercise 3.1
program divide
 implicit none
 integer :: x
 real :: y
 x = 1
 y = x/3

٢٩

Chapter 4 - Introduction to Programming using FORTRAN 90

 print *, y
 end program divide
And run it. This program produces the following output:
0.00000
Something odd is happening. The problem is the line:
y=x/3
FORTRAN evaluates the right hand side of the assignment
first using integer arithmetic, because both x and 3 are
integer. 1 divided by 3 cannot be stored as an integer,
and so the value 0 is returned. The result, 0, is then
converted to a real number and the assigned to y.
Replace the line in program divide
x = 1 by
x = 10
Your output should now be:
3.00000
Can you see what is happening? FORTRAN is keeping the
integer part of the answer and throwing the rest away.
To get over this problem, we have to signal to FORTRAN
that we want it to calculate the right hand side of the
expression using real arithmetic. If we want to keep x as
integer data type, we could re-write our expression as
follows:
y=x/3.0
The presence of a real number on the right hand side
causes the right hand side of the expression to be
evaluated using floating point arithmetic. Actually, the
problem is even more complicated! Where we have an
expression like
y=x * ((2**i)/3)

٣٠

Chapter 4 - Introduction to Programming using FORTRAN 90

where x and y are real and i is integer, FORTRAN computes
the result in stages:
First it calculates (2**i)/3 and evaluates it as an
integer number, then multiplies the result by x and
evaluates it as real.

Exercise 3.2
 program check
!Integer and real arithmetic
 implicit none
 real :: x,y
 integer i
 x=2.0
 i=2
 y=x*((2**i)/3)
 print *,y
 y=x*((2.0**i)/3)
 print *,y
 end program check
… and examine its output. Make sure you understand why
this is happening.

3.3 The do loop
Unless we are able to re-execute code, we might as

well use a calculator… Now we start to take advantage of
the power of the computer.

Exercise 3.3
 program loop
 implicit none

٣١

Chapter 4 - Introduction to Programming using FORTRAN 90

 integer :: i
 do i=0,20
 print *,i
 end do
 end program loop

Run the program. It prints out the numbers from 0 to 20
in steps of 1.
Note:
.. i is called a loop counter. In this example, it has a
start value of zero.
.. All the statements within the do and end do are
executed. In this example there is just the one
statement, ie print.
.. Each time the statements are executed, the loop
counter, i, is incremented by 1.
.. When the value of i is 20, the loop terminates, and
the program resumes after the end do.
Change the do statement in program loop as follows:
do i = 50,70,2
Run the program. What happens?
The third argument in the do statement, is the increment
step. If omitted, the value is taken as 1.
Loops can also decrement: try this
do i = 5,-5,-2

Exercise 3.4

Using a do loop to generate integer values of x
between –10 and 10 in steps of 1, write a program that
constructs a table of values of

٣٢

Chapter 4 - Introduction to Programming using FORTRAN 90

y=1.0/x
What happened when x had the value zero? Use an if, end
if to test for the condition that gives the incorrect
value, and print out an appropriate message.
Division by zero is one of the commonest reasons for a
program to fail.

3.4 Nested Do Loops
We want to construct a table of values for z where

z = xy
for values of x in the range 1 to 2 in steps of 0.5 and
 y in the range 1 to 2 in steps of 0.5
Work through the next exercise which illustrates this:

Exercise 3.5
program xytab
 implicit none
!constructs a table of z=x/y for values of x from 1 to 2 and
 !y from 1 to 4 in steps of .5
 real :: x, y, z
 print *, ' x y z'
 do x = 1,2
 do y = 1,4,0.5
 z = x/y
 print *, x,y,z
 end do
 end do
 end program xytab
Examine its output. Notice the use of the first print to
give a heading to the table.

٣٣

Chapter 4 - Introduction to Programming using FORTRAN 90

3.5 Using loops to do summation
Earlier on, we discussed the idea of assignments.
x = 1.0
means store the value 1.0 in the memory location called
x.
If we had the following code:
x = 1.0
x = x + 1.0
print *, x
Can you guess what value would be printed out for x?
The answer would be 2.0.
Bearing in mind the definition of an assignment, the
statement
x = x +1.0
means “add 1.0 to the value currently stored in memory
location x and then store the result in memory location
x”.

Exercise 3.6
program increment
 implicit none
 integer :: i
real :: x
x=1.0
do i=1,10
 x=x+1.0
 print *, i,x
end do
end program increment

٣٤

Chapter 4 - Introduction to Programming using FORTRAN 90

.. Note carefully that we have set the initial value of x
outside of the do loop. Why have we done this? If you
aren't sure – change the code to put the line x = 1.0
inside the loop – then examine the output.
.. It is important to understand that if we use
constructions such as x = x + 1.0, then it is vital to
initialize x to some value. If we don't, it is possible
that the value might be set to any random number. Run the
program, make a note of the final value of x then put an
exclamation mark in front of the x = 1.0 statement and
run the program again.

Exercise 3.7
Edit the line x = x + 1.0 in program increment.f90, and
change it to x = x * i. Re-run the program and examine
the output. What is significant mathematically about the
sequence of numbers that has been generated?
4 Using Files and Extending Precision
4.1 Aims
By the end of this worksheet, you will be able to:
.. Read from and write to files
.. Use extended precision

4.2 Reading from files
In the real world, most of the data we use for our
programs will be kept in files. We just need a
modification to the read statement that we are already
familiar with to do this.
This program reads 3 numbers from a file called
'mydata.txt' into an array.

٣٥

Chapter 4 - Introduction to Programming using FORTRAN 90

 program readdata
 implicit none
!reads data from a file called mydata.txt
 real :: x,y,z
 open(10,file='mydata.txt')
 read(10,*) x,y,z
 print *,x,y,z
 end program readdata
The new material here are the lines
open(10,file='mydata.txt')
 read(10,*) x,y,z
The open statement links the file called 'mydata.txt'
with an input device numbered 10 (it doesn't have to be
10, it could be any positive integer). To read from
device 10, we just use it as the first argument in the
read statement.

Exercise 4.1
Write a program that reads data from evenodd.txt one line
at a time. Check if each number is even or odd and print
out a suitable message. One way to check if a number is
even or odd is to use the mod intrinsic function, like
this…
if (mod(num,2)>0) then……
mod returns the remainder of the first argument divided
by the second. If the return value is greater than zero,
then the number must be odd. Check program evenodd.f90 to
see if you are correct.

٣٦

Chapter 4 - Introduction to Programming using FORTRAN 90

4.3 Writing to files
This is a similar idea to reading from files. We need

a new statement, though, instead of print, we use write.

 program io2
!illustrates writing arrays to files
 implicit none
 real :: num
 integer :: i
 open(12,file='myoutput')
 do i = 1,100
 num = i/3.0
 write(12,*) nums
 end do
 print *, 'finished'
 end program io2

Exercise 4.2
Write a program which reads in numbers from a file one at
a time. If the number is positive, it should store it in
a file called 'positive.txt' and negative numbers in a
file called 'negative.txt'.

4.4 Extending the precision
So far, we have used two types of variables, real and

integer. The problem so far, as you will have noticed on
output, is that we are extremely limited by the number of
significant digits that are available for computation.
Clearly, when we are dealing with iterative processes,
this will lead rapidly to errors. We can, however, extend

٣٧

Chapter 4 - Introduction to Programming using FORTRAN 90

the precision available from the single precision
default, which gives us 6 figure decimal precision to 15
figures by using a new specification for real numbers.

 program extended
 implicit none
 integer, parameter :: ikind=selected_real_kind(p=15)
 real (kind=ikind) :: sum,x
 integer :: i
 sum=0.0
 do i=1,100
 x=i
 sum = sum + 1.0/(x**6)
 end do
 print *, sum
 end program extended

produces the following output:
1.01734306196
Don't be put off by the odd looking code. In practice,
the way of setting up this extended precision, is pretty
much the same for every program.
We state the precision we want by the argument p
 integer, parameter :: ikind=selected_real_kind(p=15)
in this case, 15 decimal places. ikind is a new data type
– a parameter. FORTRAN returns a
value to the parameter ikind that will be adequate to
provide 15 digit precision. This code will work on any
machine irrespective of the architecture. Valid values
for p are 6, 15 and 18. The default value for p is 6. If

٣٨

Chapter 4 - Introduction to Programming using FORTRAN 90

you ask for more precision than 18 digits, the compiler
will complain with an error message. Try changing the
values of p and see what effect this has on the output.
Note Unlike variables, parameters may not change once
they are declared. We declare that the variables are
using extended precision by
 real (kind=ikind) :: sum,x

4.5 Magnitude limitations
We have already observed that there is a limitation of
the accuracy with which we can do calculations in FORTRAN
(and indeed, any, computer language). There are also
limitations on the magnitude of a number. The various
magnitude and precision limits are summarized in the
following table:

 Value of p Decimal places Range
6 6 (default) ±1038
15 15 ±10307
18 18 ±104931

Exercise 5.3
Try inputting various values for the variable maxpower
(eg 400)
One interesting construct is
print *,i,2.0_ikind**i
Here, we are telling the compiler that the real constant
2.0 is also using extended precision. Check what happens
if you select extended precision (option 3) and enter a

٣٩

Chapter 4 - Introduction to Programming using FORTRAN 90

value of maxpower of 400. See what happens if you rewrite
the line to be
print *,i,2.0**i
Run the program again and enter the same values. Can you
explain what is going on?

4.6 Convergence – exiting loops on a condition In the
program extended.f90, we found the sum of
 .==10161xxx
It is useful to determine at what point such sums
converge to a steady value – otherwise we may make
arbitrary assumptions about the summation range.

Later on we'll come back to this when we learn about
the WRITE statement, and output formatting.
61x
will be too small to contribute to the sum. At this point
we should exit the loop otherwise the program will do
more computation than is required.
One way to do this is to compare the value of the
variable sum with its previous value, and if the
difference between the two is very small, then exit the
loop.

 program whileloop
 implicit none
 integer, parameter :: ikind=selected_real_kind(p=15)
 real (kind=ikind) :: sum,previoussum,x,smallnumber,error
 integer :: i
 sum=0.0
 previoussum=0.0

٤٠

Chapter 4 - Introduction to Programming using FORTRAN 90

 smallnumber = 10.0**(-15.0)
 do i=1,1000
 x=i
 sum = sum + 1.0 /(x**6)
 error=abs(sum-previoussum)
 if (error<smallnumber) then
 print *,'sum ',sum,' number of loops ',i
 exit
 end if
 previoussum = sum
 end do
 end program whileloop

IMPORTANT NOTE
In the real world, we have to make choices about the
amount of precision we need to work to. It is pointless
asking for 15 digits of precision if, for example, we can
only take a measurement to + or – 1% accuracy!

It is not necessary to always use a loop counter in a do
loop. If we don't actually specify a counter, the program
will loop forever. Constructs like this are OK:

 smallnumber = .0000001
 do
 print *, 'enter a positive number '
 read *, number
 if (number <= smallnumber) exit
 end do

٤١

Chapter 4 - Introduction to Programming using FORTRAN 90

The disadvantage is that, if you get the code wrong, you
run the risk of the program looping forever – generally
it's safer to use a loop counter!

5 Arrays and Formatted I/O
5.1 Aims

By the end of this worksheet you will be able to:

.. Understand the use of arrays

.. Improve the appearance of your output
5.2 Arrays

Let us imagine that we want to find the average of 10
numbers. One (crude) method is shown in the next program.

program av
real :: x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,average
read *, x1,x2,x3,x4,x5,x6,x7,x8,x9,x10
average= (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10)/10
print *, 'the average is ',average
print *, 'the numbers are:'
print *, x1
print *, x2
print *, x3
print *, x4
print *, x5
print *, x6
print *, x7
print *, x8

٤٢

Chapter 4 - Introduction to Programming using FORTRAN 90

print *, x9
print *, x10
end program av

This approach is messy, involves a lot of typing and is
prone to error. Imagine if we had to deal with thousands
of numbers!
The way around this is to use arrays. An array is a list
that we can access through a subscript. To indicate to
FORTRAN that we are using an array, we just specify its
size when we declare it.

real, dimension(100) ::x
x(1) = 3
x(66) = 4

This snippet of code allocates 100 memory locations to
the array x. To access an individual location, called an
array element, we use a subscript – here we are assigning
the number 4 to the 66th element of array x and 3 to the
1st element.
Now let's return to program av at the start of this
worksheet, we'll re-write it using an array.
program av2
implicit none
real ,dimension(10) :: x
real :: average,sum
integer :: i
print *, 'enter 10 numbers'
sum=0.0

٤٣

Chapter 4 - Introduction to Programming using FORTRAN 90

do i=1,10
 read *, x(i)
 sum=sum+x(i)
end do
average=sum/10
print *, 'the average is ',average
print *, 'the numbers are'
print *,x
end program av2
Notice that if we type
print*, x
the program will print out the entire contents of the
array.
The additional benefit of this program is that with very
few changes, we could make it deal with any number of
items in our list. We can improve on this still further
by making use the parameter data type:

program av3
!just change the value of the parameter to change the
size of the !array
implicit none
integer, parameter :: imax = 10
real,dimension(imax) :: x
real :: average,sum
integer :: i
print *, 'enter’ ,imax, ’ numbers'
sum=0.0
do i=1,imax
 read *, x(i)

٤٤

Chapter 4 - Introduction to Programming using FORTRAN 90

 sum=sum+x(i)
end do
average=sum/imax
print *, 'the average is ',average
print *, 'the numbers are'
print *,x
end program av3
Note this is an example of good programming. The code is
easily maintainable – all we have to do to find an
average of a list of numbers of any size is just to
change the size of the parameter imax. We can also
allocate the size of the array at run time by dynamically
allocating memory.
The following program demonstrates the use of arrays
where we do not know the size of the array.
program alloc
implicit none
integer, allocatable,dimension(:):: vector
!note syntax - dimension(:)
integer :: elements,i
print *,'enter the number of elements in the vector'
read *,elements
allocate(vector(elements))
!allocates the correct amount of memory
print *,' your vector is of size ',elements,'. Now enter
each element'
do i=1,elements
 read *,vector(i)
end do
print *,'This is your vector'

٤٥

Chapter 4 - Introduction to Programming using FORTRAN 90

do i=1,elements
 print *,vector(i)
end do
deallocate(vector)
!tidies up the memory
end program alloc

The program is called alloc.f90 and can be copied from
the web page. Note in particular the bolded lines. The
new way of declaring the array vector tells the compiler
that it is allocatable – ie the size will be determined
at run time.
We shall look at this further in Section 7.

Exercise 5.1
`Write a program that asks the user how many numbers

they want to enter, call this value imax. Allocate imax
elements to two arrays, a and b. Read in imax numbers to
a and do the same to b. Print out the arrays a, b and
print out the sum of a and b.

5.3 Array magic
One of the benefits of arrays is that you can easily

do operations on every element by using
simple arithmetic operators.

program ramagic
 implicit none
 real ,dimension(100) :: a,b,c,d
 open(10,file='f:\data.txt')

٤٦

Chapter 4 - Introduction to Programming using FORTRAN 90

 read(10,*) a
 b=a*10
 c=b-a
 d=1
 print *, 'a= ',a
 print *, 'b= ',b
 print *, 'c= ',c
 print *, 'd= ',d
 end program ramagic

Exercise 5.3
Write a program that fills a 10 element array x with

values between 0 and .9 in steps of .1. Print the values
of sin(x) and cos(x) using the properties of arrays to
simplify your program.

5.4 Multi dimensional arrays
The arrays we have looked at so far have been one

dimensional, that is a single list of numbers that are
accessed using a single subscript. In concept, 1
dimensional arrays work in a similar way to vectors. We
can also use two dimensional arrays which conceptually
are equivalent to matrices.
So, for example,
 Integer, dimension(5,5) :: a
sets up a storage space with 25 integer locations.
The next program creates a 2 dimensional array with 2
rows and 3 columns. It fills all locations in column 1
with 1, columns 2 with 2, column 3 with 3 and so on.

٤٧

Chapter 4 - Introduction to Programming using FORTRAN 90

program twodra
implicit none
integer,dimension(2,3) :: a
integer ::row,col,count
count = 0
!creates an array with 3 cols and 2 rows
!sets col 1 to 1, col2 to 2 and so on
do row=1,2
 count=0
 do col =1,3
 count=count+1
 a(row,col)=count
 end do
end do
do row=1,2
 do col =1,3
 print *,a(row,col)
 end do
end do
end program twodra

FORTRAN actually allows the use of arrays of up to 7
dimensions, a feature which is rarely needed. To specify
a extended precision 3 dimensional array b with
subscripts ranging from 1 to 10, 1 to 20 and 1 to 30 we
would write:
real (kind=ikind),dimension(10,20,30) :: b

Exercise 5.4

٤٨

Chapter 4 - Introduction to Programming using FORTRAN 90

Using a 4*4 array create an identity matrix, that is, a
matrix of the form:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
and output it. Wouldn't it be nice if we could actually
output the matrix elements in rows and columns? At the
end of this section we shall see exactly how to do this.

5.5 Formatting your output
You may now be wondering if there is any way to have

better control over what your output looks like. So far
we have been using the default output option – that's
what the *'s are for in the write and print statements:
 write(10,*) x,y,z
 print *, 'program finished'

Exercise 5.5
 program format
 implicit none
!demonstrates use of the format statement
 integer, parameter :: ikind=selected_real_kind(p=15)
 real , dimension(4) :: x
 integer, dimension(4) :: nums
 integer :: i
 real(kind=ikind),dimension(4) :: computed
!fill up the arrays with something
 do i = 1,4

٤٩

Chapter 4 - Introduction to Programming using FORTRAN 90

 nums(i) = i * 10
 computed(i) = cos(0.1*i)
 x(i) = computed(i)
 end do
 print *,'nums - integer'
 write(*,1) nums
1 format(2i10)
 print *, 'x - real'
 write(*,2) x
2 format(f6.2)
 print *, 'computed - double precision'
 write(*,3) computed
3 format(f20.7)
 end program format

You can see that the write and format statements come in
pairs.
write(output device,label) variable(s)
label format(specification)
We are using in this example a * as the output device –
in other words, the screen.

The format statement can actually go anywhere in the
program, but by convention we usually place them just
after the associated write or all together at the end of
the program. It's just a matter of taste.
The tricky part here is the specification. There are
different specifications for integer, real, and character
variables.
5.5.1 Integer Specification
General form : nim

٥٠

Chapter 4 - Introduction to Programming using FORTRAN 90

.. Right justified

.. m is the number of character spaces reserved for
printing (including the sign if there is one)
.. If the actual width is less than m, blanks are printed
.. n is the number of integers to output per line. If
omitted, one number is output per line.

5.5.2 Floating point Specification
General form : nfm.d
.. Right justified
.. m is the number of character spaces reserved for
printing (including the sign if there
is one), and the decimal point.
.. If the actual width is less than m, blanks are printed
.. n is the number of real numbers to output per line. If
omitted, one number is output per line.
.. d is the number of spaces reserved for the fractional
part of the number – filled with 0's if fewer spaces are
needed. If the fractional part is too wide it is rounded.
If the total width for output (m) is too small, FORTRAN
will just output *'s.
Rule m >= width of the integer part plus d plus
1 (space for decimal point) plus
1 (space for sign – if negative)

Essentially, make m nice and wide and you won't have any
trouble!
5.5.3 Exponential Specification
General form nEm.d

٥١

Chapter 4 - Introduction to Programming using FORTRAN 90

.. Alternative specification for outputting real

.. d is the number of decimal places

.. m is the total width of the field including the sign
(if any), the character E and its sign, the decimal point
and the number of places of decimals. Again make m nice
and wide to ensure the field is properly printed out.
.. n is the number of exponential numbers to output per
line. If omitted, one number is output per line.
Example
 real :: a,b
 a = sqrt(5.0)
 b = -sqrt(a)
 write(*,10) a,b
10 format(2E14.5)
produces:
0.22361E+01 -0.14953E+01
5.5.4 Character Specification

General form nAm
.. n is the number of strings to print
.. m is the maximum number of characters to output

Example:
 program chars
 implicit none
 character ::a*10,b*10
 a='hello'
 b='goodbye'
 write(*,10) a,b
10 format(2a10)

٥٢

Chapter 4 - Introduction to Programming using FORTRAN 90

 end program chars

Exercise 5.6
Using the format specifications in format.f90 as a guide,
produce a table of
 x ex
where 0, for values of x in increments of 0.1. Write your
output to a file called myoutput. Ensure that your output
lines up neatly in columns.
1..x

5.6 Implied Do Loop to write arrays
So far, the method we have used for input and output of
arrays is:
 integer :: col,row
 real :: ra(10,10)
!using do loop
 do row = 1,10
 do col = 1,10
 read *, ra(row,col)
 write(*,*) ra(row,col)
 end do
 end do
The trouble with this method is that the rows and columns
are not preserved on output. An alternative, and neater
method is to use an implied do loop in the write
statement.

 real :: ra(10,10)
 integer :: row,col

٥٣

Chapter 4 - Introduction to Programming using FORTRAN 90

!use implied do
 do row = 1,10
 do col = 1,10
 read *, ra(row,col)
end do
 end do
 do row=1,10
 write(*,10) (ra(row,col),col=1,10)
 end do
10 format(10f5.1)

Exercise 5.7
In Exercise 5.4 you wrote a program to produce and
identity matrix. Apply what you know about formatting now
to make a neatly formatted matrix onscreen.

6 Subroutines and Functions
6.1 Aims
By the end of this worksheet you will be able to:
.. Understand the use of subroutines and functions to
make your code more efficient and easier to read.

6.2 Re-using code – the subroutine
Examine the following program
program output
implicit none
real,dimension(3) :: a,b,c
character :: answer*1
!initialise arrays
a = 1.5

٥٤

Chapter 4 - Introduction to Programming using FORTRAN 90

b = 2.5
c = 3.5
write(*,1) 'a',a
print *, 'type y to continue or any other key to finish'
read *, answer
if (answer /= 'y') stop
write(*,1) 'b',b
print *, 'type y to continue or any other key to finish'
read *, answer
if (answer /= 'y') stop
write(*,1) 'c',c
print *, 'type y to continue or any other key to finish'
read *, answer
if (answer /= 'y') stop
write(*,1) 'a*b*c',a * b * c
1 format(a,3f8.3)
end program output

The program sets up some arrays and then outputs them. At
three stages in the program (bolded), it asks whether it
should continue; it stops if the answer is not 'y'.
Notice that the three bolded parts of the code are
identical.
Simple enough – but look at the amount of code! Most of
it is the same – wouldn't it be nice to re-use the code
and cut down on the typing? The answer is to use
subroutines.

program output1
implicit none

٥٥

Chapter 4 - Introduction to Programming using FORTRAN 90

real,dimension(3) :: a,b,c
!initialise arrays
a = 1.5
b = 2.5
c = 3.5
write(*,1) 'a',a
call prompt()
write(*,1) 'b',b
call prompt()
write(*,1) 'c',c
call prompt()
write(*,1) 'a*b*c',a * b * c
1 format(a,3f8.3)
end program output1
!++
subroutine prompt()
!prompts for a keypress
implicit none
character answer*1
print *, 'type y to continue or any other key to finish'
read *, answer
if (answer /= 'y') stop
end subroutine prompt
Examine the code, each time we use type
 call prompt()
the program jumps to the line
 subroutine prompt()
then executes each line of the code it finds in the
subroutine until it reaches the line
 end subroutine prompt

٥٦

Chapter 4 - Introduction to Programming using FORTRAN 90

and then returns to the main program and carries on where
it left off.
The program is much easier to understand now. All the
code for prompting is in one place. If we ever need to
change the code which prompts the user to continue, we
will only ever need to change it once. This makes the
program more maintainable.

6.3 Arguments to subroutines
We have seen that subroutines are very useful where we
need to execute the same bit of code repeatedly.
The subroutine can be thought of as a separate program
which we can call on whenever we wish to do a specific
task. It is independent of the main program – it knows
nothing about the variables used in the main program.
Also, the main program knows nothing about the variables
used in the subroutine. This can be useful – we can write
a subroutine using any variable names we wish and we know
that they will not interfere with anything we have
already set up in the main program.
This immediately poses a problem – what if we want the
subroutine to do calculations for us that we can use in
the main program? The following program uses arguments to
do just that.

Example: a program that calculates the difference in
volume between 2 spheres.
program vols
!Calculates difference in volume of 2 spheres

٥٧

Chapter 4 - Introduction to Programming using FORTRAN 90

implicit none
real :: rad1,rad2,vol1,vol2
 character :: response
 do
print *, 'Please enter the two radii'
read *, rad1,rad2
call volume(rad1,vol1)
call volume(rad2,vol2)
write(*,10) 'The difference in volumes is, ',abs(vol1-
vol2)
10 format(a,2f10.3)
print *, 'Any more? - hit Y for yes, otherwise hit any
key'
read *, response
if (response /= 'Y' .and. response /= 'y') stop
 end do
 end program vols
!__
 subroutine volume(rad,vol)
 implicit none
 real :: rad,vol,pi
!calculates the volume of a sphere
 pi=4.0*atan(1.0)
 vol=4./3.*pi*rad*rad*rad
!It's a little quicker in processing to do r*r*r than
r**3!
 end subroutine volume

When the program reaches the lines
call volume(rad1,vol1)

٥٨

Chapter 4 - Introduction to Programming using FORTRAN 90

It jumps to the line
 subroutine volume(rad,vol)

The values, rad1 and vol1 are passed to the subroutine.
The subroutine calculates a value for the volume and when
the line :
 end subroutine volume
is reached, the value of the volume is returned to the
main program
Points to notice – these are very important – please read
carefully
.. You may have several subroutines in your program.
Ideally, a subroutine should do a specific task –
reflected by its name.
.. All the variables in subroutines, apart from the ones
passed as arguments, are 'hidden' from the main program.
That means that you can use the same names in your
subroutine as in the main program and the values stored
in each will be unaffected – unless the variable is
passed as an argument to the subroutine.
.. It is very easy to forget to declare variables in
subroutines. Always use implicit none in your subroutines
to guard against this.
.. All the variables in the subroutine must be declared.
.. The positioning of the arguments (in this case, rad
and vol) is important. The
subroutine has no knowledge of what the variables are
called in the main program. It
is vital that the arguments agree both in position and
type. So, if an argument to the

٥٩

Chapter 4 - Introduction to Programming using FORTRAN 90

subroutine is real in the main program, it must also be
real in the subroutine.
.. If an argument to the subroutine is an array, it must
also be declared as an array in
the subroutine.

Exercise 6.1
Write a program that calculates the difference in

area between two triangles. Your program should prompt
the user for the information it needs to do the
calculation. Use a subroutine to calculate the actual
area. Pass information to the subroutine using arguments.

6.4 User Defined Functions
We have already met FORTRAN intrinsic functions like

abs, cos, sqrt. We can also define our own functions –
they work in a similar way to subroutines.
As an example, let's write a program (func.f90) that does
some trigonometry. As you know, the trig routines in
FORTRAN use radians, not degrees - so it would be nice to
write a function that does all the conversion for us.
 print *,'Enter a number'
 read *, a
 pi=4.0*atan(1.0)
 print *,'the sine of ',a,' is ',sin(a*pi/180)
In this snippet, we are having to code the conversion
from degrees to radians directly into the main part of
the program. That's OK for a 'one-off', but what if we
needed to do the conversion several times. Now look at
this:

٦٠

Chapter 4 - Introduction to Programming using FORTRAN 90

 program func
!demonstrates use of user defined functions
 implicit none
 integer, parameter :: ikind=selected_real_kind(p=15)
 real (kind=ikind):: deg,rads
 print *, 'Enter an angle in degrees'
 read *, deg
 write(*,10) 'sin = ',sin(rads(deg))
 write(*,10) 'tan = ',tan(rads(deg))
 write(*,10) 'cos = ',cos(rads(deg))
10 format(a,f10.8)
 end program func
!___
 function rads(degrees)
 implicit none
 integer, parameter :: ikind=selected_real_kind(p=15)
! returns radians
 real (kind=ikind) :: pi,degrees,rads
 pi=4.0_ikind*atan(1.0_ikind)
 rads=(degrees*pi/180.0_ikind)
 end function rads

What we have done, in effect, is to create our own
function rads, which is used in an identical way to the
intrinsic ones you have used already like sqrt, cos, and
abs.
When the line
 write(*,10) 'sin = ',sin(rads(deg))
is reached, the program jumps to

٦١

Chapter 4 - Introduction to Programming using FORTRAN 90

 function rads(degrees)
the value, degrees, is passed to the function. The
function does some computation, then finally returns the
calculated value to the main program with the line
rads=(degrees*pi/180.0_ikind)
Note carefully that it doesn't return the value in the
argument list (as does a subroutine) but actually assigns
the value to its own name rads.
.. The function rads converts the value of the argument,
degrees, to radians.
.. Notice that we must declare the data type of the
function both in the main program, and in the function
itself as if it were a variable.
.. Functions return one value. This value, when
calculated, is assigned to the name of the function as if
it were a variable –
rads=(degrees*pi/180.0_ikind)

Exercise 6.2
Write a program that includes a function called
real function average(n,list)
where n is integer and is the number of items in the
list, and list is a real array.
Write suitable code for reading the numbers from a file
(or keyboard), and output the average of the numbers.
Exercise 6.3

Write a program that allows a user to enter the size
of a square matrix. In the program write a subroutine to
compute a finite difference matrix. Ensure your output is
neatly formatted in rows and columns.

٦٢

Chapter 4 - Introduction to Programming using FORTRAN 90

So, for a 10 by 10 matrix, we expect output to look like
this
2 -1 0 0 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0 0 0
 0 -1 2 -1 0 0 0 0 0 0
 0 0 -1 2 -1 0 0 0 0 0
 0 0 0 -1 2 -1 0 0 0 0
 0 0 0 0 -1 2 -1 0 0 0
 0 0 0 0 0 -1 2 -1 0 0
 0 0 0 0 0 0 -1 2 -1 0
 0 0 0 0 0 0 0 -1 2 -1
 0 0 0 0 0 0 0 0 -1 2

7 Advanced Topics
7.1 Aims
By the end of this worksheet you will be able to:
.. Use array functions
.. Create larger programs aided by "Flow Charts"
7.2 Array Functions

FORTRAN provides a number of intrinsic functions that
are useful for working with arrays. Among these are some
which are specifically aimed at working with matrices and
vectors.

MATMUL Matrix/vector Matrix multiplication of two
matrices or a matrix and a vector.
DOT_PRODUCT Vector Scalar (dot) product of two vectors
TRANSPOSE Matrix Transpose of a matrix MAXVAL Any array
Maximum value of an array, or of all the elements along a
specified dimension of an array.

٦٣

Chapter 4 - Introduction to Programming using FORTRAN 90

MINVAL Any array Minimum value of an array, or of all the
elements along a specified dimension of an array.
SUM Any array Sum of all the elements of an array, or of
all the elements along a specified dimension of an array.
Program matrixmul.f90, demonstrates the use of these
functions. Additionally, it includes two subroutines that
are likely to be useful when handling matrix/array
manipulations:
fill_array which fills the array elements and outputra
which prints the values of the array elements to the
screen. This program is also an example of dynamic memory
allocation.

program matrixmul
!demonstrates use of matmul array function and dynamic
!allocation of array
 real, allocatable, dimension(:,:) :: ra1,ra2,ra3
 integer :: size
!initialize the arrays
 print*, 'Shows array manipulation using SQUARE arrays.'
 print*, 'Allocate the space for the array at run time.'
 print*, 'Enter the size of your array'
 read *, size
 allocate(ra1(size,size),ra2(size,size),ra3(size,size))
 print*, 'enter matrix elements for ra1 row by row'
 call fill_array(size,ra1)
 print*, 'enter matrix elements for ra2 row by row'
 call fill_array(size,ra2)
!echo the arrays
 print *,'ra1'

٦٤

Chapter 4 - Introduction to Programming using FORTRAN 90

 call outputra(size,ra1)
 print *,'ra2'
 call outputra(size,ra2)
!demonstrate the use of matmul and transpose intrinsic
!functions
 ra3=matmul(ra1,ra2)
 print *,'matmul of ra1 and ra2'
 call outputra(size,ra3)
 ra3=transpose(ra1)
 print *,'transpose of ra1'
 call outputra(size,ra3)
 deallocate(ra1,ra2,ra3)
 end program matrixmul
!--
 subroutine outputra(size,ra)
 implicit none
!will output a real square array nicely
 integer :: size,row,col
 real,dimension(size,size) :: ra
 character :: reply*1
 do row =1,size
 write(*,10) (ra(row,col),col=1,size)
10 format(100f10.2)
!as we don't know how many numbers are to be output, specify
!more than we need - the rest are ignored
 end do

print*,'__'
 print*,'Hit a key and press enter to continue'
 read *,reply
 end subroutine outputra

٦٥

Chapter 4 - Introduction to Programming using FORTRAN 90

!--
 subroutine fill_array(size,ra)
 implicit none
!fills the array by prompting from keyboard
 integer :: row,col,size
 real :: num
 real, dimension(size,size) :: ra
 do row=1,size
 do col=1,size
 print *, row,col
 read *,num
 ra(row,col)=num
 end do
 end do
 end subroutine fill_array

Exercise 7.1
Write a program to read in 2 square matrices (of any

size). Confirm that the matrices obey the rule
(AB)T = B TAT
where AT is the transpose of matrix A.

Exercise 7.2
Write a program that will read a 3 X 3 matrix from a

data file. In the program, include a subroutine that will
generate any cofactor cof of the matrix mat. Call the
subroutine cofactor and use these arguments:
subroutine cofactor(i,j,mat,cof)
implicit none
real :: mat(3,3),minor(2,2),cof

٦٦

Chapter 4 - Introduction to Programming using FORTRAN 90

integer :: elrow,elcol
! cof – the cofactor of matrix mat for element i,j
.
.
Exercise 7.3

Use the program you developed Exercise 7.2 to
calculate the determinant of a 3 X 3 matrix.

7.3 Writing REAL programs - Flow Charts
Now that you know all the main elements of FORTRAN

90, you are in a position to apply your skills to writing
REAL programs. Unlike most of the exercises in these
worksheets, REAL programs tend to be rather large. In
large programs, the underlying logic can often be
difficult to follow.
It helps, therefore, both in the devising of a program
and later in its maintenance, to have a plan of what you
intend the program to do. Let’s take, as an example, a
program that works like a calculator.
The flowchart is shown on the next page. The logic of the
program, as a whole, is clear. Details like what will
happen in the subroutines is glossed over at this stage.

De-bugging Tips
Symptoms and probable causes
.. Have you got rounding errors?
• Don’t do floating point calculations using integers
.. Are your calculations completely wrong?
• Initialise all your variables – don’t forget arrays!

٦٧

Chapter 4 - Introduction to Programming using FORTRAN 90

• Make sure your arrays are big enough to hold all the
data.
• Check that arguments passed to subroutines agree
exactly in size, type and position
.. Is the program’s logic working the way it should?
• You must not test floating point numbers for equality.
Example:
if (x == 1) then
does not work.
• Should you be using the absolute value of a
calculation? Example:
if (abs(x-y)<.00001) then
• Don’t have overly elaborate logical tests. It’s
probably better to test one or two things at a time
rather than this sort of thing….
if (((x.AND.y).OR.z > 10).OR.(.NOT. xx < 0)) then …
you might think you understood it when you wrote it, but
imagine trying to figure out what’s happening if the
program breaks!
Wise precautions and time saving tips
• Don't try and write a complicated program all at once.
Write it a piece at a time
and check that each piece is working correctly before
doing the next bit.
• Use ‘implicit none’ at the start of all programs and
subroutines.
• If you program needs data to be entered by the user,
you will save hours of time by taking the trouble to read
in the data from a file rather than have the user – ie
you key in the numbers. If you don’t want to read from a

٦٨

Chapter 4 - Introduction to Programming using FORTRAN 90

file then you can assign the numbers directly in the
program.
• Always do a test for ‘division by zero’ when dividing.
• BE NEAT! Good programming is like plain speaking –
there’s no mileage in tricky, difficult to read code.

How to find the bugs
Use a print statement to print out the values within the
program – take a look at this code…
x = x + 1
 z = x * y
print *, ‘debug statement 1 value of x ,y,z‘, x,y,z
 do ii =1,10
 z = x * ii
if (ii == 5) then
 print *, ‘debug do loop value of z when I = 5’ ,z
end if
 end do
if (z>2000) then
print *, ‘debug statement – z>2000 value of z ‘,z
 stop
end if

Notice how we can print out values of specific variables,
stopping the program if necessary.

٦٩

1

Program Structure هيكل العام لبرنامج فورترانال

 لاحظ المثال البسيط التالي :

program sum اسم البرنامج

real :: answer,x,y تعريف المتغيرات الرقمية الحقيقية

print *, "Enter two numbers" اظهار على الشاشة العبارة بين علامات

 الاقتباس ("")

read *, x من خلال لوحة المفاتيح قراءة معلومة في المتغير

read *, y من خلال لوحة المفاتيح قراءة معلومة في المتغير

answer=x+y اجراء عملية حسابية

print *, 'The total is ', answer طباعة ناتج العملية الحسابية

end (اخر خطوة في البرنامج) نهاية البرنامج

 وينتهي Programيبدأ بعبارة فالبرنامج بلغة البرمجة فورتران

 ENDبعبارة

Arithmetic العمليات الحسابية

 العلامات الحسابية هي

+,- plus and minus الجمع والطرح

*,/ multiply and divide الضرب والقسمة

** exponentiation (raise to the power) الأس

() brackets الاقواس

 وتخضع لاسبقيات الاحتساب وكما هو معمول به مع الرياضيات

Variables المتغيرات

 Integer :: (بدون كسور) لوصف المتغيرات الرقمية الصحيحة

 Examples (1 ,99 , -99 ,10)

 Real :: (بوجود كسور) لوصف المتغيرات الرقمية الحقيقية

 Examples (1.5 ,99.325 , -99.3 ,10.7)

X
Y

2

Intrinsic Functions الدوال الداخلية

توفر لغة البرمجة فورتران مجموعة كبيرة من الدوال الداخلية

 والتي تتيح للمبرمج استخدامها مباشرة منها على سبيل المثال :

sin(x) الجيب

cos(x) الجيب تمام

tan(x) الظل

atan(x) معاكس الظل

abs(x) القيمة المطلقة

sqrt(x) الجذر التربيعي

Int(x) للحصول على القيمة الصحيحة من عدد حقيقي

 Example int(7.4) 7

Mod(a/b) للحصول على باقي القسمة

 Example mod(17/4) 1

جميع الزوايا المستخدمة في الدوال الخاصة بالزوايا اعلاه يجب ان

 .Radian (1 radian = 180/Pi degrees) تكون

program trig مثال لتحويل قياس الزوايا

real :: a,pi

 print *,'Enter an angle between 0 and 90'

 read *, a

 pi=4.0*atan(1.0)

 print *,'the sine of ',a,' is ',sin(a*pi/180)

 end

Making decision اتخاذ القرار

 If statement

 الصيغة العامة لها هي :

If (condition) Then

 مجموعة الجمل في حالة تحقق الشرط

Else

 مجموعة الجمل في حالة عدم تحقق الشرط

Endif

3

 العلاقات المستخدمة في الشرط هي

== equal to للمساواة

/= not equal to لا يساوي

< less than اقل من

<= less than or equal to اقل من او يساوي

> greater than اكبر من

>= greater than or equal to اكبر من او يساوي

 Example

if (y > z) then

 الجمل المنفذة اذا تحقق الشرط

end if

The do loop

توفر لغة فورتران لتكرار جملة معينة او عدد من الجمل عدد من

 Do .. Loopالمرات من خلال استخدام

 الصيغة العامة

DO variable=sv,ev,step

 حيث ان

 Sv = start value القيمة الاولى

 Ev = end value القيمة الاخيرة

 Step = مقدار الزيادة بعد كل خطوة

 مع ملاحظة ان جميع القيم اعلاه يمكن ان تكون موجبة او سالبة

Example 1

 Do k = 1,10

 الجمل المكررة

 End do

 في المثال اعلاه تكرر الجمل عشرة مرات وتكون قيمة المتغير

 K (1,2,3,…..,10)

 في كل خطوة1 في كل خطوة من خطوات التكرار اي بزيادة

4

Example 2

 Do k = 1,10,2

 الجمل المكررة

 End do

 في المثال اعلاه تكرر الجمل خمسة مرات وتكون قيمة المتغير

 K (1,3,5,7,9)

 في كل خطوة2 في كل خطوة من خطوات التكرار اي بزيادة

Example 1

 Do k = -10,1,-1

 الجمل المكررة

 End do

 في المثال اعلاه تكرر الجمل عشرة مرات وتكون قيمة المتغير

 K (10,9,8,7,…..,1)

 في كل خطوة(1-) في كل خطوة من خطوات التكرار اي بزيادة

Arrays المصفوفات

 المصفوقات في البرمجة هي لحجز عدد متتالي من الخلايا في الذاكرة :

Examples :

 Real :: A(5) خلايامن النوع الرقمي الحقيقي 5لحجز

 ِ◌A(1)

A(2)

A(3)

A(4)

A(5)

 Integer :: B(20) خلية من النوع الرقمي الصحيح 20لحجز

5

 واستخداماتها من خلال كتابة برنامج بسيط (ايجاد مساحة المربع)90التعرف على واجهة لغة فورتران

To write anew FORTRAN program follow the following steps

1 – After executing Fortran 90 compiler the following screen will appear

2 – From File menu select NEW -> PROJECT WORKSPACE -> Console application after entering the project name then
choose Create

6

3 -The following screen will appear then choose New Source file

FILE
NAME

New
Source

7

4 – Write the source code then

 File -> save as -> file name

5 – Compile the source code by choosing

 Build Compile filename

6 – If the source program is error free then execute the program by choosing

 Build Execute program name

SUMMERY:

 To write a program using FORTRAN 90 programming language, follow the
following steps

SOURCE PROGRAM

AREA

8

End DO

1) Create a project workspace. FILE NEW Project Workspace

2) Write the source program. (Inside the source program area)

3) Compile the source program. BUILD COMPILE

4) Execute the program. BUILD EXECUTE

 امثلة محلولة
 ثم حول المخطط 100 1ارسم المخطط الانسيابي لايجاد مجموع الاعداد)1

 للغة البرمجة فورتران باستخدام

 Do ……. Loop

Start

Do K = 1,100

Sum=0

Sum = Sum+K

Write Sum

End

Program P1

Integer:: K,Sum

Do K = 1,100

 Sum = Sum + K

End do

Print *,Sum

End

End Do

 ارسم المخطط الانسيابي لحل المعادلة التالية ثم حول المخطط للغة البرمجة فورتران باستخدام

 Do ……. Loop Y = 7 + X – X3 + X5 - ………………………… Xn

Start

Y=7
S = 1

Do K = 1,n,2

Y = Y + S*XK

S = S * (-1)

Read X,n

Write Y

End

Program P2

Integer:: K,S

Real :: Y,X

Y = 7

S = 1

Read *,X,n

Do K = 1,n

 Y= Y + X**k
 S = -s

End do

Print *,Sum

End

9

End DO

 ثم حول المخطط للغة البرمجة فورتران باستخدام 100 1ارسم المخطط الانسيابي لايجاد مجموع الاعداد)2

 Do ……. Loop

Start

Do K = 1,100

Sum=0

Sum = Sum+K

Write Sum

End

Program P1

Integer:: K,Sum

Do K = 1,100

 Sum = Sum + K

End do

Print *,Sum

End
End Do

ارسم المخطط الانسيابي لحل المعادلة التالية ثم حول المخطط للغة البرمجة فورتران باستخدام) 3

 Do ……. Loop Y = 7 + X – X3 + X5 - ………………………… Xn

Start

Y=7
S = 1

Do K = 1,n,2

Y = Y + S*XK

S = S * (-1)

Read X,n

End Do

Write Y

End

Program P2

Integer:: K,S

Real :: Y,X

Y = 7

S = 1

Read *,X,n

Do K = 1,100

 Y= Y + Xk

 S = S * (-1)

End do

Print *,Sum

End

10

4(
 1 3 5 n
Y = - ---- + ---- – ---- ………………….. ----
 X X3 X5 Xn

For X = 2 , N = 7

n X K S Y

7 2 0

 1 -1 0 – (1 / 2)

 3 1 0 – (1 / 2) + (3/23)

 5 -1 0 – (1 / 2) + (3/23) - (5/25)

 7 1 0 – (1 / 2) + (3/23) + (5/25) + (7/27)

 9 -1

Y= – (1 / 2) + (3/23) + (5/25) + (7/27)

Program P2
Real :: X, Y
Integer :: K,S
Read *,X,n
Do K = 1 ,N.2
 Y = Y + K / Xk * s
 S = - S
Enddo
Print *, Y
End

11

5(
 1 2 3 4 n
Y = - ---- + ---- – ---- + --- ………………….. -------
 X X3 X5 x7 X2n-1

for X = 2 , N = 4

n X K S Y

4 2 0

 1 -1 0 – (1 / 2)

 2 1 0 – (1 / 2) + (2/23)

 3 -1 0 – (1 / 2) + (2/23) - (3/25)

 4 1 0 – (1 / 2) + (2/23) + (3/25) + (4/27)

 5 -1

Y= – (1 / 2) + (2/23) + (3/25) + (4/27)

Program P2
Real :: X, Y
Integer :: K,S
Read *,X,n
Do K = 1 ,N
 Y = Y + K / Xk * s
 S = - S
Enddo
Print *, Y
End

12

 لاداء المهام التالية:90) اكتب برنامج بلغة البرمجة فورتران 7

 اعداد مختلفة.10قراءة •
 ايجاد مجموع الارقام السالبة. •

 البرنامج :

 NUMنفرض ان العدد =

 Nsumمجموع الاعداد السالبة =

 Kعداد التكرار =

Program P1

Real :: Num , Nsum

Integer :: K

Nsum = 0

Do k = 1 , 10

 Read *,Num

 IF (Num < 0) Then

 Nsum = Nsum + Num

 ENDIF

Enddo

Print *," Nsum = ",Nsum

End

13

 لاداء المهام التالية:90) اكتب برنامج بلغة البرمجة فورتران 8

 اعداد مختلفة.10قراءة •
 ايجاد معدل الاعداد السالبة. •

 البرنامج :

 NUMنفرض ان العدد =

 Nsumمجموع الاعداد السالبة =

 Kعداد التكرار =

 Ncntعداد الارقام السالبة =

 Nsum / Ncntالمعدل =

Program P1

Real :: Num , Nsum

Integer :: K , Ncnt

Nsum = 0

Ncnt = 0

Do k = 1 , 10

 Read *,Num

 IF (Num < 0) Then

 Nsum = Nsum + Num

 Ncnt = Ncnt + 1

 ENDIF

Enddo

Print *," Naverage = ", Nsum / Ncnt

End

14

 لاداء المهام التالية:90) اكتب برنامج بلغة البرمجة فورتران 9

 اعداد مختلفة.10قراءة •
 ايجاد معدل الاعداد السالبة. •
 ايجاد معدل الاعداد الموجبة. •

 البرنامج :

 NUMنفرض ان العدد =
 Nsumمجموع الاعداد السالبة =
 Psumمجموع الاعداد الموجبة =
 Kعداد التكرار =
 Ncntعداد الاعداد السالبة =
 Pcntعداد الاعداد الموجبة =
 Nsum / Ncntمعدل الاعداد السالبة =
 Psum / Pcntمعدل الاعداد الموجبة =

Program P1

Real :: Num , Nsum

Integer :: K , Ncnt

Nsum = 0

Ncnt = 0

Do k = 1 , 10

 Read *,Num

 IF (Num < 0) Then

 Nsum = Nsum + Num

 Ncnt = Ncnt + 1

 Else

 Psum = psum + Num

 Pcnt = pcnt + 1

 ENDIF

Enddo

Print *," Naverage = ", Nsum / Ncnt , "Paverage ", Psum / Pcnt

End

15

Sumo = ةفرديمجموع الارقام ال
Sume = ةزوجيمجموع الارقام ال
Codd = فرديةعدد الارقام ال
Ceven = زوجيةعدد الارقام ال

Program EvenOdd
Integer :: k,Ceven,Codd
Real :: Sumo,Sume.Num(50)
Sumo = 0
Sume = 0
Codd = 0
Ceven = 0
Do k = 1,50
 Read *,Num(k)
End do
Do k = 1,50
 If (mod(Num(k)) = 0) then
 Sume = Sume + Num
 Codd = Ceven + 1
 Endif
 If (mod(Num(k)) .NE. 0) then
 Sumo = Sumo + Num
 Codd = Codd + 1
 Endif
Enddo
Write *,” odd Average = “,Sumo/Codd
Write *,”Even Average = “,Sume/Ceven
End

 رقم مختلف في مصفوفة وايجاد معدل الارقام الفردية والارقام الزوجية ثم حول 50ارسم المخطط الانيسابي لقراءة) 10
 Do …… loopالمخطط الى لغة البرمجة فورتران باستخدام

16

Sump = مجموع الارقام السالبة
Sumn = مجموع الارقام الموجبة
Cneg = عدد الارقام السالبة
Cpos = عدد الارقام الموجبة

Program P4
Integer :: k,Cpos,Cneg
Real :: Sump,Sumn.Num(50)
Sumn = 0
Sump = 0
Cneg = 0
Cpos = 0
Do k = 1,50
 Read *,Num(k)
End do
Do k = 1,50
 If (Num(k) >= 0) then
 Sump = Sump + Num(k)
 Cpos = Cpos + 1
 Endif
 If (Num(k) < 0) then
 Sumn = Sumn + Num(k)
 Cneg = Cneg + 1
 Endif
Enddo
Write *,”Average neg =
“,Sumn/Cneg
Write *,”Average pos =
“ S /C

 رقم مختلف في مصفوفة وايجاد معدل الارقام الموجبة والارقام السالبة ثم حول 50ارسم المخطط الانيسابي لقراءة)11
 Do … Loopباستخدام المخطط الى لغة البرمجة فورتران

17

 Do …Loop باستخدام ثم حول المخطط الى برنامج بلغة البرمجة فورترانعدد صخيخ ارسم المخطط الانسيابي لايجاد مفكوك اي)12

 درجة حرارة مختلفة وايجاد 50) كتابة وتنفيذ برنامج لقراءة 13
 المعدل (بدون استخدام المصفوفات)

program prog7

 Integer::C

 Real :: Temp,AVGTEMP,Sum

 Sum = 0

 do c = 1,50

 print *, "Please input Temp",C

 Read *, Temp

 Sum = Sum + Temp

 enddo

 Avgtemp = sum / 50

 print *, "Average = ",Avgtemp

end

Program Fact

Integer :: K,Num,Fact

Fact = 1

Do K = 2,Num

 Fact = Fact * K

End do

Print *,”Factorial =”,Fact

End

18

14(

 درجة حرارة مختلفة وايجاد 50 كتابة وتنفيذ برنامج لقراءة
 المعدل (باستخدام المصفوفات)

program prog8

 Integer::C

 Real :: Temp(50),AVGTEMP,Sum

 Sum = 0

 do c = 1,50

 print *, "Please input Temp",C

 Read *, Temp(c)

 enddo

 do c = 1,50

 Sum = Sum + Temp(c)

 enddo

 Avgtemp = sum / 50

 print *, "Average = ",Avgtemp

end

	Programming I -1
	Programming I -2

