o V0 dial Saala

University of Technology

Mechanical Engineering Department

Microprocessors and Microcontrollers

Prepared by:

Dr. Alaa Abdulhady Jaber

20039@uotechnology.edu.iq

Baghdad/Iraq

2017-2018

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
\

Course Outline

'Course Name: Microprocessors and | <l bswall 5 clatlaal) o Jj.dtp-ul
= Microcontrollers addal) * e
?Course Code' | ME395-2 395-2¢la | A 2
?Umts' 2 2 _ .-ui.u}ll
Hours per Week de gl clelud)
_Theoretical | Experimental | Tutorial e e T L
1 2 - - 2 1
Assessment criteria pil) yulaa
Final exam 60% %60 e Gladay)
Midterm exam 15% %15 had Cial (ladsf
Quizzes 10% %10 ddalia clilada)
Lab 10% %10 Sl 4y
Continuous assessment 5% %5 s 2
Aweék: :‘"‘ ‘M o ?Conte'}lits\ : s; NW' M ggm‘y',
Introduction to microprocessor: &
- Microprocessor architecture, 4 to 64 bit
architecture with detail on 32bit
- Microprocessor. bus syste%}% registers
orgar%;zatlon and pin conﬁg_uratlon
- Comparlson tween Complex e .
1 _instruction:, computers CISC and 48 clallaall (A e 1
2 ncduced instruction set computer RISC, 2
Prmcet’i:m earchltccture and Harvard
arclutecture
- Memory system organization, ROM,
RAM chips and their varieties.
- Addressing modes and their features,
paging and segmentation.
Microprocessor instruction set:
5 - Software instruction set, instruction 3
cycle, machine cycle and timing =
4 diagram. AR Cladaall & JYlPIh 4
S - Instruction set groups according to S
6 function: data transfer, arithmetic, 6
logic, branching, Stack operations, I/0
operations and machine control

Mechanical Engineering Dept.

Microprocessor and Microcontroller

Dr. Alaa Abdulhady Jaber

instructions.

- Assembly language programming,
assembler directives, assembly process,
LST and HEX files.

- Debugging assembly
programs.

- Introduction to C programming for
microprocessors and microcontrollers.

- Assembly and & language
programming.

language

Hardware interfacing:

uJMiMIMn&nd.ﬁJJIEJLLdl&}m

; - Interfacing memory ROM and RAM. - gk ‘_,L,_’hu Ll ;
- Hardware 1/O ports design.
- Memory mapped and 1/O mapped I/O.
Interrupts:
- Introduction to interrupt system.
? - Interrupt controllers with examples on 9
8259 programmable interrupt
controller.
Direct memory access: |
- Introduction to DMA system and its S) g gl gl s
10 features 10
- DMA controller with f>cxamyles on o
8237 DMA controller. «%é?&
Analogue to digital and Dlgltal " Al)
analogue conversion s ey) At G LAY J gas cullud
11 Al) Asad) il iy 11
- Types of ADC
- Types of DAC
Programmable pemgheral de_{_lc.cs
- The 8255 programgxable peripheral
%rface device _
12 8279 dr§pla$§aﬁi keyboard / /0 rAaa ypall 4.) Bl 12
13 1nf,erface dev1ce 13
- The s 8251 universal
synchmnousfasynchronous receiver
transmitter
Examples on computer system design Aladiuly daacall G galad) Cila gliia o AL
14 | using microprocessors :AR84) clallaall 14
Examples on embedded systems design | 4ali¥| & 48841 &f jlasall Glipks e Al
15 | using microcontrollers. Adaial) 15

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

References

1. Introduction to Microprocessors and Microcontrollers, by: John Crisp, 2"
Edition, Elsevier Newnes, 2004, USA.

2. The Intel Microprocessors, Architecture, Programming, and Interfacing,
by: Barry B. Brey, 8" Edition, Pearson Education, 2009, USA.

3. Inside the Machine, by: Jon Stokes, 2" Edition, no Starch Press Inc.,
2007, USA.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Lecture One

1.1 Introduction

The minimal hardware configuration of a microcomputer system is composed of
three fundamental components that are a central processing ‘uhlt (CPU), the
system memory, and some form of input/output o) mterface These

components are interconnected by multiple sets of lines g,%uped accoi‘ding to

their functions, and globally denominated the syste b uses.’An additional set of
components provide the necessary power and tlmmg synch,:omzatmn for system

operation. Figure 1.1 illustrates the mtegratlon of such a basu: structure.

System Memory
Data Program
Central B
Processing Unit [\ System Buses
3«@5 Vao fex Reset

vt

Power & Timing
Support

Figure 1.1: General architecture of a microcomputer system

The components of a microcomputer can be implemented in diverse ways. They

could be deployed with multiple chips on a board-level microcomputer or

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
integrated into a single chip, in a structure named microcomputer-on-a-chip, or
simply a Microcontroller. Nowadays most embedded systems are developed
around microcontrollers. Regardless of the implementation style, each
component of a microcomputer has the same specific function, as described
below.

Central Processing Unit (CPU): The CPU forms the heart of the
microcontroller system. It retrieves instructions from program memory, decodes
them, and accordingly operates on data and/or on peripheralsggﬁjevices in the
Input-Output subsystem to give functionality to the system,

System Memory: The place where programs and. data ar stored to zbe@%ccessed

s 3&:33% S
mernory “elements are

by the CPU is the system memory. Two types

memory stores programs in the form of a sequence 6::,\mstruct10ns Programs
dictate the system operation. Data Memory stores data to be operated on by
programs. & e,

Input/Output subsystem: The 1/0 su%&ystem also called Peripheral Subsystem

includes all the components or pegpherals that allow the CPU to exchange

buses perfor% different functions. Based on their function the system bus lines

are sub-divided into address bus, data bus, and control bus.

1.2 Microcontroller Versus Microprocessor
Before we delve any deeper into the structure of the different components of a
microcomputer system, let’s first establish the fundamental difference between

microprocessors and microcontrollers.

Mechanica] Engineering Dept, Microprocessor and Microcon troller Dr. Alaa Abdulhady Jaber
1.2.] Microprocess oy Units
a2

i o ,% e ,‘; <:}§: A
. | Figure L.2: Currentally available microprocessor
A - ; =0 S

:’g}':.}":?{. : k. zﬁ;:,_ \ .:-é,m ey j -
322 Microcontroller Unizs
T e s@» Y

Mechanical Engineering Dept, Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
The assortment of COmponents embedded into a microcontro]ler allows for

timers, input/output (I/0) ports, interrupt handlers, and data converters are
among those commonly found in most microcontrollers. The provision of such
an assortment of resources inside the same chip is what has gained them the
denomination of computers-on-a-chip. Figure 1.3 shows a typical

microcontroller configuration, N\ ¢

T

Vdd Vss

—...—..—.-—.-—-——.._-._

Data
Converters

Interface

__ F]gure 1.3: Structure of a typical microcontroller

Microcontrﬁjl_iers share a number of characteristics with general purpose
microprocessérs. Yet, the core architectural components in a typical MCU are
less complex and more application oriented than those in a general purpose
microprocessor. Microcontrollers are usually marketed as family members,

Each family is developed around 3 basic architecture which defines the common

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

amount of on-chip data and program memory and the assortment of on-chip
peripherals. There are literally hundreds, perhaps thousands, of microprocessors
and microcontrollers on the market. Table 1.1 shows a very small sample of

microcontroller family models of different sizes from six companies.

Table 1.1: A sample of MCU families/series

Company 4-bits 8-bits 16-bits 32-bits

EM Microelectronic EMG6807 EM6819

Samsung S3P7xx S3F9xxx S3FCxx S3FN23BXZZ

Freescale semiconductor 68HCI11 68HC12

Toshiba TLCS-870 TLCS-900/L1 TLCS-900/H1

Texas instruments MSP430 TMS320C28X
TMS320C24X Stellaris line

Microchip PICIX PIC2x PIC32

. N
st k-

1.3 Microcontroller Applications
Basically, a microcomputer (or mlcrocontroller) exéc?uies a user program which
is loaded in its program memory. Under the control of this program, data are
received from external devices:(inputs), mampul'ated and then sent to external

devices (outputs). For example; 1microcontroller-based fluid-level control

system, the fluid level 1s read b)f%«jg é mlé%m:omputer via a level-sensor device

¥

If the fluid level is low, thg mlcrocomputer operates a pump to draw more fluid

from the rese:;vmr m order o keep the fluid at the required level. Figure 1.4
a% e

\ T“-block dlagrﬁm of our simple fluid-level control system. The system
. .gure\vzl;,él 1s a very simplified fluid-level control system. In a more
sophisticate&_;@gystem, we may have a keypad to set the required fluid level, and
a liquid-crystﬁl display (LCD) to display the current level in the tank. Figure 1.5
shows the block diagram of this more sophisticated fluid-level control system.

We can make our design even more sophisticated (Figure 1.6) by adding an
audible alarm to inform us if the fluid level is outside the required value. Also,
the actual level at any time can be sent to a PC every second for archiving and
further processing. For example, a graph of the daily fluid-level changes can be

plotted on the PC. As you can see, because the microcontrollers are

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
programmable, it is very easy to make the final system as simple or as

complicated as we like.

Input j=t-

Level

sensor
Microcontroller

Output

Reservoir

Figure 1.4: Microé@gtr ler-based fluid-level control system

o s -

Output }—» LCD

Input j=

Microcontroller

Output
input

Reservoir

Figure 1.5: Fluid-level control system with a keypad and an LCD

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Lco

Qutput

; 4

Input &

Microcontroller

QOutput
Input

0O
0O

Keyboard

Figure 1.6: More sophlsucat

1.4 Explanation of Terms

Before we go on, it is necessary'to understand some basic terms.
&ﬁg%%
e Bitis an abbrevnanon for th 1 'enﬁ*“bmary digit. A binary digit can have

only two valuesg 9-'1_(;1_1 are represented by the symbols 0 and 1, whereas a
deg}mal di tecan haVe 10 values, represented by the symbols 0 through 9.
_The bltkgvzﬁues a' : gasﬂy implemented in electronic and magnetic media

—statg dm@ges whose states portray either of the binary digits 0 and

or not ¢

o Address is a pattern of 0’s and 1’s that represents a specific location in

memory or a particular /O device. An 8-bit microcontroller with 16

address bits can produce 2'® unique 16-bit patterns from

0000000000000000 to 1111111111111111, representing 65,536 different
address combinations (addresses 0 to 65,535).

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
e Arithmetic -logic unit (ALU) is a digital circuit that performs arithmetic
and logic operations on two n-bit digital words. The value of » for
microcontrollers can be 8-bit or 16-bit. Typical operations performed by
an ALU are addition, subtraction, and comparison of two n-bit digital

words. The size of the ALU defines the size of the microcontroller. For

example, an 8-bit microcontroller contains an 8-bit ALU.

e Bit size refers to the number of bits that can be processed s_imultaneously

by the basic arithmetic circuits of a mlcrocontroller; gA N :';nber of bits

taken as a group in this manner is called,a word For exa.mple an 8-bit

"

microcontroller can process an 8-bit word.

e Bus consists of a number of conductors (w1res) o,;;gamzed to provide a

means of communication among dlﬁ‘er,ent ele eqts in a microcontroller

system. The conductors in a bus can’m’_ve gr0uped in terms of their

functions. A mlcrocontroiler normally has‘an address bus, a data bus, and

. Clock’iij)s analogous to human heart beats. The microcontroller requires
synchronization among its components, and this is provided by a clock or
timing circuits.

o Timers are important parts of any microcontroller. A timer is basically a
counter which can be stopped or started by program control. Most timers

can be configured to generate an interrupt when they reach a certain

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

count. The interrupt can be used by the user program to carry out accurate
timing-related operations inside the microcontroller.

® Reset Input is used to reset a microcontroller externally. Resetting puts
the microcontroller into a known state such that the program execution
starts from a known address. An external reset action is usually achieved
by connecting a push-button switch to the reset input such that the
microcontroller can be reset when the switch is pressed.

* Interrupts are very important concepts in microeontrolle}:% An interrupt
causes the microcontroller to respond to external; and mtemal (e.g. a
timer) events very quickly. When an interrupt ocgurs the mlcrocontroller

leaves its normal flow of program executlon ar;d _]lepS te a{specxal part

program code inside the ISR is executed arﬁi uﬁen return from the ISR,

microcontroller if the supply voltage falls below a nominal value. Brown-
out detectors are s@fety features and they can be employed to prevent
unpredlctable operatlon at low voltages

. Supply Voltag

“-‘_-___Mt)st mlcrocontrollers operate with the standard logic

\ oltage of +5‘3\/ S’ome microcontrollers can operate at as low as +2.7 V

ang‘some W111 telerate +6 V without any problems. The manufacturers’
o~
data sheets have to be checked check about the allowed limits of the

power supply voltage.

L5 Bits, bytes and other things

All the information entering or leaving a microprocessor is in the form of a
binary signal, a voltage switching between the two bit levels 0 and 1. Bits are
passed through the microprocessor at very high speed and in large numbers and

we find it easier to group them together.

Mechanicg] Engineen‘ng Dept, Microprocessor and Microcop troller Dr. Alaa Abdulhady Jaber
Nibble: A group of four bijtg handled a5 5 single lump. It is hayr a byte,

What theijr burpose is does pot matter,

Megagyte(MBOrMb) This is a kilo kilobyte or 1024 1024 bytes,

Gigabyte (Gb): This is 1024 megabytes which jg 230 or 1073 741 824 bytes. In

general engineering, giga means one thousand milljon (10%).

Terabyte (TB or Tb): Terabyte is a mega megabyte or 240 op 1 099 511 600
000 bytes (it is not norma Tera which js = 10",

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Lecture Two

2.1 Central Processing Unit
The Central Processing Unit (CPU) in a microcomputer system is typically a
microprocessor unit (MPU) or core. The CPU is where instructions become
signals and hardware actions that command the microcomputer operation. The
minimal list of components that define the architecture of a CPU include the
following: '
e Hardware Components:
- An Arithmetic Logic Unit (ALU)
- A Control Unit (CU)
- A Set of Registers %,
- Bus Interface Logic (BIL)

« Software Components':

- Instruction Set

- Addressing Modes

The instructions and addre§smg modes will be defined by the specifics of the

hardware @LU and CU unlts 2In this section we concentrate on the hardware

to operate z*fs-va stored program computer. The sequence of instructions that

make a program are chosen from the processor’s instruction set. A memory
stored program dictates the sequence of operations to be performed by the
system. In the processing of data, each CPU component plays a necessary role
that complements those of the others.

The collection of hardware components within the CPU performing data

operations is called the processor’s Data Path. The CPU data path includes the

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

ALU, the internal data bus, and other functional components such as floating-
point units, hardware multipliers, and so on. The hardware components
performing system control operations are designated Control Path. The control
unit is at the heart of the CPU control path. The bus control unit and all timing
and synchronization hardware components are also considered part of the

control path.

-
M e EE O S SN mEm R RN R R W EEe F s s e n e s s s ol
2

. igur‘égé'z.l: Minimal architectural components in a simple CPU

2.1.1 Control Unit

The control unit (CU) governs the CPU operation working like a finite state
machine that cycles forever through three states: fetch, decode, and execute, as
illustrated in Figure 2.2. This fetch-decode-execute cycle is also known as
instruction cycle or CPU cycle. The complete cycle will generally take several

clock cycles, depending on the instruction and operands. It is usually assumed

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
as a rule of the thumb that it takes at least four clock cycles.3 Since the
instruction may contain several words, or may require several intermediate

steps, the actual termination of the execution process may require more than one

instruction cycle.

Reset

~ Execute

g:} i FEREE
Figure 2.2: States in co'hﬁ‘ql_._.unit operation: fetch, decode, and execute

L

Several CPU blocks partlclpate" in the fétch-decode-execute process, among

which we find specxal pggose rcglsters PC (program counter) and IR
(mstructlon reglster) (see Flgui"é 2.1). The cycle can be described as follows:

l Fetch State:

"urmg the fetch state a new instruction is brought from

'*men;lery 1nto,., th&»CPU through the bus interface logic (BIL). The program

er (RC) provxdes the address of the instruction to be fetched from
memory The newly fetched instruction is read along the data bus and
then stored i in the instruction register (IR).

2- Decoding State: After fetching the instruction, the CU goes into a
decoding state, where the instruction meaning is deciphered. The decoded
information is used to send signals to the appropriate CPU components to
execute the actions specified by the instruction.

3- Execution State: In the execution state, the CU commands the

corresponding CPU functional units to perform the actions specified by

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

the instruction. At the end of the execution phase, the PC has been

incremented to point to the address of the next instruction in memory.
After the execution phase, the CU commands the BIL to use the information in
the program counter t0 fetch the next instruction from memory, initiating the
cycle again. The cycle may require intermediate cycles similar to this one
whenever the decoding phase requires reading (fetching) other values from
memory. This is dictated by the addressing mode use in the instruction, as it will
be explained later.
Being the CU a finite state machine, it needs a Reset s:gna[to 'mtlate the cycle

for the first time. The program counter is hardmred__:to upein reset “load the

i

memory address of the first instruction to be fetche &_hat i hoW’%fhe first cycle

begins operation.

2.1.2 Arithmetic Logic Unit

The arithmetic logic unit (ALU) is the CPU cé:mponent where all logic and

arithmetic operations supporté% "‘by the system are performed Basic arithmetic
operations such as addition, subtraétrm;, and complement, are supported by
most ALUs. So may als chlude h z dware for more complex operations such as

multnphcatnon and dlvmgn although in many cases these operanons are

perfom%?féd “the&ource operands and the destination of the result. The width of
the operands accéfﬁted by the ALU of a particular CPU (data path width) is
typically used as an indicator of the CPU computational capacity. When for
example, a microprocessor is referred to as a 16-bit unit, its ALU has the
capability of operating on 16-bit data. The ALU data width shapes the CPU data
path architecture establishing the width of data bus and data registers.

2.1.3 Bus Interface Logic

The Bus Interface Logic (BIL) refers to the CPU structures that coordinate the

interaction between the internal buses and the system buses. The BIL defines

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
how the external address, data, and control buses operate. In small embedded
systems the BIL is totally contained within the CPU and transparent to the
designer. In distributed and high performance systems the BIL may include
dedicated peripherals devoted to establish the CPU interface to the system bus.
Examples of such extensions are bus control peripherals, bridges, and bus
arbitration hardware included in the chip set of contemporary microprocessor

systems.

2.1.4 Registers

CPU registers provide temporary storage for data, memory< addresses and

control information in a way that can be qulckly accessed. They are. the fastest

form of information storage in a computer system while at'the - same time they

are the smallest in capacity. Register contents'is volanle ”meanmg that it is lost

when the CPU is de-energized. CPU regls_ters
%

n be broadly classified as

general purpose and specialized

General purpose registers (%PR) are those not tied to specific processor

functions and may be used to hold data,: varlables or address pointers as needed.

Based on this usage, some authors classify them also as data or address

registers. Depending on the"ggoeessdr architecture, a CPU can contain from as

A% : . : T
Spec:al purpose régtsters perform specific functions that give functionality to

the CPU." he most'basic CPU structure includes the following four specialized

registers:
¢ Instruction Register (IR)
e Program Counter (PC), also called Instruction Pointer (IP)
e Stack Pointer (SP)
e Status Register (S)
Instruction Register (IR)

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
This register holds the instruction that is being currently decoded and executed
in the CPU. The action of transferring an instruction from memory into the IR is
called instruction fetch. In many small embedded systems, the IR holds one
instruction at a time. CPUs used in distributed and high-performance systems
usually have multiple instruction registers arranged in a queue, allowing for
concurrently issuing instructions to multiple functional units. In these

architectures the IR is commonly called an instruction queue.

Program Counter (PC)

L

This reglster holds the address of the mstructlon to be fetched from %ﬁemory by

directly addressable by the CPU.
Stack Pointer (SP) %

) - \ Y 4 W .)
The stack is a specialized memory segment used for temporarily storing data
items in a particular sequerice. \

Status Register ({SE)% %
. T b 4

The @gﬁgtus AI:i'*;""tfgis‘uf:r,:f-f_';;ils"E ' called the Processor Status Word (PSW), or Flag
Regzster contam? set-‘“ of indicator bits called flags, as well as other bits
controllm@tﬁe 6PU status. A flag is a single bit that indicates the occurrence of

a partlcular c.ondltlon.

2.2 System Buses

Memory and I/O devices are accessed by the CPU through the system buses. A
bus is simply a group of lines that perform a similar function. Each line carries a
bit of information and the group of bits may be interpreted as a whole. The
system buses are grouped in three classes: address, data, and control buses.

These are described next.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

2.2.1 Data Bus

The set of lines carrying data and instructions to or from the CPU is called the
data bus. A read operation occurs when information is being transferred into
the CPU. A data bus transfers out from the CPU into memory or into a
peripheral device, is called a write operation. Note that the designation of a
transfer on the data bus as read or write is always made with respect to the CPU.

This convention holds for every system component. Data bus lines are generally

bi-directional because the same set of lines allows us to can'y iﬁférmation to or

The CPU mfgeracts WIfh only oﬁe memory register or peripheral device at a time.

Each%ﬁreglster e;ther;_n memory or a peripheral device, is uniquely identified

' -'gentﬁeré%alled address. The set of lines transporting this address

mformatlon form the address bus. These lines are usually unidirectional and
coming out ’%from the CPU. Addresses are usually named in hexadecimal
notation.

The width of the address bus determines the size of the largest memory space
that the CPU can address. An address bus of m bits will be able to address at
most 2" different memory locations, which are referred to by hex notation. For
example, with a 16-bit address bus, the CPU can access up to 2!¢ = 64K
locations named 0x0000, 0x0001, . . ., OxFFFF. Notice that the bits of the

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
address bus lines work as a group, called addyess word, and are not considered

meaningful individually.

2.2.3 Control Bus

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Lecture Three

3.1 Memory Organization

The memory subsystem stores instructions and data. Memory consists of a large
number of hardware components which can store one bit each. These bits are
organized in »-bit words, working as a register, usually referred to as cell or
location. The contents of cells is a basic unit of 1nformat16n called memory
word. In addition, each memory location is identified b a unrque 1dent1ﬁer its
memory address, which is used by the CPU to eltﬁer r.e\ad'or ‘write over the

&'S

memory word stored at the location. In general a memory umt con51st1ng of m

customary to indicate a number followed by“b or%' ’B"* respectlvely Thus, we
speak of 1Mb (one Mega Blts) and IMB (one Mega Bytes) memories to refer to
1M x 1 and 1M x 8 cases. &

Usually, addresses are sequentlajly numbered as illustrated in Figure 3.1.
i

However, in a spemﬁc 'CI% model ‘some addresses may not be present. The

example éi"n_the figt égz§hoiy;s ai“ﬁ'emory module of 64K cells, each storing an 8-
bit w rd (byte)}\ formmg”" 64 kllo-byte (64KB) memory. In the illustration, for

example, the. cell at addréss OFFFEh contains the value 27 h. The CPU uses the

address bus tp select only the cell with which it will interact. The interaction
with the confjggnts is realized through the data bus. In a write operation, the CPU
modifies the information contained in the cell, while in a read operation it
retrieves this word without changing the contents. The CPU uses control bus
signals to determine the type of operation to be realized, as well the direction in
which the data bus will operate—remember that the data bus lines are

bidirectional.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Memory Memory
Addre5\ Memory Cell
ress Bus >
FFFE| 27
| —_th“\\ M
- . emory
CPU [ContolBus M . Word
0002 4A
i
S— oooo| 18
System
Buses

Figure 3.1: Memory structure

3.2 Memory Types

Memory is an important part of a m1crocontr lie':__ system Dependmg on the

type used, we can classify memories mto ‘tWo gg;ou Stprogram memory and

data memory. Program memory stores the programs ‘written by the programmer
and this memory is usually non—v,o_!otlle, i.e. data are not lost after the removal
of power. Data memory is wHér_e the%q;ri%orary data used in a program are

stored and this memory.is usually volatile, i.e. data are lost after the removal of

power.

There aregbaswally'si;_f type .of memories, summarized as follows:

Tradltlonally, %mory technology has been divided into two categories:

o Vf:;lac‘;f%w ThlS 1s memory that only works as long as it is powered. It loses its
stored \gglue when power is removed, but can be used as memory for
temporar;f‘%zdata storage. Generally, this type of memory uses simple
semiconductor technology and is easier to write to from an electrical point of
view. For historical reasons it has commonly been called RAM (Random
Access Memory). A slightly more descriptive name is simply ‘data memory’.

e Non-volatile: This is memory that retains its stored value even when power is

removed. On a desktop computer this function is achieved primarily via the

hard disk, a huge non-volatile store of data. In an embedded system it is

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
achieved using non-volatile semiconductor memory. It is a greater challenge
to make non-volatile memory, and sophisticated semiconductor technology is
applied. Generally, this type of memory has been more difficult to write to
electrically, for example in terms of time or power taken, or complexity of
the writing process. Non-volatile memory is used for holding the computer
program and for historical reasons has commonly been called ROM (Read-

Only Memory). A more descriptive name is ‘program memory’.

of memories as follows:

i,

3.2.1 Random Access Memory

' %§§‘
cannot retain data in the absence of power e data are**lost aﬂer the removal of

power. Most mlcrocontrollers have some amount of ‘internal RAM. Several

kilobytes are a common amount although some microcontrollers have much

f‘i?

*_.‘L«c &

Static memory (SRAM) is faster than dynamlc memory (DRAM) Also, SRAM

consumes less power than D AM. SRAM is more expensive, since it takes more
\‘i.s’ i

5 o
space oz;m}lmon?

RAM
Random Access Memory

Static RAM Dynamic RAM

Fast - expensive Low power- high capacity
Figure 3.2: The two types of RAM

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
3.2.2 Read Only Memory

Read only memory (ROM) usually holds program or fixed user data. ROM is
non-volatile. If power is removed from ROM and then reapplied, the original
data will still be there. ROM memories are programmed at factory during the
manufacturing process and their contents cannot be changed by the user. ROM
memories are only useful if we have developed a program and wish to order

several thousand copies of it, or if we wish to store some configuration data.

3.2.3 Programmable Read Only Memory

programmed in the field, often by the end user, usmg a%’devwe called a PROM
programmer. Once a PROM has been programméd,i its oontents cannot be

changed. PROMs are usually used in low-productmn appllcatlons where only

EPROM can be programmed usmg a Suxgable programming device. EPROM
memories have a small clear glass wmdow on the top of the chip where the data

can be erased unde strong u“ffravrolet light. Once the memory is programmed,

reprogrammed until the user is satisfied with the program. Some versions of
EPROMs, known as one-time programmable (OTP), can be programmed using a
suitable programmer device but these memories cannot be erased. OTP
memories cost much less than the EPROMs. OTP is useful after a project has
been developed completely and it is required to make many copies of the

program memory.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Figure 3.3: Erasable Programmable Read Only Memory (EPROM)

volatile memory. These memories can be erase and _alsb be reprogrammed
using suitable programming devices. EEﬁROMs ar useﬁ ‘:%ae":save configuration
information, maximum and minimum values, 1Hent1%icat10n data, etc.

3.2.6 Flash EEPROM . ?;-

This is another version of EEPROM,type memory. This memory has become

popular in microcontroller apphcat;ons and is generally used to store the user
program. Flash EEPRON 1S non- volatlle and is usually very fast. The data can
be erased.and then reprogrﬁmmc:d using a suitable programming device. These
memorles can ealso be prqgrammed without removing them from their circuits.

Some r%?focontrollersmave only 1 KB flash EEPROM while some others have

3.3 Microcontroller Architectures

To interact with memory, there must be two types of number moved around: the
address of the memory location required and the actual data that belongs in the
location. These are connected in two sets of interconnections, called the
address bus and the data bus.

A simple way of meeting the need just described is shown in Figure 3.4. It is

called the Von Neumann structure or architecture, after its inventor. The

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
computer has just one address bus and one data bus, and the same address and
data buses serve both program and data memories. The input/output may also be
interconnected in this way and made to behave like memory as far as the CPU is
concerned. The Von Neumann structure js simple and logical, and gives a
certain type of flexibility. The addressable memory area can be divided up in
any way between program memory and data memory. However, it suffers from
two disadvantages. One is that it is a ‘one size fits all’ approach. It uses the
same data bus for all areas of memory, even if one area deals w_i__tﬁ large words
and another deals with small. It also has the problem of all: things that are

shared. If one person is using it, another can’t. Th r__ei"’t”igéi‘ if t\hé\:"&CPU is

i

accessing program memory, then data memory must be idle and vice versa.

: ."Memory accessing based on Von Neumann architecture

An altemativé to the Von Neumann structure is seen in Figure 3.5. Every
memory area gets its own address bus and its own data bus. Because this
structure was invented in the university of the same name, this is called a
Harvard structure. In the Harvard approach we get greater flexibility in bus size,
but pay for it with a little more complexity. With program memory and data
memory each having their own address and data buses, each can be 2 different

size, appropriate to their needs, and data and program can be accessed

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
simultaneously. On the minus side, the Harvard structure reinforces the
distinction between program and data memory, even when this distinction is not
wanted. This disadvantage may be experienced, for example, when data is

stored in program memory as a table, but is actually needed in the data domain.

~ Address

3.4 Complex Instruﬁ;;-,tiqxg Set (f%%mputer and the Reduced Instruction

Set Computﬁ!’ |

Sﬁe way or another from this instruction set. We want

computer toéxc;cuféé code as fast as possible, but how to achieve this aim is not
always an’ o‘bvno.us matter. One approach is to build sophisticated CPUs with
vast mstruch%n sets, with an instruction ready for every foreseeable operation.
This leads to the CISC, the Complex Instruction Set Computer. A CISC has
many instructions and considerable sophistication. Yet the complexity of the
design needed to achieve this tends to lead to slow operation. One characteristic
of the CISC approach is that instructions have different levels of complexity.
Simple ones can be expressed in a short instruction code, say one byte of data,

and execute quickly. Complex ones may need several bytes of code to define

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

them and take a long time to execute. Another approach is to keep the CPU very
simple and have a limited instruction set. This leads to the RISC approach — the
Reduced Instruction Set Computer. The instruction set, and hence overall
design, is kept simple. This leads to fast operation. One characteristic of the
RISC approach is that each instruction is contained within a single binary word.
That word must hold all information necessary, including the instruction code
itself, as well as any address or data information also needed. A further
characteristic, an outcome of the simplicity of the approach;;is that every

instruction normally takes the same amount of time to execute.

3.5 8,16, or 32 Bits?
People are usually confused for maklng a demszon between 8’ 16 or 32 bits of

microcontrollers. It is important to reahze that the number of b1ts Just refers to

........

precision of mathematical operations carried out by the CPU.

In general, 8-bit microcontrollfegs*ﬁqge been around since the first days of the
microcontroller development. Theyare c'he;}.), easy to use (only small package
size), low speed, and/can:be useléii"~in most general-purpose control and data
mampulation operatlons For example it is still very efficient to design low- to

medlum-speeg contro] systems-;’(e g. temperature control,

\\\\\

fluid- level control or. robotlcs applications) using 8-bit microcontrollers. In

such apphct; ns, ‘low cost is more important than high speed. Many

commercial and industrial applications fall into this category and can easily be
designed usn%’g standard 8-bit microcontrollers.

Microcontrollers of 16 and 32 bit on the other hand usually cost more, but they
offer much higher speeds, and much higher precision in mathematical
operations. These microcontrollers are usually housed in larger packages (e.g.
64 or 100 pins) and offer much more features, such as larger data and program
memories, more timer/counter modules, more and faster A/D channels, more

I/O ports, and so on. Microcontrollers of 32 bit are usually used in high-speed,

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

real-time digital signal processing applications, where also high precision is a
requirement, such as digital image processing, digital audio processing, and so
on. Most consumer products, such as electronic games and mobile phones, are
based on 32-bit processors as they demand high-speed real-time operation with
colour graphical displays and with touch-screen panels. Other high-speed
applications such as video capturing, image filtering, video editing, video
streaming, speech recognition, and speech processing all require very fast 32-bit
processors with lots of data and program memories, and Verw;ﬁ_igh precision
while implementing the digital signal processing algorithms. X

i,
c N
L

« _Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
\

Lecture Four

4.1 Programming Langusages
The inputs that cause a microprocessor to perform a specific ac;pon are called

instructions and the collection of instructions that the mlcroprocessor will

recognize is its instruction set. The form of the 1nstruct10n set depends on the

out a particular task is called a program.
Y i,
Microprocessors work in binary code; ho __::ever 1[_15tru

code are referred as machine code. Writing a program in such a code requires
good skills and it is very tedlous process. It IS prone to errors because the
program is just a series of Os and ls and the instructions are not easily

understood from just lookmg at tge patterns An alternative way is to use an

the mstruc§ Qn Also, using assembly language is less likely to be disposed to

errors than the binary patterns of machine code programming. However, the
program written in assembly language is still needed to be converted into
machine code since it is the only code that the microprocessor will recognize.
This conversion can be achieved by hand using manufacture's datasheets, which
list the binary code for each assembly code. However, computer programs are
available to do the conversion, such programs are referred to as assembler

programs.

L4

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

High-level languages are available, which provide a type of programming
language that are easily describing the required operation. Examples of such
languages are BASIC, C, FORTRAN, and PASCAL. Such languages have
still required to be converted into machine code, by a computer program, in
order for the microprocessor to be able to use. Additionally, programs written in
high-level languages usually need more memory to store them when they have
been converted into machine code and thus tend to take longer to run than

programs written in assembly language.

4.2 The Five Programming Steps

steps, these are:

1. Initialization Step §
The purpose of the Initialization Step is to establlsh the environment in
which the program will run: 1 y

2. Input Step

Almost every com

existing state of info nﬁinon process it in some way, and show the new state

of that, mforma ion. % y;

3. Process Steg

once ther\mpl% sfrom the sensors is received, some parts of the code must be

responslb ’%f&;g%determmmg whether the sensors are detecting what it used

for or not
4. Output Step
After the Process Step has finished its work, the new value is typically
output on some display device.
5. Termination Step
The Termination Step has the responsibility of “cleaning up™ after the

program is finished performing its task.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
4.3 Programming Arduino Microcontroller
Arduino is an open-source microcontroller that enables programming and
interaction; it is programmed in C/C++ with an Arduino library to allow it to
access the hardware. This allows for more flexible programmability and the
ability to use electronics that can interface with Arduino. The basic Arduino

programming functions are discussed in the following.

structure

The basic structure of the Arduino programmmg language is falrly S mple and

:'5, englose blocks

of statements.

void setup ()

{

statements;

}
void loop ()

{

statements;

requlred for e program to work. The setup function should follow the
declaration of any variables at the very beginning of the program. It is the first
function to run in the program, is run only once, and is used to set pinMode or
initialize serial communication.

The loop function follows next and includes the code to be executed
continuously — reading inputs, triggering outputs, etc. This function is the core

of all Arduino programs.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
setup ()

The setup () function is called once when your program starts. Use it to
initialize pin modes, or begin serial. It must be included in a program even if

there are no statements to run.

void setup ()

{
pinMode (pin, OUTPUT); // sets the 'pin’ as output

|

loop () ’@%

»r?

respond, and control the Arduino board.

void loop ()
{

..'?\{ B,

digitalWrite (pin, HIGH); //fiirns 'pin’ on

delay (1000); :
d1g1talw%te (pin; | OW)
delay (1000%, \

// pauses for one second

/ turns 'pin’ off
" // pauses for one second

functiori%%__
A function is'a block of code that has a name and a block of statements that are
executed when the function is called. The functions void setup() and void
loop() have already been discussed and other built-in functions will be
discussed later.

Custom functions can be written to perform repetitive tasks and reduce clutter in
a program. Functions are declared by first declaring the function type. This

is the type of value to be returned by the function such as 'int' for an

+ Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

integer type function. If no value is to be returned the function type would be
void. After type, declare the name given to the function and in parenthesis any

parameters being passed to the function.

type functionName (parameters)

{
statements;

|

&%la}é‘value ina

i
A

egﬂﬁ%__lOCal variable

The following integer type function delayVal() is used to %iet
program by reading the value of a potentiometer;".I't_;ﬁr_;s'f de
v, sets v to the value of the potentiometer which gié}gs a ber between 0-

1023, then divides that value by 4 for a final ifalueff}bet\ireéﬁ%%-% 5, and finally

int delayVal()
{

int v; /[create temporary variable 'v’
% // ré?ﬁd potentiometer value

: E%f%converts 0-1023 to 0-255

Curly bracesh':"?‘?(also referred to as just "braces" or "curly brackets") define the
beginning and end of function blocks and statement blocks such as the void

loop () function and the for and if statements.

type function()
{

statements;

" Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

}

An opening curly brace { must always be followed by a closing curly brace }.
This is often referred to as the braces being balanced. Unbalanced braces can
often lead to cryptic, impenetrable compiler errors that can sometimes be hard

to track down in a large program.

The Arduino environment includes a convenient feature to cheg%kgihe balance of
curly braces. Just select a brace, or even click the insertion %giﬂ%%mmediately

following a brace, and its logical companion wi%x_be highli%}gte i B

: semicolon

A semicolon must be used to end a s%r&em g.nii%;s_e arate elements of the

program. A semicolon is also used to separaté Qalgemel;xtsgifi a for loop.

- W B, L
int x = 13;// declares varm’@ié&ggﬂ as the inte
" N

Note: Forgetting to end a line in :Egaﬁlicolbn will result in a compiler error. The

error text may be obviﬁ'ﬁgviéﬁng refer to a missing semicolon, or it may not. If an
S . N .
impenetrable orgé"é@;pgi%%ﬂlgggcal compiler error comes up, one of the first

D, : ; .
missing semicolon, near the line where the compiler

things_to cheg;(is ggg

complained;
P bloék&comments

Block comments, or multi-line comments, are areas of text ignored by the
program and are used for large text descriptions of code or comments that help
others understand parts of the program. They begin with /* and end with */ and

can span multiple lines.

/* this is an enclosed block comment don’ t forget the closing
comment - they have to be balanced!

' Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

*f

Because comments are ignored by the program and take no memory space they
should be used generously and can also be used to “comment out” blocks of

code for debugging purposes.

Il line comments
Single line comments begin with / and end with the next line of code. Like

block comments, they are ignored by the program and take no memo

// this is a single line comment

reminder.

variables \ .
A variable is a way of naming an%stormga numerical value for later use by the
program. As their narnes _f_%&e suggests, variables are numbers that can be
contmualLy changed as opposed to constants whose value never changes. A
vana‘l:__gl.e need to be @cf@wd and optionally assigned to the value needing to be
ggi'The %uowm"%f 0

store “code declares a variable called inputVariable and then

assigns i %ue oBtamed on analog input pin 2:

int inputVai*%ble =(; // declares a variable and
// assigns value of 0

inputVariable = analogRead (2); // set variable to value of
// analog pin 2

' Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
‘inputVariable’ is the variable itself. The first line declares that it will contain
an int, short for integer. The second line sets the variable to the value at analog
pin 2. This makes the value of pin 2 accessible elsewhere in the code.

Once a variable has been assigned, or re-assigned, you can test its value to see if
it meets certain conditions, or you can use its value directly. As an example to
illustrate three useful operations with variables, the following code tests
whether the inputVariable is less than 100, if true it assigns the value 100 to

inputVariable, and then sets a delay based on inputVariable: whlch is now a

minimum of 100:

{ “ T i i
inputVariable = 100; //if true assignstyalueof 100
} b

delay(inputVariable); // uses Varlable as delay

Q‘M L
E "\

that is not alreddy oﬁe of the keywords in the Arduino language.
w.

variable deqlaration

All variables have to be declared before they can be used. Declaring a variable
means defining its value type, as in int, long, float, etc., setting a specified
name, and optionally assigning an initial value. This only needs to be done once
in a program but the value can be changed at any time using arithmetic and

various assignments.

' Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

The following example declares that inputVariable is an int, or integer type,

and that its initial value equals zero. This is called a simple assignment.

int inputVariable = 0:

A variable can be declared in a number of locations throughout the program and
where this definition takes place determines what parts of the program can use

the variable.

variable scope ®) %g

statement in a program. Thls vanable is declared at the beginning of the

program, before the setup () ﬁmetiggr;‘: B,
A local variable is one tha‘i is deﬁneg inside a function or as part of a for loop. It
is only visible and cah'*.enly“b‘%used inside the function in which it was declared.
It is therefore posmb?@ to. wa(ve ‘two or more variables of the same name in
dlfferent parts ef thew%ame program that contain different values. Ensuring that

only onejuﬁ‘et'qn has access to its variables simplifies the program and reduces

the potentl%g»fornprbgrammmg errors.
The following example shows how to declare a few different types of variables

and demonstrates each variable’s visibility:

int value; /] 'value’ is visible
// to any function

void setup()

{

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

//no setup needed

}

void loop()

{

for (int 1=0; 1<20;) // 1’ is only visible

{ // inside the for-loop 1++;

}

float f; //’f is only visible

\ // inside loop G

byte

of 0-255.
byte someVariable= 180; // declares some%f%
// as a byte type&?
"'\5%{; ; -
int

Integers are the prlmary datatype u \
' ra,nge of 32,767 to -32,768.

// declares 'someVariable’
// as an integer type

Note: Integer variables will roll over if forced past their maximum or minimum
values by ancé{‘assignment or comparison. For example, if x = 32767 and a
subsequent statement adds 1 tox, x = x + 1 orx++,X will then rollover and

equal -32,768.

long
Extended size datatype for long integers, without decimal points, stored in a 32-

bit value with a range of 2,147,483,647 to -2,147,483,648.

' Mechanical Engineering Dept. Microprocessor and M icrocontroller Dr. Alaa Abd ulhady Jaber

long someVariable = 90000; // declares ‘'someVariable’
// as a long type

float

A datatype for floating- -point numbers, or numbers that have a decimal point.
Floating- point numbers have greater resolution than integers and are stored as a
32-bit value with a range of 3.4028235E+38 to -3.402823 5E+38

float someVariable = 3.14; // declares 'someVariabl

__ow T than integer math in

performmg calculations, so should be av01ded 1fp0$51ble
.)

Variable Names in C % : B, ©
N
A keyword is any word that has ?pe(:lal meaning to the C com piler and they

cannot be used for varlablé or function names. There are three general
aN

rules for nammg"varlablesabr fq}ncnons in C, however, valid variable names may

cont%n \ % é
1 Cha.ragfers a thragug% igand A through Z

2. The undégsizor%@character)

3. Digit charﬁcters 0 through 9, provided they are not used as the first character
in the name.

Valid variable names might include:

jane Jane ohm ampere volt money dayl Week50 _System XfXf
Using the same rules, the following would not be valid names:

Acreate 4March -positive @URL %percent not-Good This&That

which?

* Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
0 a0C ricrocontroller Dr. Alaa Abdulhady Jaber
Some good examples of variable are:

myFriend toggleLED reloadEmptyPaperTray closeDriveDoor

arrays

An array is a collection of values that are accessed with an index number. Any
value in the array may be called upon by calling the name of the array and the
index number of the value. Arrays are zero indexed, with the ﬁrst value in the
array beginning at index number 0. An array needs to be declared and optionally

assigned values before they can be used.

int myArray []= {value0, valuel, value2...}

7
z,z} .
i g?%}o .\
Likewise, it is possible to declare an array by dec;,larmg the array type and size
%ei& >>§

and later assign values to an index position: .

int myArray[5];
myArray(3]= 10;

X = msﬂArragj[v%%;ﬂ x now equals 10

Arrays are often used in for loops, where the increment counter is also used as
the index pos.sigtion for each array value. The following example uses an array to
flicker an LED. Using a for loop, the counter begins at 0, writes the value
contained at index position 0 in the array flicker[], in this case 180, to the PWM

pin 10, pauses for 200ms, then moves to the next index position.

int ledPin= 10; //LEDon pin 10

* _Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

byte flicker [] = {180, 30, 255, 200, 10, 90, 150, 60};
// above array of 8

void setup() // different values

{

pinMode (ledPin, OUTPUT); // sets OUTPUT pin

!

void loop()

{
for (int i=0; i<7: i++) // loop equals number

{ // of values in array ;‘%
analogWrite(ledPin, flicker[i]): // write index value,
delay(200) ;
}
}

arithmetic .
.,
Arithmetic operators include agidlticsn subtract1on multiplication, and division.
-
They return the sum, dlfference‘{,2 pfoaﬁct or quotient (respectively) of two

operands.

The op%rahgg 1éxcondilcted using the data type of the operands, so, for example,

decimal pomts This also means that the operation can overflow if the result is

larger than what can be stored in the data type.

If the operands are of different types, the larger type is used for the calculation.
For example, if one of the numbers (operands) are of the type float and the other
of type integer, floating point math will be used for the calculation.

Choose variable sizes that are large enough to hold the largest results from your

calculations. Know at what point your variable will rollover and also what

-~

,

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
happens in the other direction e.g. (0 - 1) OR (0 - - 32768). For math that
requires fractions, use float variables, but be aware of their drawbacks: large

size and slow computation speeds.

Note: Use the cast operator e.g. (int) myFloat to convert one variable type to

another on the fly. For example, i = (int) 3.6 will set i equal to 3.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
#

Lecture Five

Notice: This lecture is a continuation to lecture Four.

5.1 compound assignments

Compound assignments combine an arithmetic operation M%h a variable

TR

most common compound assignments include:

X ++ // sameas x = X + 1,o0r mcremenﬁs%ﬁ% x by -@1
X - // sameasx = x -1, or decrementé“’ X by -1
X+=Vy // sameas X=X+, o0r mcrements X bw +y
X-=Y // same as X =X~ V, Or decreme%;s X by -y

;ﬁ*f’g wr multipliesx by v

Xx*=y // same as X
X \s?%ygbr d%wdes x by vy

X /=y // same as X

Note: For example, X* ﬁz:’wﬁould friple the old value of x and re-assign the

resulting value {0 X.

following pages, ?? is used to indicate any of the following conditions:

X==y /l X is equaltoy

xl=y // x is notequal toy

x< vy /I x 1s less thany

X> ¥ /| x 1s greater thany

x <=y //x is less thanorequal toy

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
X >=y //x is greater than orequaltoy

logical operators

Logical operators are usually a way to compare two expressions and return a
TRUE or FALSE depending on the operator. There are three logical operators,
AND, OR, and NOT, that are often used in if statements:

Logical AND:
fx>0 && x < 5) //true only if both
// expressions are tr‘qe

Logical OR:
x>0 |y > 0) // true if eithér,
// expression is true

5‘% . S

Logical NOT: T
; -
if (Ix> 0) /true onlyif, g
\Y & N
// expression is fals
N |

constants

The Ardu%%éb%gaﬁéuagé%l%gas%agféivf predefined values, which are called constants.
They',

re.used % ma,!ggw‘ggé@ programs easier to read. Constants are classified in

& L - “% ‘
gl‘OleS. *;% 5 Q L Y
Y @
=

true/false
These are Boolean constants that define logic levels. FALSE is easily defined as

0 (zero) while TRUE is often defined as 1, but can also be anything else except

zero. So in a Boolean sense, -1, 2, and -200 are all also defined as TRUE.

if (b == TRUE);
{

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
“
doSomething;

}

high/low

These constants define pin levels as HIGH or LOW and are used when reading
‘or writing to digital pins. HIGH is defined as logic level 1, ON, or 5 volts while
LOW is logic level 0, OFF, or 0 volts.

digitalWrite (13, HIGH);

input/output

analog value being above'a} certam number and executes any statements inside

the brackets if the_ statement is true. If false the program skips over the

z?:

€N b \é,‘ :

if (someVangble %alue)
{

-i’z’%'; N
do Something;
}

The above example compares someVariable to another value, which can be
either a variable or constant. If the comparison, or condition in parentheses is
true, the statements inside the brackets are run. If not, the program skips over

them and continues on after the brackets.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abd ulhady Jaber
Note: Beware of accidentally using ‘=, as in if (x=10), while technically valid,
defines the variable x to the value of 10 and is as a result always true. Instead
use *==’, as in if (x==10), which only tests whether x happens to equal the value

10 or not. Think of ‘=’ as “equals” opposed to ‘== =" being “is equal to”.

if... else
if... else allows for ‘either-or’ decisions to be made. For example, if you wanted

to test a digital input, and do one thing if the input went HIGH

if (inputPin == HIGH)
{

doThingA;

!

else

{

doThingB;

)
@M@

can be ru _@thé%smn@*nmé’wlt? s. even possible to have an unlimited number of
these @glse bra.néhes ‘%Rempmber though, only one set of statements will be run

dependmg ongl%e cohg:htlon tests:
if (1nputP1n§ 500)

{

doThingA:

}

else if (inputPin >= 1000)

{

doThingB:

}

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
\

else

{
doThingC;
}

Note: An if statement simply tests whether the condition inside the parenthesis
is true or false. This statement can be any valid C statement as in the first

example, if (inputPin == HIGH). In this example, the if statement only checks

to see if indeed the specified input is at logic level high, or +5v.
.';z«:%sg

The for statement is used to repeat a block of statements enclo*Sed in curly

braces a specified number of times. An mcrement countggg is often used to
increment and terminate the loop. The?‘e are thi%e parts, separated by

semicolons (;), to the for loop header:

A,

for (initialization; condition; exp ession),
L . N b

{ "

doSomething;

}

.....

%\% :
condition %ma1ns true the following statements and expression are executed

and the condltlon is tested again. When the condition becomes false, the loop
ends.
The following example starts the integer i at 0, tests to see if i is still less than

20 and if true, increments i by 1 and executes the enclosed statements:

for (int 1=0; i<20; 1++) // declares i1, tests if less
{ /! than 20, incrementsiby 1

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

digitalWrite (13, HIGH); // turns pin 13 on
delay (250): // pauses for 1/4 second
digitalWrite (13, LOW); // turns pin 13 off
delay (250); // pauses for 1/4 second
}

while

while loops will loop continuously, and infinitely, until the expre

while loop will never exit. This could be in your code, su”’

variable, or an external condition, such as testmg ag%%

while (someVariable ?? value) @,

(%
doSomething;
}

// executes enclosed statements
someVariable++; // increments variable by 1

)

do... while
The do loop is a bottom driven loop that works in the same manner as the while

loop, with the exception that the condition is tested at the end of the loop, so the

do loop will always run at least once.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

_ Mechanical Engineering Dept. ____Microprocessor and A er0 o0

do

{
doSomething;
} while (someVariable 7? value);

The following example assigns readSensors () to the variable ‘x’, pauses for 50

milliseconds, then loops indefinitely until ‘x” is no longer less than 100:

do s

{ fggz

x = readSensors (); // assigns the value of‘readSQﬂsﬁgg() to;
delay (50); // pauses 50 mﬂhsecon&s B
} while (x < 100); // 1oops if x isiless than 100 -

pinMode (pin, mode)
Used in void setup () to config
or an OUTPUT.

digitalRead (pin)
Reads the value from a specified digital pin with the result either HIGH or
LOW. The pin can be specified as either a variable or constant (0-13).

value = digitalRead (Pin); //sets 'value’ equal to
// the input pin

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
digitalWrite (pin, value)
Outputs either logic level HIGH or LOW at (turns on or off) a specified digital

pin. The pin can be specified as either a variable or constant (0-13).

digitalWrite (pin, HIGH): // sets 'pin’ to high

The following example reads a pushbutton connected to a digital input and turns

on an LED connected to a digital output when the button has been pressed:

int led = 13; // connect LED to pin 13
int pin=7; // connect pushbutton to pin 7 -

|

i

intvalue= 0; //variable to store the read value " >2,@

void setup () _
pinMode (led, OUTPUTY); .. //sets pin 13 asg;autput

pinMode (pin, INPUT); ¢ //isets pin 7 as input
} A - @

void loop ()
{
valué””*ﬁ: it // sets’value’ equal to

// the input pin

digitalWrite (led, /I sets’led’ tothe
/! button’s value

}

analogRead (pin)

Reads the value from a specified analog pin with a 10-bit resolution. This
function only works on the analog in pins (0-5). The resulting integer values

range from 0 to 1023.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

value = analogRead (pin); // sets 'value’ equal to 'pin’

Note: Analog pins unlike digital ones, do not need to be first declared as
INPUT nor OUTPUT.

analogWrite (pin, value)

Writes a pseudo-analog value using hardware enabled pulse width modulation

analogWrite (pin, value); /] writes value faff%log 'pin’

A value of 0 generates a steady@{) volts output af the specified pin; a value of

255 generates a steady 5 volts out ut """ it the"@pemﬁed pin. For values in between

0 and 255, the pin rapldly altemates between 0 and 5 volts - the higher the
value, the more oﬁen the p@ is H[GH (5 volts). For example, a value of 64 will

§i&
Because thlS is a hardware function, the pin will generate a steady wave after a

call to analogerte in the background until the next call to analogWrite (or a

call to digitalRead or digitalWrite on the same pin).

Note: Analog pins unlike digital ones, do not need to be first declared as

INPUT nor OUTPUT.

The following example reads an analog value from an analog input pin,

converts the value by dividing by 4, and outputs a PWM signal on a PWM pin:

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

int led = 10; // LED with 220 resistor on pin 10
mtpin= 0Q; // potentiometer on analog pin 0
int value; // value for reading

void setup){ } //no setup needed

void loop()
value = analogRead (pin);// sets 'value’ equal to 'pin’ §

i
N

value /=4; // converts 0-1023 to 0-255
analogWrite (led, value):; // outputs PWM81

) A s

delay (ms)

1000 equals 1 second.

= é | %
delay(lO%); Waltsgf%rg one second
| 5;@%\3 . .

rial port

oﬁ\{ﬁiunicating with the computer is 9600 although other speeds

baud rate for

void setup ()

{

Serial.begin (9600); // opens serial port

} // sets datarate to 9600 bps

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
Serial.printin (data)

Prints data to the serial port, followed by an automatic carriage return and line
feed. This command takes the same form as Serial.print (), but is easier for

reading data on the Serial Monitor.

Serial.println (analogValue): // sends the value of

// "analogValue’

The following simple example takes a reading from analo% Pin0 and sends this

data to the computer every 1 second.

void setup ()

{
Serial.begin (9600):

}

void loop ()
{

// pauses for 1 second

5.2 Libraries
The Arduino programming environment comes with a standard library, a

library of functions that are included in every sketch, which are discussed in the
above paragraphs. By default, Arduino can handle basic mathematical
operations, and set pins to digital or analog input and output, but it cannot write

data to an SD card, connect to WiFi, or use a LCD. These devices that are not

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
standard on Arduino boards. Of course, an Arduino can use these devices when
they are available, but to use these devices, a library for the specific device must
be imported into a sketch. Otherwise, there is no point in having the extra
functionality that could potentially take up space on a device where space is
critical. Adding a library to your sketch adds more functionality and allows you,
the programmer, to use new functions. For example, by importing the EEPROM
library, you can access the internal EEPROM by using two new functions: read
() and write ().

5.3 Software Design Using Flowcharts
Flowcharts are one of the oldest and most populaf‘f f)gs%&]% used te express an

algorithm, regardless of whether it is a software or., a hal*dware algorithm.

Probably the reason flowcharts are so popular is, :__-b b@use t ey give a general
picture of the algorithm, as opposed to the sometimes 6bscure picture provided
by other tools. Although, as mentioned before, ﬂowcharts are used to express an

algorithm that could later be m‘ffSLe&lpented in either software or hardware.

Flowcharts are not intended to include every detail of the implementation

of the algorithm becaﬁ§é-that is l".eft to the actual coding of the instructions
in the partlculamp;ogrammzng language of choice. Thus, flowcharts are

expected to glve a general 13&1 of the algorlthm and it will help to keep this in

5.3.1 Used Symbols in Flowcharts Design

There are ﬁve (5) basic symbols used to develop flowcharts; these are:
1- Start/Finish: The Start/Finish symbol consists of an oval shape as
illustrated in figure below. As its name implies, the Start/Finish symbol is
used to show an entry point into the algorithm or an exit point out of the

algorithm.

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

C Stjﬂ) Eind

- Input/output: Used for input and output operation; it is represented in

the figure below.

Read sensor
signals

2 é!‘.w
3 i
G

including any expressions.

g :

Process or
Assignment

Iooks"%%. lot like the assignment symbol since it is also a rectangle, but it
includes an additional vertical line on both the left and right side. This
symbol is used to indicate whenever a subroutine or function call is
invoked. After the sub-process returns, the algorithm continues with the

next symbol in sequence in the flowchart.

’

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Subprocess

or Subroutine

\v:

ZA«?) T,
. %iz;

flowchart and need to continue on another part of

completely different page.

Decision: Its shape reéé”mbles a diamond and, as its name implies, it is
used to alter the ﬂow.'é)f the*fg lgonthm based on the value of some
variable after a particular dec_;glon is made. The ability to make decisions
allow for powérful 'algorithﬁi% as opposed to purely sequential ones.

De%ls,lon blﬂgéks aI;e the only ones that feature two outputs, one

Condition

Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

Example 5.1: Draw a flowchart to add two numbers entered by user.

l Declare variables numl, num2 and sum

- . 1 .
! Read numi and
/ num2 /

1
sum+«—a+hb f

ol

.

.......... S, N—— o

/— Display sum | zgg
- S / W

g e

T

.
i

Example 5.2: Draw flowchart to find the largest among three different numbers

i

entered by user.

Deciare variables a.b and ¢

I/r Read a,b and ¢ /

False //f DSNUT
e is.*Dh:?//,-—m@——z
| e

P

. S

-
T g b>t;\>-@i&mwww§§!§_§m - il
//

. a_\is a»c?
B
f,,,.w - ? },....._L
Print :]
1__c; /Print b/ ;’ Printa |

J

[S

.

s

i ——

L4

echanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

_ Mechanical Engineering Dept. ___Microprocessor ane om0 ——

Lecture Six

6.1 Number Systems

The efficient use of a microprocessor or microcontroller requires a working

knowledge of bmary, decimal, and hexadecimal numbermg systems Number
i

used numbering system in microprocessor and m_1cr:?c6’"
base 16, or hexadecimal. In addition, base 2 bméry), or _base 8 (or octal)

number systems are also used.

6.1.1 Decimal Number System

As you all know, the numbers m this system are'fﬁ_O 1,2,3,4,5,6,7,8,and 9.
We can use the subscript 10 to mdlcﬁte that a number is in decimal format. For

example, we can show decimal qpmber 235 as 23510. In general, a decimal
«%Y

number is represented ; as follows
gg

dnxl()“—%-an@;xi()" U ta,_p x 1072 4 oooee 42 x 10°

g
o A
L

iy

82510 = 8 X 102 +2x 10" +5 x 10°

Similarly, decimal number 2610 can be shown as follows:
2610 = 2 x 10" + 6 x 10°

Or

3359;0 = 3 x 10> +3 x 10> +5 x 10" + 9 X 10°

' _Mechanical Engineering Dept. Microprocessor and Microcontroller _ Dr. Alaa Abdulhady Jaber
6.1.2 Binary Number System
In binary number system, there are two numbers: 0 and 1.We can use the
subscript 2 to indicate that a number is in binary format. For example, we can
show binary number 1011 as 1011>. In general, a decimal number is represented

as follows:
an X 2"+ x 2" ag_p x 2" 4 +ag x 2V

For example, binary number 1110; can be shown as follows:

10 =1x 2B +1x224+1x2' +0x 20,

Similarly, binary number 10001110, can be Shom:%%5?3%§§%§: g
100011105 =1x2" +0x26+0x 25 +0x 2 41 x23+1><22+!x2l+0>(20

o A ”\’5}
***?é-&\

Each one or zero in the binary representation 1s cailedéa“*blt A collection of 8-

bits is called a byte and a cgllectxon of 4- blts 1s calIed a nibble. Two nibbles

-d wi the hlghest power of two is called the most

significant bit (MSB), and the bit as _'Gci%‘ted with the lowest power of two is the
least 51gn1ﬁcant bit (LSB) The 4-bit nibble forms the basis of hex numbers,

.....

byte (1 byte =8-bits)

nibble (hex number) (1 nibble = 4-bits)

2 nibbles =1 byte

' Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
— 5 e b o T P RAOCOnU I, - Ada ANGWINAdy Jaber
“

6.1.3 Octal Number System
In octal number system, the valid numbers are 0, 1, 2, 3, 4, 5, 6, and 7. We can
use the subscript 8 to indicate that a number is in octal format. For example, we

can show octal number 23 as 23s.
In general, an octal number is represented as follows:

anX8n+an__| X8n_t+an_2)(8""2“*. +a0x80

For example, octal number 2373 can be shown as follows: %%

2373m2x82+3><8'+7x8

Similarly, octal number 17778 can be shown as follows

6.1.4 Hexadecimal Number System b
In hexadecimal number systéﬁ%%ﬁ?’ff’the valid numbers are 0,1,2,3,4,5,6,7,8,9,
A, B, C, D, E, and F. We can use the{@@cript 16 of H to indicate that a number

is in hexadecimal form For exam‘%ée we can show hexadecimal number 1F as

1F 6 or as 1Fu.

In general, ‘al exadecunal nﬁmber is represented as follows:

s&ﬂ

Nﬁ}

an X I6“+a,. 1 X 16“ | agg X 16"2 4 oo 42 x 167
For exampl_‘g', hexadec:lmal number 2AC)6 can be shown as follows:

i
g Y

2AC16 =2 x 16% + 10 x 16' + 12 x 16°

Similarly, hexadecimal number 3FFE16 can be shown as follows:

3FFE;g = 3 x 16> + 15 x 162 + 15 x 16! + 14 x 16°

" Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

6.2 Converting Binary Numbers into Decimal
To convert a binary number into decimal, write the number as the sum of the

powers of 2.

Example 1.1

Convert binary number 10112 into decimal.
Solution:

Write the number as the sum of the powers of 2:

G

&

101‘!2::1x23+0x22+1><21+‘E><2°
=8+0+4+2+1
=11

A |
@

£ i@% "
3 N

or, 1011,=1149

Example 1.2

&

E S'
B

Convert binary number 1100111 0%1’11:% decimal. ..

Solution:

i

. i S ©
Write the number as the sumof the powers of 2 as follows:
. g, &

. N E ! % o

110011102=1x27+1x26+0x25+0x2"+1x23+1x22+1x2’+0x2°
—128+64+0+0+8+4+2+0
= 206

or, 11001110, = 20619

6.3 Converting Decimal Numbers into Binary

To convert a decimal number into binary, divide the number repeatedly by two
and take the remainders. The first remainder is the least significant digit (LSD),
and the last remainder is the most significant digit (MSD).

Example 1.3

Convert decimal number 2810 into binary.

Solution:

* Mechanical Engineering Dept.

Microprocessor and Microcontroller

Divide the number by two repeatedly and take the remainders:

Dr. Alaa Abdulhady Jaber

28/2 — 14 Remainder 0 (LSD)

14/2 - 7 Remainder 0

7/2 — 3 Remainderl

3/2 — 1 Remainderl

1/2 — 0 Remainder 1l (MSD)

The required binary number is 11100..

Example 1.4 X |

Convert decimal number 6510 into binary. p &@%

Solution: é& ,;) @
______ @

65/2 — 32 Remamderl (LSD) :
32/2 — 16 RemainderO

16/2 — 8 Remainder0

8/2 — 4 Remainder0

4/2 — 2 Remainder0

2/2 — 1 Remainder0

1/2 —

0 Remamd@rl (MSD)

rby two repeatedly and take the remainders:

122/2 — 61 Remainder 0 (LSD)
61/2 — 30 Remainderl
30/2 — 15 Remainder0
15/2 — 7 Remainderl
7/2 — 3 Remainderl
3/2 — 1 Remainderl
1/2 — 0 Remainder 1l (MSD)

The required binary number is 11110102.

- _Mechanical Engineering Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Jaber
6.4 Converting Binary Numbers into Hexadecimal

Binary numbers quickly become long and hard to remember. For this reason, it
is more convenient to convert the binary values into hexadecimal numbers
(hex). The reason hex notations are used is that it allows for a one to one
correspondence between the 4-bit binary nibble and a single hexadecimal value.
If a binary number is broken down into 4-bit nibbles, then each nibble can be

replaced with the corresponding hexadecimal number, and the compression is

zeroes to the left-hand side of the number.

Example 1.6

Convert binary number 100111115 into hexadecim:

Solution:)

First, divide the number into groups of four aﬁql then find the hexadecimal

W

equivalent of each group:

i,
Lo
M‘fg}»’s

i
£

10011111 = 1001 1111

9 F

xadecimal number is 9F 16
4 B, >“§;:3<

er 1110111100001110; into hexadecimal.
=

First, divide the number into groups of four and then find the equivalent of each
group:

1110111100001110=11101111 0000 1110
E F 0 E

The required hexadecimal number is EFOE .

icroprocessor and Microcontroller Dr. Alaa Abdulhady Jaber

. Mechanical Engineering Dept M

Example 1.8

Convert binary number 1111102 into hexadecimal.

Solution:

Since the number cannot be divided exactly into groups of four, we have to

insert zeroes to the left of the number:

111110=00111110
3 E

The required hexadecimal number is 3E1s.

Table 1.2 shows the hexadecimal and binary equwa,ients%f%ﬁmgbers 0 to 31.
One notes that the numbers in Table 1.2 are alléﬁ%mu?é %%e

L xé%"
integers. If one also wants t0 consider neéatwe num‘be%g ‘then one would have

i

e
to deal with signed integers, which are not d1scu§sed in *‘thls course.

_)
Table 1.2: Hexadec lmag an&Bmary Equi valents of Decimal Numbers

Decimal Hexadecimal Bmarym g% - Decnmal Hexadecimal Binary
(Base 10) __(Base 16) (Base2) (Base 10) ___(Base 16) (Base 2)

10 00010000

11 00010001

T e i

12 00010010

... T T

16 00010110
17 700010111
18 700011000
19 00011001
— 1A 00011010
___ T
1C 00011100

1D 00011101

-

Mechanical Engineerin Dept. Microprocessor and Microcontroller Dr. Alaa Abdulhady Japer
B e : - T T —
14 E 1110 30 1E 00011110
m__MW%__ﬂww_mmww&*m%w__mmﬂﬁ___mMMWM_MMH_E%___MWEW___E_MW_ =

15 F 1111 31 IF 00011111

of each hexadecima] digit.

Example 1.9 &,

Convert hexadecima] number A94 into binary.

Solution: A ¥

Writing the binary equivalent of each hexadeci%@ diglg S

A=1010, 9= 1001,

The required binary number js 101010015,

@

Example 1.10 N

T P .
. ik - " #;
Convert hexadecima] number FEB@:?&% nto'h;

nary.

The requited binary number is 1 111000111100,
ed
L

.

