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Chapter One

Introduction to
Compressible Flow




1.1. Introduction

In general flow can be subdivided into:

I. Ideal and real flow.

For 1deal (inviscid) flow viscous effect Is
Ignored. The momentum equations are
Euler’s equations that derived in 1755 by
Euler.

For real (viscose) viscous effect Is
considered. The momentum equations are

Navier-Stokes equations.




= ji. Steady and unsteady flow:

» For steady flow, flow properties are fime
independent and mass exits from the

» system equals the mass enters the system.

» For unsteady, flow properties are time
dependent and mass exit s from the system

= may or may nhot equals the mass enters the
system and the difference causes system

=» mass change.



® jii. Compressible and incompressible flow
» [or compressible flow, density becomes an additional variable; furthermore,

» significant variations in fluid temperature may occur as a result of density or pressure

» changes. There are four possible unknowns, and four equations are required for the
» solution of a problem in compressible gas dynamics: equations for the conservation of

® mass, momentum, and energy, and a thermodynamic relations and equation of state
for

® the substance involved. The study of compressible flow necessarily involves an

® interaction between thermodynamics and fluid mechanics.

» [or incompressible flow can be assumed with density is not a variable. For this

» type of flow, two equations are generally sufficient to solve the problems encoun tered:
® the continuity equation or conservation of mass and a form of the Bernoulli equation,
» derivable from either momentum or energy considerations. Variables are generally

= pressure and velocity.




Iv. One, two and three-Dimensional Flow
One-dimensional flow, by definition, did not
consider velocity components In the y or z
directions, as iIn Figure (1.1a). In true one-
dimensional flow, area changes are not allowed. For
Inviscid flow the velocity profile i1s shown In section
(@) and (c). However, the more gradual the
area change with x, the more exact becomes the one-
dimensional approximation.



For viscose flow the velocity profiles is
shown in
Figure (1.1b). Actually, due to viscosity,
the flow velocity at
the fixed wall must be zero as in

ctions (a) and (c).
Consider the flow in a varying area

channel. The
velocity profile in a real fluid is shown in

Figure (1.1b)
section (b).
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Figure1.1a: One dimension flow
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Figure 1,1k Real flow in varying area duct




A complete solution of a problem in a fluid mechanics
requires a three-dimensional analysis. However, even
for

incompressible flow a complete solution in three
dimensions is possible only numerically with the aid of
computer programs. Fortunately, a great many
compressible

flow problems can be solved with the use of a one
dimensional

analysis. One-dimensional flow implies that the

flow variables are functions of only one space
coordinate.



Chapter Two

asic Equation of
Compressible Flow




2.1. Conservation of mass:

()= 4 froec[rrwne

Let X = mass so y = 1. For fixed amount of mass that moves through the control
volume:

()

And for steady flow:

%ﬂf pdY =0 (2.2)

So the second ferm must equals to zero.

ﬂ pWHAldAd=10 (2.3)




Let us now evaluate the

N T T Tl e iy

i e e e of o
one-dimensional flow. Fizwe wotml sarfsc — ]
(2.1) shows flnd crossng a ra—— fa ehorily prefile

portion of the control swfice  sm—meee—ee

Eacall that for one-dimensionzl Figure 2.1: Ce-imena ol velocaly profle,
flow any fhnd property will be constant over an enfire cross sechon. Thus both the
density and the velocity can be brought out from under the mntemal sizn. If the
surface 15 always chosen perpendicular to V, the mtegral 15 very simple to evaluate:

fp (V.7) dd = pvfddzptﬂ'(ﬂ,:—ﬂ.i] (2.4)

But mtezral m eq. 2.3 must be evaluated over the entire control swface, wiuch
vields:




H ,ﬂ{l’.ﬂ]dﬂ:ZpFH (2.5)

This summathon 15 tzken over all secthons where flnd crosses the comfrol
surface. It 15 positive where fhnd leaves the control vehmme (since V.11 15 positive
bhere) and negatrie where find enters the control volume.

For steady, one-dimen=ional floww, the confimmty equaton for a control
volume becomes:
oVA=0 (2.6)

If there 15 only one section where flind enters and one sechon where flind leaves
the control volume, this becomes:

(o VA) . =(pVA), (2.7)
= p V A = const (2.8)

V 15 the component of velocity perpendicular to the area 4. If the density p 1s
in kg/m”, the area A is m m?® and veloctty V 1s mm /s, then rirism kg /s



MNote that az a result gf steady flow the mass flow rate mnto a control volhume
15 equal to the mass flow rate out of the control volume. But 1if the mass flow rates
into and out of a control vohmme 15 the same 1t doesn’t ensure that the flow 1s

steady.

For steady one-dimensional fow, differentiating eq. 2.8 zves:
dipVA)=0=VAd(p)+pVd( 4A)+pAd(V) (2.9)
Drndmz by p V¥ A
dp dA dV
P T (2.10)
g A ¥

This expression can also be obtamned by first talang the natural lozanthm of
equabon (1.8) and then differentiating the result. This 1= called logarithmic
differentiation.




Thus differenhal form of the confumnty equation i useful In mterpretng the
changes that mmst ocowr a5 fhod flows through 2 duct, channel, or stream-tube. [t
incicates that 1f mass 15 to be conserved, the changes in densify, velocity, and cross
serfional area mmst compensate for one another. For example. if the area 13
onstant (4 = 0), any meresee m veloaty mst be accommamed by :

comesponame gecrease I cenafy. We shal 2l we ftus form of the cofmmty
aquafion n severa] fune dervations,




2.4, 1stlaw of thermodynamics.

E o= E M (2.22)
O

g = W + AE [2.33)
Fuost law of thermsodynanmes 1= a3 conservatnon of energy and we dealt wth 1o
22

2.5, Ind law of thermodsmnamics.

Two concepts that zoe mmportant to a study of compressible flnmd fSow are
derrirable from the second lawr of therrmodynanmcs: the reversible process and the
Properiy entropy. For a thermodhynanuc system, a reversible process is one gffer
which the ysrem oo be resrored o itz initial state arnd leave o change in sither
psfarm oF serrourndinegs. As a consequaence of thas defimation, 1t can be showem that &
reverzible process 1= guam-static; changes oooar iInfimately slowly. wath oo enerzy
being dissipated

Smce thesmeosdvnaomes| 15 a study of equihibriurmn states, defimate therrmodynamac
equathons for changes tekmg place dunng processes can be derrmved ondy for
reverzible ProOCesses: nreversibls ProOCesSas cam omly e descrnbed
thermodyvnammcz] b wath the use of 1mecguabhhes Irevermable processes meobee, for
exanmle the followmns: fochon, bheast tansfer toough a fmite temperature
differennce, -udden expar—ion, and Dasnetrzabon wath bovsteresas,  electnical
rezstance heshng, and moxom s of dafferent gases.



The thermodynamic property demmvable from the second law 15 entropy, wiach
15-defined for a system undersomg a reversible process by dS = (6Q/T) o,
Entropy chanpes were defined 1 the usual manner m terms of reversible
PIOCRsSes:

& .
AS = f Q;f“'“ (2.34)
df = dSternar T 2Sincernat (2.35)

The term dS, represents that portion of entropy change cansed by the actual
heat transfer between the systemn and 1ts {external}) swrowndings. It can be
evaluated readily from:

is, = e
T

Ce should note that 4S5, can be ather posime or negative, depending on
the directon of heat transfer. If heat 15 removed from a system. 6@ 15 negatrve and
thus dSe wall be negative. It 15 obvious that 45, = 0 for an adiabatic process.

(2.38)



The term df; represents that porhon of enfropy change camsed by
mreversible effects. Moreover, dS5, effects are mternal mm patme, such as

temperature and pressure gradients within the system as well as fachon alongz the

internal boundanes of the system Note that this term depends on the process path

and from observations we know that all freversibilities generate entropy (1e.

cause the enfropy of the system to merease). Thus we could sav that

dS; = 0 (2.36)
Obsnously, d5; = 0 only for a reversible process. An 1sentropic process 15 one

of constant entropy. Thas 15 also represented by S5 = 0.

45 =0 = ds, + 45, (2.37)

A reversible-adizbahe process 15 1sentropic, but an 1sentropic process does
not have to be reversible and adiabatic we only know that 5 = 0.



2.6. Equartion of State.

An equaton of state for a pure substance 15 a relation between pressure,
den=ity, and temperature for that substance. Dependmmg on the phase of the
substance and on the range of conditons to whach 1t 15 subjected. one of a3 number
of different equations of state 1= applhicable. However, for hqmds or solids, these
equabons become so0 cumbersome and have such a hmated range of appheahon
that 1t 15 generally more convement to use tables of thermodynarmme properties. For
gases, an equahon exists that does have a reasonably wide range of apphcation, the
perfect gas law; 10 1ts usual form it 15 expressed as
p = pRT (2.38)

For the dermvathon of the perfect gas law from kmetic theorv, the volhume of
the zas molecules and the forces befween the molecules are nmeglected These
asmunphons are satisfied by a real gas only at very low presswres. However, even
at reasonably high presswres, a real gas approcomates a perfect zas as long as the
zas temperature 15 zreat encugh



2.7, Thermodvnamics Relations.

Alzo the follownng relafions are very useful equahons. Staring wath the

thermodyvnamac property relaton-
g = du + ow

duv
Tds = du + pdvr = ¢,dT + RTTL

Tds = adh — vdp = cpdT — RT%
For perfect zas with constant specific heats

dr ar
Az = g, ?+H - = e, InT+RInv

arl dp
Az = ¢ ?—R ?: tpInT —Rlnp

R=¢,—rc, and ¥ =c,/c,

(2.39)

(2.40)

(2.41)

(2.42)

(243)



Exgmple 2§ Ten kilogramys per second of air enters a tank

100 m* in wolume while 2 kg /e is discharged from the 10 bgh
rank (Figure 2.4). If the temperatare of the air inside the — — : 2hnh
tank remains constant at 300 K, and the air can be tweated  pjg e 2.4 I:_________

as a perfect zas, find the mate of pressare rise mside the fank.

Safmrion:
Select a comrol ssohmss s shown in the sketch. For this case the et rabe of effhrs of mass fom
the coomal wolome is

_[|r o (W.fildA = — 8 kg /s

The vobmme is constant and alse density is assumed constant inside the tank as temperature is
constant, but it is tme Jep=ndent.

a :ﬂﬂ_ff;rﬂ :1":'+£ o (W.7) dA4

fijd‘l’:'!l": 100 1m0

a2
ﬂ_lﬂﬂﬂt—ﬂ
From equation of state for a perfect gas
p = pRT
dp ap
ar - Flar
P _ 287 + 300 «—— = 6.888 kPa/
g Tog oo Eress



Example 1] Two kilograms per second of Jqud hvdrogen and aizht k2is of liond oxyzen are
mjected imto 3 rocket combushion chamber i steady How (Figwe 13). The mseous products of

CmMSton 22 epeled af Rk velcty Priduer of
hrouzh the ewhmst pozze Assiming r—— b
i fow it e okt oo sty S
plane, dermine the et velocty, The mozze m:_i- s e, —
ot dameter s 30 e, and the densy ofthe -
zases 3t e enat plane 15 0,26 kg fm” Fgiie 21




Salufion
T T

A= 1]]1 = I(ﬂ.ﬂﬂl]" = 0.07059 m*

select 3 control valume as shown m the sketch For this case of steady flow, Eq. (1.12) 15

applicanie

ﬂrp{l’.ﬁ]dﬂ :H:me

The rate of infhrx into the control vohime 13
24+8=100kg/=.
The rate of effhx 15
PV A = (pV ), = 100 kg/s
10

V= 018 007065, = 7859 m/z




Example 13 An air siream at a veloctty of 100m/s and density of
1.2 kg /m3 sinkes a statonary plate and 15 deflected by 90°. Determing  ——e jev
the force on the plate. Assume standard ammosphenc pressare

surrounding ihe jet and an imitial jet diameter of 2 om. Figura 2 fa
el aon r.;r.;.,.;mw
Select a cooirol volume a: shown m Fizure (2.6a) Woiing the x mr,

component of eq. (1.30) for steady flow to determines fhod force on the
plate li

Zﬂ:ﬂﬂp[?’.ﬁjdﬁ

Fy g = 100+ [1.2{1:1:1;.%[11.11-2 | =3770N
This force 15 opposiie by Fojar



Example 2 5 A ngd, well-ipsulated vessed is imitially evacoated A valve
Iz opensd i a pipelme conmected o the vessal which allows amr art
3 MPg and 300 K o Dow iobo the vessel. The vabee is closed when the
pressure in the wvessel reaches 3 MPa. Determuine the Onal equilibroom
remp=ranare of the air o the vessel over the temperatore rangse of ioterest.

S i gk
3 P, 300

i —

Flaure £.0

Salmrion
Select a conrol vohime as shown o Figare (1 9). With oo heat ransfer, oo work, and neglisible
ALE and ApE. the eperpy edquoation 15

'3 = L x 5
0+ [ (s 5w 02)] ] - [ [ (3 + 5 52)]_] = mae— cono
Mpyr — Mgy = M — M,

M, =, —m
M — My, = 0
So eq. (1.31) is simplafy to

(k) = (mul,
and
Cplpq — Culy

. €p_ _ 1005 _



Exgmple 2 4& Steam enters an <jector

(Figure 2.0 at the raie of 0.0454 kg /soc o —
with an enshalpy of I023.8 & /kg amd il e g e
oegliFible veloooy. Water =mpers at the

rate of 0.454 kg /e with an enthalpy of
93 kg and peglizible wvelocsy. The
mixture leaves the ejector with an Fieire 2.9 'I'“-r'l'

enthalpy of Z49 &J kg and a wvelocity of 27432 m/S=s. All potendals may be neglected
Determines the masmitnde and directron of the heat cransfer.

Py -

M, — 003543 kg =ec, ™M — L3543 kg sec,

hy = 3023.83 kJ kg, R: =93 k] kg. Fis = 3949 K] kg
WV, = 00m /=, e, = 0,0 m e, Vs = 27432 mf=
ey = ™, + e, = 0.0454 &+ 0,454 = 04994 kg foe2c

| = "

i F _ | B L - Vx "
Q@ +my B+ g5 )+ ket a b g )= W+ hy (R + e+ g35s )
* e o~ hN *

F:.I ":I

@ + myhy + gy = W 4o By 4 1

-~

27 432% « 10
QJ + 0454 +« 3023.8 5+ 0.454 +593F = II]I.-I!-‘EI"EI'-IJ-(H-IJ-'EI' - = . :|
e

Q + 137281 + 42,222 — 550.1
@ = —5.0245 kW




Exgmple 2.7 A honzontal duct of constant area cootains C02 flowing isothermally (Fipure
2. 10). At a saction wheare the pressure iz 14 bar absolute, the average velocity 1= know to be
50 m/s. Farther downsiream the pressure haz dropped to 7 bar abs. Find the beat tranzfer.

Solotdon I I
o, = 14 = 107 N/m-~* ' I
p. = 7 = 105 N /m? "
V,=50 m/z d_:j {Jf:}
Ve =" m/= Figura 210
From saie equaiion between 1 and 2. as T is constamni:
F, ¥y = Pa1m.
s — ok — 14 = =
&= r r
From contdmucy St
e = o, B A, = 2, VL A
V, — V, 2L — 5D« 2 = 100 m =
&
r.  WVF L r Pa V& b
= =, + r + + + o= — | W, + + + g=
q --.:!.I1 Em = g E.J I'-. ! Loy E = J-'r
- — BT 1040= — 50%
ti'=1qﬂz Lj:{ e 2 = 3750 J kg
"




Example 2.8 Hyidrogen s expanded isentropically iIn a nozzle fom an iminmal pressure of
5300 kEPa, with negligible velocity, to a fmal pressure of 100 kPa_ The imifial gas temperabare s
5300 K. Assume steady flow with the hvdrogen behaving as a perfect gas with constamt specific
heats, where ¢, = 14.5 EJ/kg. K and B = 4,124 kj/kg. K. Determine the final pas velocity
and the mass flow through the nozzle for an exit area of S00 m™.

- - 14.5
Y=L ~c.—R 145—_4124
From izeniropic relation

= 1.397

1507 =1,1.%7
T.=T, %’ "~ son |:% Y s aiesk
From eneTEy equaison
= L1 5
q =H';+(h+v?+g:f —(h+$+9::l
LR & puf LR ol - ]
'
Ve = 20Rhy — ha) = +/ 2ep{Ty — T2} = +/ 2 = 14,5 + 103 (500 — 316.5) = 2306.84 m./=c
From equation of state
Pz 100 :
P: =BT, — 3133 +3165 10766 kg fm
From contimmry exquaiion

e = pelhds = 00766 = 2306.84 « (500 « 10*) = B.B37 kg/=



Exgmple 2% Thare 1= a steady on=-

dimensional flow of air through a 3048 cm FarT
diamseter horizontal douct (Fipare 1.12). At a
secton where the velocity = 140.Z08 m =,

the pressure is 344379 EN/m* and the LT J— =
tenmperanmre is 3055 K. At a downsoream
secton the welecity is 268,224 m/r and the ':j:l' Figume 2.1 'j::'

pressure is 164. 7847 EN /m”. Determine the total wall sheanne force between these sectrons.

Salurion

From eq.

D E= ) m (Vo — Vi)
Pa 344379

M = BT, ~ 0.287 » 305.5
= 3.928 kg/m?
= p, VA = 3.92B + 140.208 + = + 0.3048% /4 — 20182 kg/=
Z F = (pA), — (pA), — F,
F.r = [p"q]l. - I_':_Fl,l:l]? + m{vlllﬂ - ILrlrl.]
Fr = (344379 — 164.7847) » 10° » — 0,30487% + 40.162 (268.224 — 140.379)

=+
= 13104.256 — 5137.067 = T967.2 N



3.1, Introducton

The method by which a flowr adjusts to the presence of a2 body can be showm
visually by a plot of the flow streamlines about the body. Figares (3.1) and (3.2)
show the streamhne patterns obtammed for wmform, steady, meompres=ible flow
owver an arfoll and over a corcular eyvhinder, respectively.

MNote that the flind parhcles are able to sense the presence of the body befiore
actually reaching 1t. At pomt= 1 and 2, for
example, the fhod particles have beau______,_._.-— ——
Eh:PlBEEdTEﬂfE“}’,}'Etlaﬂdzmpﬂmmﬁ
the flow field well shead of the body. This ﬁ
result, true m the zenerzl case of anybody Fhpare 1.1
mserted 1n an meompressible flow, mgpests
that a signalims mechamsm exasts whereby a flind particle can be forewzimed of a

disturbance m the flow ahead of it. The velocitv of signal waes sent from the
body, relative to the moving flnd, apparently 1= meater than the abschate fhnd




1:&1-::-::11'_'; smnce the ﬂmbahletnﬂarttnadjlﬁttnﬂnepm of a body before

incompressible flow, a smooth, conhmuous —-

streambimes result, which mdicate gradual —4-_._:"‘-.,_‘ _,-r"__;-_-'_:__'___,:—-
chanees m flind properties as the flow passes ‘-:-:-'

Pt X2 Eiradm poFaing i Wiy
over the body. If the fhmd partcles were to IGompressile llow

move faster than the sigmal waves. the fimd would not be able to sense the body
before actually reaching 1t. and very abmupt chanpes 1 velocity vectors and other
propertes would ensue.

In this chapter, the mecham=m by which the mizmal waves are propagated
through imcompressible and commpressible flows wall be studied. An expression for
the velocity of propagahion of the waves will be dermed.



3.2, Wave formulation

To exammne the mwans by wihach dishorbances pass through an elastic medmm. A
disturbance at a gZiven point creates a regmon of compressed molecules that 15
passad along to its neighbonng molecules and m so domg creates a raveling wanve.
Waves come 1In vanous Sremgtis, which are measured by the amplhitude of the
dasturbance. The speed at whach this distwbance 15 propagated through the medion
15 called the wane speed. This speed not only depends on the type of mediam and
itz thermodynarme state batf 15 also a2 fimchon of the strength of the wave. The
stronger the wave 15, the faster it moves.

If we are dealing wnth waves of lorge amplinude, which mvobre relaively
larpe changes m pressure and density, we call these shock waves. These wall be
studied later. If on the other hand we observe waves of very small amplinds.
thear speed 15 charactenshe only by the medmm and 1ts state. These waves are of
vital mportance since sound waves fEll into this category. Furthermore, the
presence of an object iIn a2 medium can only be felt by the object’s sending cut or
reflecting mimtesimal waves whach propagate at the zomic velociny.



Consider a long constant-area tube filled wath fimd and having a piston at one
end, as shown m Figure (3.3). The find 15 mihally at rest. At a cerfain instant the
piston 15 grven an meremental velocty 4V to the left. The flnd parbicles
immediately next to the piston are compressed a very small amount as they acqure
the velocity of the piston. A= the piston (and these compressed parficles) conhme

to move, the next zroup of fhud particles

15 compressed and the wme fromr 1= el E o ? I.L'Em
observed to propagate through the flind at ': —1
somic velocity of mapmitude a. All parhicles : f, :g t;’-— Fiden

betwesn the wave front and the piston are
moving with velocity dV to the left and
have been compressed from p to p+dp
and have mcreased ther pressure from p

Fipesa 1.3 [ndtiation of infiis smol pregans polse




The flow 1= unsteady and ¥
the analysis is difficult This L
difficulty can easily be sohred by Fre—dl
supenmposing on the entre Howr p & o *

field a constant <elocHy to the p +Tap

nght of mapmitude .

Contnol volemme

Figure 3.4 Stade-Mew piotme oorespoding o Fgue 3,3,
3.3, Somic Velooity

Fimure (3.4) shows the problem Since the wanre front 15 extrermnely thin, we
can use a confrol vohmme of mfimitesimal thackness For steady one-dimensional
flow . we have from comhrmuty equation

m = pAV = const
But A = const; thus
oV — rconst (3.1)

Apphcaton of tus to our problem welds
pa = (p + dpia — dV ]
pa = pa — pdV + adp — dpdV
Heglechng the gher-order term and solimng for dV, we have
a do
o

dF =

(3.2)



Since the confrol volume has mfimtesymal thickness, we can peslect any
shear stresses along the walls. We shall wnite the x-component of the momentim
equaton, taking forces and velocity as positrve if to the nght For steady ome-
dimensional flow we may wite from momentum equation

) Ee= ) 1 (Vo — Vi)

pd — (p+ dp)d = pdal[{a — dV) — a]

Adp = pAa dV

Canceling the area and solving for 41, we have
dp

av =— (3.3)




Egquathons {(3.2) and {3.3) mav now be combmed, the resualt 1s-
L
2 —_— —
as — a0 (3.4al
However, the dermrate dp/dpo 15 not wmeque . It depend= entirely on the process.

For exaanple

(2), =)

deod - ded

Thus 1t should really be =mftten a= a parrial dermvatie wnth the approprniate
sub=script.

Since we are anabvang an mfimtecsiagl desturbance. we can assume
neshmble losses and heat transfer as the weve passes through the fuaad Thuas the
process 15 both revermible and adhabatic, which mweans that o 1= 1sendropac.
Equation (4 4) should properly e wixtten as:

{-E',cr . (3.458)

For substances other than gases, somic velocity can be expressed m am
altermative f-|:-:|:m by Imtroducmms the 5wl or velumes moded: of elasticin: Ev.

E, = —v|— (3.5)

(E - F |::E.I'._.' o

a® = — (3.8)



Equations (3.4) and (3.6) are equvalent general relzhons for some veloaty
through ay mednm The bulk modulus 15 nomally used m connechion with
howds and sohds. Table 4.1 zives some typical values of this modulus, the exact
value depending on the temperature and pres=ure of the medmmm For sohds it also
depends on the type of loading. The reciprocal of the bulk modulus 15 called the

W"F*“"""bq"‘}" | Tablod,1 ok Modhibus ¥abias for Common Mol

Equation (3.4) 15 nommally wed  pisqum alk M s (pa
for zases and this can be gmeatly o | B4 f0=170 500
. Tater A0 PR 00
simplfied for the case of a gas that Mt T

Stael appron 30 000




obevs the perfect gas law. For an 1sentropic process:

pr¥ —=¢c or p=cp’

dy o
_- —_ y—1 — =1 5 __
{ } =cyp —n p_r,—:r'F.'T

E'E' L5
a = J¥RT (3.7)
For perfect gases. somic velocity 15 2 funchon of the ¥, R and T only.
¥V
Mach number, M = — (3.8)
a

It 15 mmportant to realize that both F and a are computed locally for the same
pomt. For other pomt wathin the flow we mmst seek further mformaton to
compute on the somic veloaty, which has probably changed.

Subconic flow, M <, the velocity 15 less than the local speed of sound.

Ssuperzonic flow, M = 1, the velocity 15 greater than the local speed of sound.

We shall zoon see that the Mach number 15 the most mportant parameter 1 the
analy=1s of compressible lows.



3.4: Wave Propazation
Let us examne a pownt distwrbance that 1= s ambited ot 1=

at rest m a fhoed Iyfnirezimal pressure ——— Tl
pulses are confinually bemgz emmfted and

s flay fravel Hough fhe i af ‘ Wass cadtied 1= 2
somic wvelocity m the form of spheneal @
wave fronts. To sumphfy matters we shall

keep track of only those pulses that are (Picture shown fon 1= 3]
eputted every second At the end of 3
seconds the picture will appear as shown Figare 3.5 Wure freats fom & sablonyy Ssutbance.

Fimure (3.3). Note that the wave fronts are concentne.

MNow consider a simmlar problem mn whech the distwbance 13 mowing at a speed
less than somc velooty, say a,/2. Figure (3.6) shows such a situation at the end of
3 seconds. MNote that the wave fronts are no longer concentne.
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fronts have coalesced to form a cone with the dishowbance at the apex This 15
called a Mach cone. The remon mside the cone 15 called the zome of action since 1t
feels the presence of the waves. The outer remon 15 called the zome of silsnce, as
thiz emtire region is unaware of the disturbance. The surface of the Mach cone 15
sometmes referred to as a Mach wane; the half-angle at the apex 15 called the
Mach angle and 15 ziven the symbeol . It should be easy to see that:

a 1

ni=—=— 3.9
sinp =7 == (3.9)

For subsome flow, no such zone of silence exsts. If the distwrbance cansed by a
projectile, the entire fhnd 15 able fo sense the projechle mowving through it, since
the mznal waves move faster than the projechle. No concentration of pressure
disturbances can occur for subsome flow; Mach lmes cannot be defined



Let us now compare steady, umform subsomic and supersomic flow over a
finite wedge-shaped body. If the flnd velocity 15 less than the velocity of sowumd,
flow ahead of the body 15 able to sense its presence. As a result, gradual changes 1n
flow properhes take place; with smooth, confimaons streamimes (see Figure 3.9).

If the flmd velocity 15 greater than the velocity of sound, the approach flow,
bemng m the zone of silence, 15 unable to sense the presence of the body. The body
now presents a finife distwbance to the flow. The wave pattern obtained 15 a result
Thiz nomlmear addition vields a compression shock wawe across winch ocour finite
changes 1n veloctty, pressure, and other flow properties. A typical flow pattern
obtained for supersomc flow over the wedge 15 shown m Figme (3.10).

Fipre 1.0 Sulmanic wedge Flowe Figurs 3,90 Sugerson b veas g Ao



2.1, Conservation of energy.
From first law of thermodymanmes
g =W +AE (2.11)
Where AE 15 the change m tofal enersy of the system 1.e. 1t 1= the change m
imternal, kinetic and potential enermes, A(UF+ K.E.+P.E.). Eq. 211 can be
written on a rate basis to vield an expression that 15 valhid at any mstant of tme:
-E-:,'E_-:'S'H-’_I_.:IE'
de  dt dt
0@ /dt and W /dt represent mmstantaneous rates of heat and work transfer
between the system and the swrounding. They are rates of energy transfer across
the boumdanes of the systemn These termes are motf matenal denrvatmves sice heat
and work are not properties of a syvstem. ‘On the other hand, energy 15 2 property of
the system and dE /dt 15 a matenal denvative, then-

{if:l = i}[{f epdf+ ﬂa o (V.fR) dA (2.13)

(2.12)




For one-dimensional steady flow the last mtepral 15 simple to evaluate. as
g, o, and V are constant over any given c1oss secton. Assuming that the veloaity V
15 perpendicular to the surface A, we have

ﬂsp(ﬁ'.ﬁjdﬂzz[pl’ﬂ}szma (2.14)

sy

%ﬂ]-apd?:{l (2.15)

cu




We mmst be careful to mchude
all forms of work, whether done
v pressure forces or shear forces.
Fizure (2.2) shows a smple
control vohime NMNote that the
control smiface 15 chosen carefully
0 that there 1= no flind motion at
the boundary, except: Figure 2.2 ldemifiz ok sn of work quankiieg
(a) Fhod enters and leaves the system
(b) A mechamecal device crosses the boundanes of the system

For flind enters and leaves the system. the presswre forces do work to push fhd
into or out of the control vohimmse The shaded area at the mnlet represents the fhnd
that enters the control volume during time dr. The work done here 1=:
SW=F.drxr=pAdx=pAVdt (2.16)

The rate of dome work. whach called fTow work. 1s

e i sl e

OW i
s = pAV = mprr (2.17)



The rate at whach work 15 tansoutted out of the system by the mechameal devace 15
GWEL fdt and

w00, -:Fli-'l.-F W

dt  dt dn: dt
Thms for steady one-dimensional flow the energy equation for a confrol volume

becomes

&Q OWL
df + z e + pr) (2.19)

The*tmmuhnnblakmurﬂaﬂmﬁmsudnreﬂuidﬂmmﬂucmmlimﬁce
and 15 posifive where fhind leaves the confrol volume and negatrve where flhind
enters the contrel volume.

If there 15 only one sechon where fhnd leaves and one sechon where fhnd enters
the confrol volume, we have, (from contmmty), for steady flow:

ﬂl!l't = ml:ll.l.[ — m

+ mpv (2.18)




Let uws take:

&Q d . :

. :at-ﬂ]-qu!‘+ j-f-f.'.ﬂ'{li".n}d.dzmq (2.20)

SHEL d

.:r; :E'I:'_{I]-ws ,ﬂ-d'!!'+-ﬂ-w5p{l".ﬁ}d.-=]=rhw5 (2.21)

Substrtate m eqs (2.20) and (2.21) o ag (2.19) gmees:

.-_'|I=1-'I-"i+z[:ﬂ + p1r) (2.22)
" Ve

g=w, +|u+—+g= +puj] —{u+—+,grz+p-:l-‘} (2.23)
| 2 - - im
i e |

g = w; + | h+?+gsj] —(h+?+gﬂj [(2.24)
" 2 1

Thas 1= the form of the enersy equaton that mav be usad to solve mamy problems.
It 15 often referred as steady flow energy equation (SFEE).




For unzteady flow, since change of kmehe and potental enerpies withm the
system 1= nezhmble, then (Unsteady F.E. E) becomes:

%i? + [m{h +§+g:t:l]m]—[ﬁi+

r

[y
.'I':|J1.+T+gs)
\

]:[ﬂm]-,—[:rr:uh (2.25)
Waue — My = My — 1, (2.26)
where 4, and m, are mtemal energy and mass of the working flmd
mside the system after .
change while u; and m, are L L
internal energy and mass of ' _Eh i
the working fluid mside the
system before change.

Figuan 3¢ - Fursls eniinl valims (it ety aedbpss




2.3, Conservaton of momenium.

If we observe the motion of a grven guantity of mass, MNewton's second law tells
us that the hnear momentium wall be changed m drect proportion to the apphed
forces. Thas 15 expressed by the followang equahon:

ze Dcﬂm;:ﬂNM} = :.: fﬂv.ﬂd‘f+ﬂVP (V.7) dA (2.27)

Here ¥V besides 1t 15 a velocity vector it also represents the momentum per umt
» F represents the sunwmation of all forces on the_flead within rthe control volume
which mavbe forces due to presswure, viscosity, gravity, swmface tenzion ... etc..

For steady flow the time rate of change of near momentum stored mside the
control volume 135

&
Eﬂ Vedy=0 (2.28)
c



And momentum equation sumphfy to:

EF: ﬂvp (V.7) da (2.29)

The x-component of this equaton would appear as

D E=[[wonds (230)

If there = only one sechon where flmd enters and one sechon where flnd
leaves the control volume, we know (from contumuty) that:
W = Mgy = My

And the momentum equatton for a fimte confrol volume becomes:

D E =) i (Vg — Vi) (231)



1.2.

Conirol volume
approach




Figure (1.2) shows an arbitrary mass at time
and the same mass at time , which

composes the same mass particles at all times.
If Is small, there will be an overlap of the two

s shown, with the common region
ed as region 2. At time the given mass
cles occupy regions and . At time the same
mass particles occupy regions and . "
egions 1 & 2, which originally confines of the
ass, are called the control volume.

Figure1.2: Flow into control volume,



Introducing of concept of material derivative
of any extensive property (a property which Is
mass dependent such as mass, enthalpy,internal
energy ... etc ) transforms to a control volume
approach gives a valuable general relation
called Reynolds’s Transport Theorem that can
be used to find property change for many
particular situations.



We construct our material derivative from the mathematical definition

DX ’ (final value of X)¢spe — (initial value of X);

— = lim

dt  At—o0| At

DX (X, + X — (X, + X

°f  him (X, 3)e+ar — (X3 2)t (1.1)
dt  At=0| At

Now for the term

o (X3)e+ar
lim ——
At—0 At

The numerator represents the amount of X in region 3 at time (t + At). and by definition region

3 is formed bv the fluid moving out of the control volume. Then:

(X 3 ) t+At

f}in}}T = JI xp (V.i1) dA ~ total amount of X inregion3 (1.2)

cs.out
This integral 1s called a flux or rate of X flow out of the control volume.
Now let us consider the term

. (X1)¢
at=0 At




Region 1 has been formed by the original mass particles moving into the control volume (during

time At). Thus

lim (X1)¢
At—0 Af

= ff xp (V.i1) dA = total amount of X inregion 1 (1.3)

C5.in
This integral 1s called a flux or rate of X flow info the control volume.

Now look at the first and last terms of equation (1.1) which 1s:

dXcpy O Iy 14

o

Note that the partial derivative notation is used since the region of integration 1s fixed and

lim

(X2)t4ae — (X2)¢
At—0

At

time 1s the only independent parameter allowed to vary. Also note that as At approaches zero.

region 2 approaches the original control volume. Then eq. (1.1) becomes

DX . (X3 + X3depar — (Xy + X5)¢
— = lim
dt  At—=0 At

\\




d
== xpdY+ xp(V.i)dA— (| xp(V.i)dA (1.5)

cr cs.out cs,in

As fi = —1 then the last two terms become

ﬂ x o (V.5 44 — ﬂxp.:t-r.ﬁ:..-.u. =_|:|':p.:|.r.ﬁ|.:r,,-;|
[— W T 1 — o _ ] =1

which is the net rare of 5 passes the comdrol vobimme surfacs. The final Tansfomation becomes:

D o -
) =s [ =eav+ [[xp sy aa (e

Thiz reladon, known as Reyrealds™ Frarspory Theorem, which cam e imterporetsd o weords
as: The rate of changs of ¥ property for a fixed mass swystemn of floid particles as if i oeowdnge is
equal o the e of chamees of & Woide the control wolome gl the saer effos of ¥ fom the
coomirel sohorss Ao oot mimes Flomer in across confred saoedimmss oundary’)

TWher=
= - M aterial or total or cobstantial derivadbe

EAE
% - Parmial dervatee wiith respesct to time

e - comired voluns that cootadninge the mass.

cr 1 conigel surfacs that sorronnding the cootrol wolome:

A - Mass-dependent (extensive]) prop=rity: scalar or weohor guoandyiy.

x - Bs ihe amoant of the property per umid mass. For mass it egoals ome.

g - Fluid denszity (ko™

dF  Imfimidesimal (very small) coomiral wolome:

4 : ImSnitesimal conirel surface.

F - WWeloeriny wecnnr

2 Duterard ondt wector which is perpendicnlar to A,

fi - Ioerard umndt wertor which is peapendicnilar toe dd.

Examples of the application of thiz powsrfol tramsformarion squaton are oonsemvaybion of

mass, ernsr Yy and meormenon Ssquatsons whhich are presepred in the next chaprter.
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