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Chapter One/Introduction to Compressible Flow 

 

1.1. Introduction 

In general flow can be subdivided into: 

i. Ideal and real flow. 

For ideal (inviscid) flow viscous effect is ignored. The momentum equations are 

Euler’s equations that derived in 1755 by Euler. 

For real (viscose) viscous effect is considered. The momentum equations are 

Navier-Stokes equations. 

ii. Steady and unsteady flow. 

For steady flow, flow properties are time independent and mass exits from the 

system equals the mass enters the system. 

For unsteady, flow properties are time dependent and mass exit s from the system 

may or may not equals the mass enters the system and the difference causes system 

mass change. 

iii. Compressible and incompressible flow 

For compressible flow, density becomes an additional variable; furthermore, 

significant variations in fluid temperature may occur as a result of density or pressure 

changes. There are four possible unknowns, and four equations are requ ired for the 

solution of a problem in compressible gas dynamics: equations for the conservation of 

mass, momentum, and energy, and a thermodynamic relations and equation of state for 

the substance involved. The study of compressible flow necessarily involves an 

interaction between thermodynamics and fluid mechanics. 

For incompressible flow can be assumed with density is not a variable. For this 

type of flow, two equations are generally sufficient to solve the problems encoun tered: 

the continuity equation or conservation of mass and a form of the Bernoulli equation, 

derivable from either momentum or energy considerations. Variables are generally 

pressure and velocity. 

 

iv. One, two and three-Dimensional Flow 

One-dimensional flow, by definition, did not consider velocity components in the y or z 

directions, as in Figure (1.1a). In true one-dimensional flow, area changes are not allowed. For 

inviscid flow the velocity profile is shown in section (a) and (c).  However, the more gradual the 

area change with x, the more exact becomes the one-dimensional approximation. 
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For viscose flow the velocity profiles is shown in 

Figure (1.1b). Actually, due to viscosity, the flow velocity at 

the fixed wall must be zero as in sections (a) and (c). 

Consider the flow in a varying area channel. The 

velocity profile in a real fluid is shown in Figure (1.1b) 

section (b).  

A complete solution of a problem in a fluid mechanics 

requires a three-dimensional analysis. However, even for 

incompressible flow a complete solution in three 

dimensions is possible only numerically with the aid of 

computer programs. Fortunately, a great many compressible 

flow problems can be solved with the use of a one-

dimensional analysis. One-dimensional flow implies that the 

flow variables are functions of only one space coordinate. 

 

1.2. Control volume approach  

 Figure (1.2) shows an arbitrary mass at time   and the same mass at time     , which  

composes the same mass particles at all times. If    is small, there will be an overlap of the two 

regions as shown, with the common region identified as region 2. At time   the given mass 

particles occupy regions   and  . At time      the same mass particles occupy regions   and  . 

Regions 1 & 2, which originally confines of the mass,  are called the control volume. 

 Introducing of concept of material 

derivative of any extensive property (a property 

which is mass dependent such as mass, enthalpy, 

internal energy … etc ) transforms to a control 

volume approach gives a valuable general relation 

called Reynolds’s Transport Theorem that can be 

used to find property change for many particular 

situations. Let 

                    the total amount of any 

extensive property in a given mass. 

    the amount of   per unit mass. Thus  

  ∫     ∭    
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We construct our material derivative from the mathematical definition 

  

  
    

    
[
                                            

  
] 

  

  
    

    
[
                    

  
]                                                                  

Now for the term  

   
    

        

  
 

The numerator represents the amount of   in region 3 at time (    ), and by definition region 

3 is formed by the fluid moving out of the control volume. Then; 

   
    

        

  
 ∬         ̂    

      

                                         

This integral is called a flux or rate of   flow out of the control volume. 

Now let us consider the term 

   
    

     
  

 

 

Region 1 has been formed by the original mass particles moving into the control volume (during 

time   ). Thus  

   
    

     
  

 ∬        ̌    

     

                                                 

This integral is called a flux or rate of   flow into the control volume. 

Now look at the first and last terms of equation (1.1) which is: 

   
    

[
              

  
]  

       

  
 

 

  
∭      

  

                                                

 Note that the partial derivative notation is used since the region of integration is fixed and 

time is the only independent parameter allowed to vary. Also note that as    approaches zero, 

region 2 approaches the original control volume. Then eq. (1.1) becomes 

  

  
    

    
[
                    

  
] 

        
 

  
∭      

  

 ∬         ̂    

      

 ∬        ̌    

     

                        

As  ̂    ̌ then the last two terms become 
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∬         ̂    

      

 ∬        ̌    

     

 ∬        ̂    

  

 

which is the net rate of    passes the control volume surface. The final transformation becomes: 

(
  

  
)  

 

  
∭      

  

 ∬        ̂    

  

                                                                

This relation, known as Reynolds’s Transport Theorem, which can be interpreted in words 

as: The rate of change of   property for a fixed mass system of fluid particles as it is moving is 

equal to the rate of change of   inside the control volume plus the net efflux of   from the 

control volume (flow out minus flow in across control volume boundary). 

 

Where 

 

  
   : Material or total or substantial derivative 

 

  
   : Partial derivative with respect to time 

    : control volume that containing the mass.  

    : control surface that surrounding the control volume. 

    : Mass-dependent (extensive) property; scalar or vector quantity. 

    : is the amount of the property per unit mass. For mass it equals one. 

    : Fluid density (kg/m
3
). 

   : Infinitesimal (very small) control volume. 

   : Infinitesimal control surface.  

    : Velocity vector. 

  ̂  : Outward unit vector which is perpendicular to   . 

 ̌   : Inward unit vector which is perpendicular to   . 

Examples of the application of this powerful transformation equation are conservation of 

mass, energy and momentum equations which are presented in the next chapter. 

 

References: 

1. James John & Thie Keith, Gas dynamics, 3td edition, Pearson prentice hall, Upper Saddle, 

New Jersey, 2006. 

2. Robert D.  Zucker & Oscar Biblarz , Fundamental of Gas Dynamics, John Wily & Sons,  

New York, 2002. 
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Chapter Two/Basic Equation of Compressible Flow 

 

 

2.1. Conservation of mass: 

(
  

  
)  

 

  
∭      

  

 ∬    (   ̂)   

  

 

Let         so    . For fixed amount of mass that moves through the control 

volume:  

(
     

  
)                                                                                                                  (   ) 

And for steady flow: 

 

  
∭     

  

                                                                                                            (   ) 

So the second term must equals to zero. 

∬   (   ̂)   

  

                                                                                                      (   ) 

Let us now evaluate the 

remaining integral for the case of 

one-dimensional flow. Figure 

(2.1) shows fluid crossing a 

portion of the control surface. 

Recall that for one-dimensional 

flow any fluid property will be constant over an entire cross section. Thus both the 

density and the velocity can be brought out from under the integral sign. If the 

surface is always chosen perpendicular to  , the integral is very simple to evaluate: 

∫  (   ̂)       ∫       (     )                                                        (   ) 

But integral in eq. 2.3 must be evaluated over the entire control surface, which 

yields: 
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∬   (   ̂)   

  

 ∑                                                                                      (   ) 

This summation is taken over all sections where fluid crosses the control 

surface. It is positive where fluid leaves the control volume (since    ̂ is positive 

here) and negative where fluid enters the control volume. 

For steady, one-dimensional flow, the continuity equation for a control 

volume becomes: 

∑                                                                                                                     (   )  

If there is only one section where fluid enters and one section where fluid leaves 

the control volume, this becomes: 

(     )    (     )                                                                                            (   )  

 ̇                                                                                                             (   ) 

   is the component of velocity perpendicular to the area A. If the density ρ is 

in     ⁄ , the area   is in    and velocity   is in   ⁄ ,  then  ̇ is in    ⁄ . 

Note that as a result of steady flow the mass flow rate into a control volume 

is equal to the mass flow rate out of the control volume. But if the mass flow rates 

into and out of a control volume is the same it doesn’t ensure that the flow is  

steady.  

For steady one-dimensional flow, differentiating eq. 2.8 gives: 

 (     )         ( )      (  )       ( )                                        (   ) 

Dividing by       

  

 
 
  

 
 
  

 
                                                                                                   (    ) 

 This expression can also be obtained by first taking the natural logarithm of 

equation (2.8) and then differentiating the result. This is called logarithmic 

differentiation. 

 This differential form of the continuity equation is useful in interpreting the 

changes that must occur as fluid flows through a duct, channel, or stream-tube. It 

indicates that if mass is to be conserved, the changes in density, velocity, and cross 

sectional area must compensate for one another. For example, if the area is 
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constant (      ), any increase in velocity must be accompanied by a 

corresponding decrease in density. We shall also use this form of the continuity 

equation in several future derivations. 

 

2.2. Conservation of energy. 

From first law of thermodynamics 

                                                                                                                   (    )  

Where    is the change in total energy of the system i.e. it is the change in 

internal, kinetic and potential energies,  (           ). Eq. 2.11 can be 

written on a rate basis to yield an expression that is valid at any instant of time: 

  

  
 
  

  
 
  

  
                                                                                                        (    ) 

      and       represent instantaneous rates of heat and work transfer 

between the system and the surrounding. They are rates of energy transfer across 

the boundaries of the system. These terms are not material derivatives since heat 

and work are not properties of a system. On the other hand, energy is a property of 

the system and       is a material derivative, then: 

(
  

  
)  

 

  
∭      

  

 ∬    (   ̂)   

  

                                                      (    ) 

For one-dimensional, steady flow the last integral is simple to evaluate, as 

          are constant over any given cross section. Assuming that the velocity   

is perpendicular to the surface  , we have 

∬    (   ̂)   

  

 ∑(     )  ∑ ̇                      (    ) 

 

  
∭      

  

                                                                                                     (    ) 
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We must be careful to include 

all forms of work, whether done 

by pressure forces or shear forces. 

Figure (2.2) shows a simple 

control volume. Note that the 

control surface is chosen carefully 

so that there is no fluid motion at 

the boundary, except:  

(a) Fluid enters and leaves the system. 

(b) A mechanical device crosses the boundaries of the system. 

For fluid enters and leaves the system, the pressure forces do work to push fluid 

into or out of the control volume. The shaded area at the inlet represents the fluid 

that enters the control volume during time   . The work done here is: 

  ́                                                                                            (    ) 

The rate of doing work, which called flow work, is 

  ́

  
      ̇                                                                                                   (    ) 

The rate at which work is transmitted out of the system by the mechanical device is 

       and 

  

  
 
   
  

 
  ́

  
 
   
  

  ̇                                                                          (    ) 

Thus for steady one-dimensional flow the energy equation for a control volume 

becomes 

  

  
 
   
  

 ∑ ̇(    )                                                                                (    ) 

The summation is taken over all sections where fluid crosses the control surface 

and is positive where fluid leaves the control volume and negative where fluid 

enters the control volume. 

If there is only one section where fluid leaves and one section where fluid enters 

the control volume, we have, (from continuity), for steady flow: 

 ̇    ̇     ̇ 
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Let us take: 

  

  
 
 

  
∭      

  

 ∬    (   ̂)   

  

  ̇                                                 (    ) 

   
  

 
 

  
∭       

  

 ∬     (   ̂)   

  

  ̇                                         (    ) 

Substitute in eqs (2.20) and (2.21) into eq (2.19) gives: 

     ∑(    )                                                                                            (    ) 

     (  
  

 
      )

   

 (  
  

 
      )

  

                    (    ) 

     (  
  

 
   )

 

 (  
  

 
   )

 

                                              (    ) 

This is the form of the energy equation that may be used to solve many problems. 

It is often referred as steady flow energy equation (SFEE).  

 

For unsteady flow, since change of kinetic and potential energies within the 

system is negligible, then (Unsteady F.E. E) becomes: 

,  * ̇ (  
  

 
   )+

  

-  ,   * ̇ (  
  

 
   )+

   

-  ( ̇ )  ( ̇ )     (    ) 

 ̇     ̇    ̇   ̇                                                                                        (    ) 

where    and     are internal energy and mass of the working fluid 

inside the system after 

change while    and     are 

internal energy and mass of 

the working fluid inside the 

system before change. 
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2.3. Conservation of momentum. 

If we observe the motion of a given quantity of mass, Newton’s second law tells 

us that the linear momentum will be changed in direct proportion to the applied 

forces. This is expressed by the following equation: 

∑  
 (        )

  
 
 

  
∭      

  

 ∬    (   ̂)   

  

                 (    ) 

Here   besides it is a velocity vector it also represents the momentum per unit 

mass. This equation is usually called the momentum or momentum flux equation. 

∑  represents the summation of all forces on the fluid within the control volume 

which maybe forces due to pressure, viscosity, gravity, surface tension … etc..  

For steady flow the time rate of change of linear momentum stored inside the 

control volume is 

 

  
∭      

  

                                                                                                   (    ) 

And momentum equation simplify to: 

∑  ∬    (   ̂)   

  

                                                                                      (    ) 

The x-component of this equation would appear as 

∑   ∬          

  

                                                                                          (    ) 

If there is only one section where fluid enters and one section where fluid 

leaves the control volume, we know (from continuity) that: 

 ̇   ̇     ̇   

And the momentum equation for a finite control volume becomes: 

∑   ∑  ̇ (        )                                                                                 (    ) 
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The summation is taken over all sections where fluid crosses the control 

surface and is positive where fluid leaves the control volume and negative where 

fluid enters the control volume. 

 

2.4. 1st law of thermodynamics. 

First law of thermodynamics takes the following form 

∑  ∑                                                                                                            (    ) 

Or  

                                                                                                                    (    )  

First law of thermodynamics is a conservation of energy and we dealt with in 

2.2. 

 

2.5. 2nd law of thermodynamics. 

Two concepts that are important to a study of compressible fluid flow are 

derivable from the second law of thermodynamics: the reversible process and the 

property entropy. For a thermodynamic system, a reversible process is one after 

which the system can be restored to its initial state and leave no change in either 

system or surroundings. As a consequence of this definition, it can be shown that a 

reversible process is quasi-static; changes occur infinitely slowly, with no energy 

being dissipated 

Since thermodynamics, is a study of equilibrium states, definite thermodynamic 

equations for changes taking place during processes can be derived only for 

reversible processes; irreversible processes can only be described 

thermodynamically with the use of inequalities. Irreversible processes involve, for 

example, the following: friction, heat transfer through a finite temperature 

difference, sudden expansion, and magnetization with hysteresis, electrical 

resistance heating, and mixing of different gases.  

 In general, any natural process is irreversible, so the assumption of 

reversibility, while it may simplify the thermodynamic equations, necessarily 
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yields an approximation. For many, cases, the assumption of reversibility leads to 

very accurate results; yet it is well to keep in mind that the reversible process is 

always an idealization. 

The thermodynamic property derivable from the second law is entropy, which 

is-defined for a system undergoing a reversible process by    (   ⁄ )   . 

Entropy changes were defined in the usual manner in terms of reversible 

processes: 

   ∫
     
 

                                                                                                            (    ) 

                                                                                                         (    ) 

The term     represents that portion of entropy change caused by the actual 

heat transfer between the system and its (external) surroundings. It can be 

evaluated readily from: 

    
     
 

                                                                                                               (    ) 

One should note that     can be either positive or negative, depending on 

the direction of heat transfer. If heat is removed from a system,    is negative and 

thus     will be negative. It is obvious that         for an adiabatic process. 

The term     represents that portion of entropy change caused by 

irreversible effects. Moreover,     effects are internal in nature, such as 

temperature and pressure gradients within the system as well as friction along the 

internal boundaries of the system. Note that this term depends on the process path 

and from observations we know that all irreversibilities generate entropy (i.e., 

cause the entropy of the system to increase). Thus we could say that  

                                                                                                                             (    ) 

Obviously,         only for a reversible process. An isentropic process is one 

of constant entropy. This is also represented by       . 

                                                                                                             (    ) 

A reversible-adiabatic process is isentropic, but an isentropic process does 

not have to be reversible and adiabatic we only know that     . 
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2.6. Equation of State. 

 An equation of state for a pure substance is a relation between pressure, 

.density, and temperature for that substance. Depending on the phase of the 

substance and on the range of conditions to which it is subjected, one of a number 

of different equations of state is applicable. However, for liquids or solids, these 

equations become so cumbersome and have such a limited range of application 

that it is generally more convenient to use tables of thermodynamic properties. For 

gases, an equation exists that does have a reasonably wide range of application, the 

perfect gas law; in its usual form, it is expressed as 

                                                                                                                          (    ) 

 For the derivation of the perfect gas law from kinetic theory, the volume of 

the gas molecules and the forces between the molecules are neglected. These 

assumptions are satisfied by a real gas only at very low pressures. However, even 

at reasonably high pressures, a real gas approximates a perfect gas as long as the 

gas temperature is great enough 

 

2.7. Thermodynamics Relations. 

Also  the following relations are very useful equations. Starting with the 

thermodynamic property relation: 

                                                                                                                   (    ) 

                  
  

 
                                                                      (    ) 

                  
  

 
                                                                      (    ) 

For perfect gas with constant specific heats 

     ∫
  

 
  ∫

  

 
                                                                  (    ) 

      ∫
  

 
  ∫

  

 
                                                                (    ) 

                               ⁄  
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Example 2.1 Ten kilograms per second of air enters a tank 

       in volume while        is discharged from the 

tank (Figure 2.4). If the temperature of the air inside the 

tank remains constant at      , and the air can be treated 

as a perfect gas, find the rate of pressure rise inside the tank. 

 

Solution: 

Select a control volume as shown in the sketch. For this case the net rate of efflux of mass from 

the control volume is 

∬   (   ̂)   

  

          

The volume is constant and also density is assumed constant inside the tank as temperature is 

constant, but it is time dependent. 

  
  

  
∭   

  

 ∬   (   ̂)   

  

 

∭  

  

          

     
  

  
   

From equation of state for a perfect gas  

      

  

  
   

  

  
 

  

  
         

 

   
           ⁄  

 

Example 2.2 Two kilograms per second of liquid hydrogen and eight kg/s of liquid oxygen are 

injected into a rocket combustion chamber in steady flow (Figure 2.5). The gaseous products of 

combustion are expelled at high velocity 

through the exhaust nozzle. Assuming 

uniform flow in the rocket nozzle exhaust 

plane, determine the exit velocity. The nozzle 

exit diameter is      . and the density of the 

gases at the exit plane is            
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Solution 

  
 

 
   

 

 
(    )             

Select a control volume as shown in the sketch. For this case of steady flow, Eq. (1.12) is 

applicable 

∬   (   ̂)   

  

   ∑      

The rate of influx into the control volume is 

             .  

The rate of efflux is 

(     )     (     )             

  
  

(    )(       )
         ⁄  

 

Example 2.3 An air stream at a velocity of         and density of 

          strikes a stationary plate and is deflected by    . Determine 

the force on the plate. Assume standard atmospheric pressure 

surrounding the jet and an initial jet diameter of     .  

 

solution 

Select a control volume as shown in Figure (2.6a). Writing the x 

component of eq. (2.30) for steady flow to determine fluid force on the 

plate 

∑   ∬     (   ̂)   

  

 

             [   (   )
 

 
(    ) ]          

This force is opposite by        

 

Example 2.4 A rocket motor is fired in place on a test stand. The rocket exhausts         at an 

exit velocity of        . Assume uniform steady conditions at the exit plane with an exit plane 

static pressure of       . For an ambient pressure of        , determine the rocket motor 

thrust transmitted to the test stand as shown in Figure (2.7). 
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Solution  

∑   ∬     (   ̂)   

  

 

∑                     

∬     (   ̂)   

  

            ̇    

        (     )    ̇    

        (      )    
              

                  

 

Example 2.5 A rigid, well-insulated vessel is initially evacuated. A valve 

is opened in a pipeline connected to the vessel, which allows air at 

      and       to flow into the vessel. The valve is closed when the 

pressure in the vessel reaches      . Determine the final equilibrium 

temperature of the air in the vessel over the temperature range of interest. 

 

Solution 

Select a control volume as shown in Figure (1.9). With no heat transfer, no work, and negligible 

    and    , the energy equation is  

*  * ̇ (  
  

 
   )+

  

+  *   * ̇ (  
  

 
   )+

   

+  ( ̇ )  ( ̇ )   

 ̇     ̇    ̇   ̇  

 ̇    ̇    

 ̇     ̇    

So eq. (1.32) is simplify to 

( ̇ )      ( ̇ )   

 and        
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Example 2.6 Steam enters an ejector 

(Figure 2.9) at the rate of               

with an enthalpy of              and 

negligible velocity. Water enters at the 

rate of              with an enthalpy of 

         and negligible velocity. The 

mixture leaves the ejector with an 

enthalpy of           and a velocity of           . All potentials may be neglected. 

Determine the magnitude and direction of the heat transfer.  

 

 ̇                    ̇                   

             ⁄                    ⁄                           

        ⁄                                ⁄                              

 ̇   ̇   ̇                           ⁄  

 ̇   ̇ (   
  
 

 
    )   ̇ (   

  
 

 
    )   ̇   ̇ (   

  
 

 
    ) 

 ̇   ̇     ̇     ̇   ̇ (   
  
 

 
) 

 ̇                               (    
            

 
) 

 ̇                       

 ̇              

 

 

Example 2.7 A horizontal duct of constant area contains CO2 flowing isothermally (Figure 

2.10). At a section where the pressure is        absolute, the average velocity is know to be 

      . Farther downstream the pressure has dropped to       abs. Find the heat transfer. 

 

Solution 

 

        
     ⁄  

       
     ⁄  

         ⁄  

        ⁄  

From state equation between 1 and 2, as T is constant: 
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From continuity equation 

 ̇                    

         
  
  
            ⁄  

     (   
  
  
 
  
 

 
    )  (   

  
  
 
  
 

 
    ) 

  (
  
    

 

 
)  

(        )

 
         ⁄  

 

Example 2.8 Hydrogen is expanded isentropically in a nozzle from an initial pressure of 

       , with negligible velocity, to a final pressure of        . The initial gas temperature is 

     . Assume steady flow with the hydrogen behaving as a perfect gas with constant specific 

heats, where                ⁄  and               ⁄ . Determine the final gas velocity 

and the mass flow through the nozzle for an exit area of       . 

 

Solution 

  
  

  
 

  

    
 

    

          
       

From isentropic relation 

     
  
  

    ⁄

    (
   

   
)
            ⁄

         

From energy equation 

     (  
  

 
   )

   

 (  
  

 
   )

  

 

   
  
 

 
    

  
 

 
 

   √ (     )  √   (     )  √          (         )             ⁄  

From equation of state 

   
  
   

 
   

           
           ⁄  

From continuity equation 

 ̇                        (      
 )           ⁄  
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Example 2.9 There is a steady one-

dimensional flow of air through a           

diameter horizontal duct (Figure 1.12). At a 

section where the velocity is            , 

the pressure is               and the 

temperature is        . At a downstream 

section the velocity is             and the 

pressure is               . Determine the total wall shearing force between these sections. 

 

Solution 

 

From eq. 

∑  ∑  ̇ (        )  

   
  
   

 
       

           
 

           ⁄  

 ̇                              
  ⁄            ⁄   

∑  (  )  (  )     

   (  )  (  )   (         ) 

   (                )    
  
 

 
               (               ) 
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Chapter Three/Wave Propagation 

 

3.1. Introduction 

 The method by which a flow adjusts to the presence of a body can be shown 

visually by a plot of the flow streamlines about the body. Figures (3.1) and (3.2) 

show the streamline patterns obtained for uniform, steady, incompressible flow 

over an airfoil and over a circular cylinder, respectively.  

 Note that the fluid particles are able to sense the presence of the body before 

actually reaching it. At points 1 and 2, for 

example, the fluid particles have been 

displaced vertically, yet 1 and 2 are points in 

the flow field well ahead of the body. This 

result, true in the general case of anybody 

inserted in an incompressible flow, suggests 

that a signaling mechanism exists whereby a fluid particle can be forewarned of a 

disturbance in the flow ahead of it. The velocity of signal waves sent from the 

body, relative to the moving fluid, apparently is greater than the absolute fluid 

velocity, since the flow is able to start to adjust to the presence of a body before 

reaching it. 

Thus, when a body is inserted into 

incompressible flow, a smooth, continuous 

streamlines result, which indicate gradual 

changes in fluid properties as the flow passes 

over the body. If the fluid particles were to 

move faster than the signal waves, the fluid would not be able to sense the body 

before actually reaching it.  and very abrupt changes in velocity vectors and other 

properties would ensue. 

 In this chapter, the mechanism by which the signal waves are propagated 

through incompressible and compressible flows will be studied. An expression for 

the velocity of propagation of the waves will be derived. 
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3.2. Wave formulation 

To examine the means by which disturbances pass through an elastic medium. A 

disturbance at a given point creates a region of compressed molecules that is 

passed along to its neighboring molecules and in so doing creates a traveling wave. 

Waves come in various strengths, which are measured by the amplitude of the 

disturbance. The speed at which this disturbance is propagated through the medium 

is called the wave speed. This speed not only depends on the type of medium and 

its thermodynamic state but is also a function of the strength of the wave. The 

stronger the wave is, the faster it moves. 

If we are dealing with waves of large amplitude, which involve relatively 

large changes in pressure and density, we call these shock waves. These will be 

studied later.  If, on the other hand, we observe waves of very small amplitude, 

their speed is characteristic only by the medium and its state. These waves are of 

vital importance since sound waves fall into this category. Furthermore, the 

presence of an object in a medium can only be felt by the object’s sending out or 

reflecting infinitesimal waves which propagate at the sonic velocity. 

Consider a long constant-area tube filled with fluid and having a piston at one 

end, as shown in Figure (3.3). The fluid is initially at rest. At a certain instant the 

piston is given an incremental velocity    to the left. The fluid particles 

immediately next to the piston are compressed a very small amount as they acquire 

the velocity of the piston. As the piston (and these compressed particles) continue 

to move, the next group of fluid particles 

is compressed and the wave front is 

observed to propagate through the fluid at 

sonic velocity of magnitude a. All particles 

between the wave front and the piston are 

moving with velocity    to the left and 

have been compressed from   to      

and have increased their pressure from p 

to        
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The flow is unsteady and 

the analysis is difficult. This 

difficulty can easily be solved by 

superimposing on the entire flow 

field a constant velocity to the 

right of magnitude a. 

 

3.3. Sonic Velocity 

 Figure (3.4) shows the problem. Since the wave front is extremely thin, we 

can use a control volume of infinitesimal thickness. For steady one-dimensional 

flow, we have from continuity equation 

 ̇               

But          ; thus 

                                                                                                                               

Application of this to our problem yields 

                       

                              

Neglecting the higher-order term and solving for   , we have 

     
    

 
                                                                                                                        

 Since the control volume has infinitesimal thickness, we can neglect any 

shear stresses along the walls. We shall write the x-component of the momentum 

equation, taking forces and velocity as positive if to the right. For steady one-

dimensional flow we may write from momentum equation 

∑   ∑  ̇            

              [        ] 

           

Canceling the area and solving for   , we have 
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Equations (3.2) and (3.3) may now be combined, the result is: 

     
  

  
                                                                                                                          

However, the derivative       is not unique. It depends entirely on the process. 

For example 

(
  

  
)
 

 (
  

  
)
 

  

 Thus it should really be written as a partial derivative with the appropriate 

subscript. 

Since we are analyzing an infinitesimal disturbance, we can assume 

negligible losses and heat transfer as the wave passes through the fluid. Thus the 

process is both reversible and adiabatic, which means that it is isentropic.  

Equation (4.4) should properly be written as: 

     (
  

  
)
   

                                                                                                                      

For substances other than gases, sonic velocity can be expressed in an 

alternative form by introducing the bulk or volume modulus of elasticity Ev. 

     (
  

  
)
   

  (
  

  
)
   

                                                                                         

     
  

 
                                                                                                                               

Equations (3.4) and (3.6) are equivalent general relations for sonic velocity 

through any medium. The bulk modulus is normally used in connection with 

liquids and solids. Table 4.1 gives some typical values of this modulus, the exact 

value depending on the temperature and pressure of the medium. For solids it also 

depends on the type of loading. The reciprocal of the bulk modulus is called the 

compressibility.  

 Equation (3.4) is normally used 

for gases and this can be greatly 

simplified for the case of a gas that 
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obeys the perfect gas law. For an isentropic process: 

                    

(
  

  
)
   

                
 

  
     

  √                                                                                                                              

For perfect gases, sonic velocity is a function of the            only. 

              
 

 
                                                                                                   

It is important to realize that both V and a are computed locally for the same 

point.  For other point within the flow we must seek further information to 

compute on the sonic velocity, which has probably changed. 

Subsonic flow,   , the velocity is less than the local speed of sound. 

Supersonic flow,    , the velocity is greater than the local speed of sound. 

We shall soon see that the Mach number is the most important parameter in the 

analysis of compressible lows. 

 

3.4: Wave Propagation 

Let us examine a point disturbance that is 

at rest in a fluid. Infinitesimal pressure 

pulses are continually being emitted and 

thus they travel through the medium at 

sonic velocity in the form of spherical 

wave fronts. To simplify matters we shall 

keep track of only those pulses that are 

emitted every second. At the end of 3 

seconds the picture will appear as shown in 

Figure (3.5). Note that the wave fronts are concentric. 

Now consider a similar problem in which the disturbance is moving at a speed 

less than sonic velocity, say    . Figure (3.6) shows such a situation at the end of 

3 seconds. Note that the wave fronts are no longer concentric. 
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Furthermore, the wave that was 

emitted at t = 0 is always in 

front of the disturbance itself. 

Therefore, any person, object, 

or fluid particle located 

upstream will feel the wave 

fronts pass by and know that 

the disturbance is coming.  

Next, let the disturbance 

move at exactly sonic velocity. 

Figure (3.7) shows this case and 

you will note that all wave 

fronts coalesce on the left side 

and move along with the 

disturbance. After a long period 

of time this wave front would 

approximate a plane indicated 

by the dashed line. In this case, 

no region upstream is 

forewarned of the disturbance as 

the disturbance arrives at the 

same time as the wave front.  

The only other case to 

consider is that of a disturbance 

moving at velocities greater than 

the speed of sound. Figure (3.8) 

shows a point disturbance 

moving at Mach number = 2 

(twice sonic velocity). The wave 
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fronts have coalesced to form a cone with the disturbance at the apex. This is 

called a Mach cone. The region inside the cone is called the zone of action since it 

feels the presence of the waves. The outer region is called the zone of silence, as 

this entire region is unaware of the disturbance. The surface of the Mach cone is 

sometimes referred to as a Mach wave; the half-angle at the apex is called the 

Mach angle and is given the symbol μ. It should be easy to see that: 

     
 

 
 

 

 
                                                                                                                   

For subsonic flow, no such zone of silence exists. If the disturbance caused by a 

projectile, the entire fluid is able to sense the projectile  moving through it, since 

the signal waves move faster than the projectile. No concentration of pressure 

disturbances can occur for subsonic flow; Mach lines cannot be defined. 

Let us now compare steady, uniform, subsonic and supersonic flow over a 

finite wedge-shaped body. If the fluid velocity is less than the velocity of sound, 

flow ahead of the body is able to sense its presence. As a result, gradual changes in 

flow properties take place; with smooth, continuous streamlines (see Figure 3.9).  

If the fluid velocity is greater than the velocity of sound, the approach flow, 

being in the zone of silence, is unable to sense the presence of the body. The body 

now presents a finite disturbance to the flow. The wave pattern obtained is a result 

of the addition of individual Mach waves emitted from each point on the wedge. 

This nonlinear addition yields a compression shock wave across which occur finite 

changes in velocity, pressure, and other flow properties. A typical flow pattern 

obtained for supersonic flow over the wedge is shown in Figure (3.10). 
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Chapter Four/Isentropic flow of a perfect gas in varying area duct 

 

 To study the compressible, isentropic flow through varying area channels such as 

nozzles, diffusers and turbine blade passages, the following assumptions are 

considered: 

1. One dimensional, steady flow of a perfect gas. 

2. Friction is zero. 

3. No heat and work exchange. 

4. Variation in properties is brought about by area change.  

5. Changes in potential energy and gravitational forces are negligible. 

 

4.1 Equations of motion. 

 Continuity equation:  

∬   (   ̂)   

  

 ∑                (   ) 

 ̇                                             (   ) 

(    )(     )(     )                                                                          (   ) 

Simplifying and ignoring high order 

                                                                                        (   ) 

Divided by       

  

 
 
  

 
 
  

 
                                                                                                       (   ) 

 

 Momentum equation: 

∑  ∬    (   ̂)   

  

                                                                                           (   ) 

∬    (   ̂)   

  

    [(    )   ]                                                               (   ) 
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If there is no electromagnetic force and friction force is negligible, the only 

acting force is the pressure force. The side wall pressure force in flow direction can 

be obtained with a mean pressure value: 

                     [(             )(         )]       

but       (         )      ; and thus 

                     (  
  

 
)                                                                      (   ) 

∑     (  
  

 
)    (    )(    )                                             (   ) 

   (  
  

 
)   (    )(    )     [(    )   ]                 (    ) 

Simplifying and ignoring high orders 

                                                                                                                 (    ) 

 

 Energy equation 

∬    (   ̂)   

  

                                                                                                  (    ) 

∬[        (             )]   (   ̂)   

  

                               (    ) 

The specific energy e is stand for internal, flow, kinetic and potential 

energies, since there is no heat and work transfer. Then from S.F.E.E.;  

   (     
  

 
   )      ((    )(    )  (    )  

(    ) 

 
  (    )) 

  (           
    

 
)                                                                         (    ) 

     
   

 
                                                                                                           (    ) 

Substitute from thermodynamics relations   
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                                                                                                                (    ) 

This is the energy equation which is similar to equation (4.11). 

 

4.2 Stagnation concept and relations 

If you had a thermometer and pressure gage, they would indicate the 

temperature and pressure corresponding to the static state of the fluid, as you move 

with flow velocity. Thus the static properties are those that would be measured if 

you moved with the fluid. 

Stagnation state defined as that thermodynamic state which would exist if the 

fluid were brought to zero velocity and zero potential. To yield a consistent 

reference state, we must qualify how this stagnation process should be 

accomplished. The stagnation state must be reached 

1. Without any energy exchange (     ) 

2. Without friction losses. 

From (1), change of entropy due to energy exchange is zero, i.e.          ; and 

from (2), change of entropy due to friction is zero, i.e.          . Thus the 

stagnation process is isentropic!  

Consider fluid that is flowing and 

has the static properties shown as (a) 

in Figure 4.3. At location (b) the fluid 

has been brought to zero velocity and 

zero potential under the foregoing 

restrictions. If we apply the energy 

equation to the control volume 

indicated for steady one-dimensional 

flow, we have. 

   (   
  
 

 
    )     (   

  
 

 
    ) 

   
  
 

 
                                                                                                     (    ) 
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Since condition (2) represents the stagnation state corresponding to the static 

state (1). Thus we call    the stagnation or total enthalpy corresponding to state 

(1) and designate it as    . Thus 

       
  
 

 
         

Or for any state, we have in general, 

     
  

 
                                                                                                      (    ) 

This is an important relation that is always valid. When dealing with gases, 

potential energy changes are usually neglected, and we write. 

     
  

 
                                                                                                             (    ) 

The one-dimension S.F.E.E. becomes: 

                                                                                                           (     ) 

                                                                                                           (     ) 

Equation (4.20) shows that for any adiabatic, no-work, steady, one-dimensional 

flow system, the stagnation enthalpy remains constant, irrespective of the losses. 

One must realize that when the frame of reference is changed, stagnation 

conditions change, although the static conditions remain the same. Consider still 

air with Earth as a reference frame. In this case, since the velocity is zero the static 

and stagnation conditions are the same. For gases we eliminate potential term 

   
  

   
              

     
  

 
   

     

 
     

   

 
    

     (   
 
   

 
)                                                                                       (    ) 

     (   
 
   

 
)                                                                                       (    ) 
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The stagnation process is isentropic. Thus    is used as the exponent in the 

relations between any two points on the same isentropic streamline. Let point 1 

refers to the static conditions, and point 2, the stagnation conditions. Then, 

  
  
 (

  
  
)
 (   )⁄

 

  
 
 (

  
 
)
 (   )⁄

    

     (   
 
   

 
)
 (   )⁄

                                                                          (    ) 

     (   
 
   

 
)
 (   )⁄

                                                                          (    ) 

 

Example 4.1 Air flows with a velocity of          ⁄  and has a pressure of 

            ⁄  and temperature of        . Determine the stagnation pressure. 

Solution 

  √    √        (        )            

  
 

 
 
      

     
       

     (   
 
   

 
)
 (   )⁄

         (        
     

 
)
(        ⁄ )

             ⁄  

 

Example 4.2 Hydrogen,          , has a static temperature of      and a 

stagnation temperature of      . What is the Mach number? 

Solution 

     (   
 
   

 
) 

(       )  (      ) (    
       

 
) 

        (           )                        
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Chapter Five/Subsonic and Supersonic Flow through a Varying Area 

Channels 
 

 

5.1 Isentropic Flow in varying Area ducts  
 

For isentropic flow, from continuity 

  

 
 

  

 
 

  

 
                                                                                                              

and from momentum equations 

                                                                                                                           

    
  

  
 

Substitute into momentum eq.   

  

 
 

  

 
 

  

   
                                                                                                             

      (
  

 
 

  

 
)                                                                                                    

From definition of sonic velocity, eq.3.4 

     (
  

  
)
   

 (
  

  
)
   

       
  

  
 

      (
  

   
 

  

 
)    

           
  

 
 

      (
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 (

   

      
)
  

 
                                                                                                     

Also from eq. 5.1. after substitute for         from definition of sonic velocity 

  

 
 

  

 
 

  

   
   

  

 
 

  

 
 

 

  

  

 
  

  

 
 

  

      
(
  

 
)                                                                                                     

Substitute eq.5.3 into continuity eq.4.5. gives  

  

      

  

 
 

  

 
 

  

 
   

  

 
  (

 

    
) (

  

 
)                                                                                                

Let us consider what is happening to fluid properties as it flows through a 

variable-area duct.  

For subsonic flow,    , then             .  

When    is negative (area is decreasing), then    is negative (pressure 

decreases) and    is negative (density decreases) and    is positive (velocity 

increases) and vice versa. 

For supersonic flow,    , then             .  

When    is negative (area is decreasing), then    is positive (pressure 

increases) and    is positive (density increases) and    is negative (velocity 

decreases) and vice versa. 

We summarize the above by saying that 

as the pressure decreases, the following 

variations occur:  
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Combines equations (5.4) and (5.3) to eliminate the term      with the 

following result: 
  

 
    (

  

 
)                                                                                                       

From this equation we see that: 

At low Mach numbers, density variations will be quite small. This means that 

the density is nearly constant (    ) in the low subsonic regime (      ) and 

the velocity changes compensate for area changes.  

At a Mach number equal to unity, we reach a situation where density changes 

and velocity changes compensate for one another and thus no change in area is 

required (    ).  

At supersonic flow, the density decreases so rapidly that the accompanying 

velocity change cannot accommodate the flow and thus the area must increase. 

 

A nozzle is a device that 

converts enthalpy (or pressure energy 

for the case of an incompressible 

fluid) into kinetic energy. From 

Figure 5.1 we see that an increase in 

velocity is accompanied by either an 

increase or decrease in area, 

depending on the Mach number. 

Figure 5.2 shows what these devices 

look like in the subsonic and 

supersonic flow regimes. 

 

A diffuser is a device that 

converts kinetic energy into enthalpy 

(or pressure energy for the case of 

incompressible fluids). Figure 5.3 

shows what these devices look like in 

the subsonic and supersonic regimes. 

Thus we see that the same piece of 

equipment can operate as either a 

nozzle or a diffuser, depending on the 

flow regime.  

Notice that a device is called a nozzle or a diffuser because of what it does, 

not what it looks like. 
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Further consideration of Figures 5.1 and 5.2 leads to some interesting 

conclusions. If one attached a converging section (see Figure 5.2a) to a high-

pressure supply, one could never attain a flow greater than Mach 1, regardless of 

the pressure difference available. On the other 

hand, if we made a converging–diverging device 

(combination of Figure 5.2a and b), we see a 

means of accelerating the fluid into the supersonic 

regime, provided that the proper pressure 

difference exists between inlet and exit plane. 

 

5.2 The ( ) Reference Concept 

 

Concept of a stagnation reference state was introduced which is an isentropic 

process. It will be convenient to introduce another reference condition since the 

stagnation state is not a feasible reference when dealing with area changes. (Why?) 

The new reference state with a superscript ( ) and define it as “that 

thermodynamic state which would exist if the fluid reached a Mach number of 

unity by some particular process”. There are many processes by which we could 

reach Mach 1.0 from any given starting point, and they would each lead to a 

different thermodynamic state. 

For isentropic flow process, adiabatic frictionless, flow the stagnation properties 

for all points are the same as well as the (*) properties are the same. 

For actual flow process, each point in the flow has its own stagnation and (*) 

properties. 

Consider a steady, one-

dimensional flow of a perfect gas 

with no heat or work transfer and 

negligible potential changes but 

with friction. Figure 5.5 shows a 

T –s diagram indicating two 

points in such a flow system. 

Above each point is shown its 

stagnation reference state, and 

below its reference state ( ). 
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Note that the stagnation temperatures are the same and lie on a horizontal line, 

but the stagnation pressures are different, and also ( ) reference points will lie on 

another horizontal line (since no heat is added). 

Between ( ) reference state and the stagnation reference state lie all points in the 

subsonic regime. Below the ( ) reference state lie all points in the supersonic 

regime. 

 

5.3 Isentropic Table 

 

Mass flow rate at flow cross sectional area   can be expressed in terms of 

stagnation pressure and temperature 

 ̇                                                      

                                                               

  √                                                       

    ⁄                                                     

For perfect gas with constant specific heat 

 ̇  
 

  
  √    

 

 √ 
  √                                                                        

Substitute for p and T from  

     (    
   

 
)                                                                                             

     (    
   

 
)
      ⁄

                                                                                

 ̇  
  

 √  
  √  (    

   

 
)
            ⁄

                                              

 ̇  
   

 √  
                                                                                                            

       
 √ 

(       
 )

           ⁄
                                                                 

For isentropic flow where    and    are constant, cross section   can be related 

directly to Mach number. Select flow cross section area where     as a 
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reference area     . For steady flow, the mass flow rate 

at area   is equal to the mass flow rate at area   . 

 ̇   ̇   

   

 √  
       

   
 

 √  
                                                 

 

  
          

 

  
 

 

 
(
  [      ⁄ ]  

      ⁄
)

     
      ⁄

                 

The result of equation (5.11) is plotted 

in figure (5.6) for       . For each 

value of    ⁄  there are two possible 

isentropic solution, one subsonic and 

the other supersonic. The minimum 

area or throat area occurs at    . 

This agree well with the result of eq 5.6 

that illustrated in figure 5.2. and 5.3. 

A convergent-divergent nozzle is 

required to accelerate a slowly moving 

stream to supersonic velocities. 

 

Example: 5.1 

 

An airstream flows in a converging duct from cross section area    of 

      to a cross-sectional area    of       . If         ,            and 

         ⁄ . Find       and    . Assume steady one-dimensional isentropic 

flow. 

 Solution: 

Over the temperature range, air behaves as perfect gas with      .  

   
  
 

 
  

√   
 

   

√             
       

At          from isentropic flow table with       
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But    

  

  
 

  

  
      

So that 

  

  
 

  

  
 
  

  
       

From isentropic flow table ,          

For isentropic flow, (no shaft work, potential energy is neglected for a gas), 

          are constant. At         from isentropic flow table : 

  

   
           

   

     
               

  
   

           
   

     
         

At          
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Chapter Six/Isentropic Flow in Converging Nozzles 

 

 
 6.1 performance of Converging Nozzle 
 

Two types of nozzles are considered: a converging-only nozzle and a 

converging–diverging nozzle. A assume a fluid stored in a large reservoir, at       

and      , is to be discharge through a converging nozzle into an extremely large 

receiver where the back pressure can be regulated. We can neglect frictional 

effects, as they are very small in a converging 

section. 

If the receiver (back) pressure is set at      , 

no flow results. Once the receiver pressure is 

lowered below      , air will flow from the 

supply tank. Since the supply tank has a large 

cross section relative to the nozzle outlet area, 

the velocities in the tank may be neglected. 

Thus          and         (stagnation 

properties). There is no shaft work and we assume no heat transfer and no friction 

losses, i.e. the flow is isentropic.  

We identify section 2 as the nozzle outlet.  Then from energy equation 

               

                        

And for perfect gas where specific heats are assumed constant 

        

It is important to recognize that the receiver pressure is controlling the flow. The 

velocity will increase and the pressure will decrease as we progress through the 
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nozzle until the pressure at the nozzle outlet equals that of the receiver. This will 

always be true as long as the nozzle outlet can “sense” the receiver pressure. 

Example: Let us assume 

For receiver              

                

For reservoir                                   

                                   for isentropic flow 

  
   

 
     

   
       

From isentropic table corresponding to    ⁄        

          and      ⁄        

          (      )            

   √    √                        ⁄  

                          ⁄   

Figure 6.2 shows this process on a T –s 

diagram as an isentropic expansion. If the 

pressure in the receiver were lowered further, 

the air would expand to this lower pressure and 

the Mach number and velocity would increase. 

Assume that the receiver pressure is lowered to 

          . Show that 

  
   

 
        

   
         

This gives: 

                ⁄           

          (      )             
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   √    √                           ⁄  

                             ⁄   

                  and                   are critical properties 

Notice that the air velocity coming out of the nozzle is exactly sonic.  The 

velocity of signal waves is equal to the velocity of sound relative to the fluid into 

which the wave is propagating. If the fluid at cross section is moving at sonic 

velocity, the absolute velocity of signal wave at this section is zero and it cannot 

travel past this cross section. 

If we now drop the receiver pressure below this critical pressure (          ), 

see figure (6.3), the nozzle has no way of adjusting to these conditions. That’s 

because fluid velocity will become supersonic and signal waves (sonic velocity) 

are unable to propagate from the back pressure region to the reservoir.  

Assume that the nozzle outlet pressure could continue to drop along with the 

receiver. This would mean that   ⁄            , which corresponds to a 

supersonic velocity (point 4).We know that if the flow is to go supersonic, the area 

must reach a minimum and then increase. Thus for a converging-only nozzle, the 

flow is governed by the receiver pressure until sonic velocity is reached at the 
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nozzle outlet and further reduction of the receiver pressure will have no effect on 

the flow conditions inside the nozzle. Under these conditions, the nozzle is said to 

be choked and the nozzle outlet pressure remains at the critical pressure. 

Expansion to the receiver pressure takes place outside the nozzle (points 5 and 6). 

The analysis above assumes that conditions within the supply tank remain 

constant. One should realize that the choked flow rate can change if, for example, 

the supply pressure or temperature is changed or the size of the throat (exit hole) is 

changed. 

   The pressure ratio below which the nozzle is chocked can be calculated for 

isentropic flow through the nozzle. For perfect gas with constant specific heats, 

  
 
 (  

   

 
  )

 (   )⁄

 

  
  
 (  

   

 
( ) )

 (   )⁄

                        

 

Example 6.1Air is allowed to flow from a large reservoir through a convergent 

nozzle with an exit area of        . The reservoir is large enough so that 

negligible changes in reservoir pressure and temperature occur as fluid is 

exhausted through the nozzle. Assume isentropic, steady flow in the nozzle, with 

             and           . Assume also that air behaves as a perfect gas 

with constant specific heats,       . Determine the mass flow through the nozzle 

for back pressures        , and        . 

At      and       the critical pressure ratio is 0.5283; therefore for all back 

pressures below; 
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The nozzle is choked. Under these conditions, the Mach number at the exit plane is 

unit and the pressure at exit plane is             and the temperature at exit plane 

         
 

  
                    

The nozzle is chocked for back pressures of                   and the mass 

flow rate is; 

 ̇       
  

   
   √      

                

           
√                

                 

For back pressures of         the nozzle is not choked 

and the exit plane pressure equals to back pressure; 

 

  
 
   

   
      

From isentropic table at ,       ,         , and 

   ⁄        

         ⁄                    

 ̇  
             

            
√                    

                 

Example 6.2 Nitrogen is stored in a tank      in volume at a pressure of       

and a temperature of       . The gas is discharge through a converging nozzle 

with an exit area of        . For back pressure of        , find the time for the 

tank pressure to drop to        . Assume isentropic nozzle flow with nitrogen 

behaves as a perfect gas with        and              ⁄   . Assume quasi-

steady flow through the nozzle with the steady flow equation applicable at each 

instant of time assume also that   is constant too  
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Solution; As the reservoir pressure drops from         to          , the ratio 

    ⁄         ⁄          and     ⁄        ⁄         remains below 

critical pressure ratio (      ) and        .  

         ⁄                   

 ̇       
  
   

   √     

 ̇  
(          )       

    

         
√              

                
     ⁄                             

From conservation of mass  

 

  
∭    

  

 ∬   (   ̂)   

  

   

The mass inside the tank at any time is m; 

∭     

  

 
        
     

          ∬    (   ̂)   

  

              
     ⁄   

The mass coming out of tank exit at any time 

 

  
(
        
     

)               
     

    
     

     
  

              
     

∫    
 

          
 
    
     

∫
     
    

 

    
 

                     
∫

     
    

   

    

                          ⁄  
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Chapter Seven/Isentropic Flow in Converging–Diverging Nozzles 
 

 

7.1 Converging–Diverging Nozzle 

 

Let us examine the 

converging–diverging nozzle 

(sometimes called a (DE 

Laval nozzle), shown in 

Figures (7.1).We identify the 

throat (or section of 

minimum area) as 2 and the 

exit section as 3. The 

distinguishing physical 

characteristic of this type of 

nozzle is the area ratio, 

meaning the ratio of the exit 

area to the throat area.  

Fluid stored in a large 

reservoir is to be discharge 

through a converging-

diverging nozzle. It is desired to determine mass flow and pressure distribution in the nozzle over 

a range of values of     ⁄  .the reservoir pressure is maintain constant, with one-dimensional 

isentropic flow in the nozzle.  

Figure 7.2 shows the 

pressure distribution in the 

nozzle for different values of 

back pressure   . 

For    equal to    (curve 1) 

there is no flow in the nozzle, 

and pressure is constant with   

(nozzle length).  

For    slightly less than    

(curve 2), flow induced 

through the nozzle with 
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subsonic velocities in both converging and diverging sections 

of the nozzle. Eq. (5.4),       [ (    )⁄ ]    ⁄ , tells us 

that for subsonic flow pressure decreases in the converging 

section and increases in the diverging section. 

As the back pressure is decreased more and more flow is 

induced in the nozzle (curve 3) until eventually sonic flow 

occurs in the throat (curve 4). And the pressure ratio is called 

the first critical point. Nozzle is choked and mass flow rate 

becomes a maximum. 

With receiver (back) pressures above the first critical, the 

nozzle operates as a venturi and we never reach sonic velocity in the throat. An example of this 

mode of operation is shown as curve “3” in Figure 7.2b. The nozzle is no longer choked and the 

flow rate is less than the maximum.  

Further decrease in back pressure cannot be sensed upstream of the throat ; so for all back 

pressures below that of curve 4 the reservoir continues to send out the same flow rate as curve 4, 

and the pressure distribution nozzle up to the throat remains the same. For all back pressures 

below that of curve 4 the converging-diverging nozzle is choked. Note that for the same reservoir 

pressure, a converging-diverging nozzle is choked at a greater back pressure than a converging 

nozzle.  

There are two possible isentropic solutions for a given area ratio A/A*, one subsonic and the 

other supersonic. For a throat Mach number of 1, isentropic flow can either decelerate to a 

subsonic exit velocity or continue to accelerate to a supersonic exit velocity. Curve 4 

corresponds to the case of subsonic flow at the nozzle exit plane; curve 5 corresponds to 

supersonic flow at the exit plane. Thus, if the back pressure is lowered to that of curve 5, 

pressure decreases in both converging and diverging portions of the nozzle, with supersonic flow 

at the exit plane. And the pressure ratio is called the third critical point. 

For back pressures between those of curves 4 and 5 i.e. between the first and third critical 

points, the flow is not isentropic and one-dimensional isentropic solutions to the equations of 

motion are not possible. These flows involve shock waves, which are irreversible processes, 

which are compression waves that will occur in either the diverging portion of the nozzle or after 

the exit 

If the receiver (back) pressure is below the third critical point (curve 5) , the nozzle operates 

internally as though it were at the design condition but expansion waves occur outside the 

nozzle. These operating modes will be discussed in detail later.  
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Figure (7.3) shows the variation of mass flow rate with back pressure     ⁄  for data of figure 

(7.2).  

The objective of making a converging–diverging nozzle is to obtain supersonic flow. Let us 

first examine the design operating condition for this nozzle. For the nozzle is to operate as 

desired, the flow will be subsonic from 1 to 2, sonic at 2, and supersonic from 2 to 3. To discover 

the conditions that exist at the exit (under design operation), we seek the ratio     
 ⁄ :  

Since velocity is sonic at throat (    ), then    
      and from eq. (5.11) the relation 

between any two sections for isentropic flow 

 

  
 
 

 
(
  [(   )  ⁄ ]  

(   )  ⁄
)

(   )  (   )⁄

                                                      (    ) 

Then 

  
 

  
  

 

 
(
(   )  ⁄

(   )  ⁄
)

(   )  (   )⁄

                                                                   (   ) 

So 

   
    

                                                                                                              (   ) 

  
  
  

  
  
 
  
  
  
  
 

  
  

  
  

 

 

Example 7.1 A converging–diverging nozzle with    
 ⁄       , and reservoir pressure and 

temperature of       and     . Find back pressure. 

 

Solution 

1. From isentropic table at    
 ⁄        in the 

supersonic section of the isentropic table and see 

that 

        

    ⁄         

    ⁄         , Thus 
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And to operate the nozzle at this design condition the receiver pressure must be at           . 

The pressure variation through the nozzle for this case is shown as curve “5” in Figure 7.3. From 

the temperature ratio    ⁄  we can easily compute             . 

2. Also we can find    ⁄        in the subsonic section of the isentropic table. (Recall that 

these two answers come from the solution of a quadratic equation.) For this case 

        

    ⁄         

    ⁄        , Thus 

   
  
  
                          

And to operate at this condition the receiver pressure must be at           . With this 

receiver pressure the flow is subsonic from 1 to 2, sonic at 2, and subsonic again from 2 to 3. The 

converging-diverging is nowhere near its design condition and is really operating as a venturi 

tube; that is, the converging section is operating as a nozzle and the diverging section is 

operating as a diffuser. The pressure variation through the nozzle for this case is shown as curve 

“4” in Figure (7.2) 

 

8.2. Nozzle performance 

The most important parameters in nozzle performance are 

area ratio      ⁄ and Mach number  . The area ratio for an 

isentropic nozzle can be expressed in terms of Mach 

numbers for any points   and   within the nozzle along its 

axis. Since      ; then 

  

  
 
    
    

 
    √    

   
 

   

    √    
 
    

√  
 
√  

    
 

  

  
 
  
  
 √,

  [(   )  ⁄ ]   

  [(   )  ⁄ ]   
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(   ) (   )⁄

              (   ) 

 

  
 
 

   
 
 

 
√(
  [(   )  ⁄ ]  

(   )  ⁄
)

(   ) (   )⁄

   (    ) 

Relation of eq. (5.11) is plotted in Figure (7.5). 

From Equation (4.16) the nozzle exit velocity     can be found. From s.f.e.e without heat and 

work exchanging and ignoring potential energy, we have: 

     
   

 
                                       (    ) 
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   √ (     )    
                                                                                             (   ) 

This relation applies to ideal and non-ideal rocket units. For constant   this expression can be 

rewritten while the subscripts 1 and 2 apply to nozzle inlet and exit conditions, respectively and 

since the flow is assumed isentropic, then 

   √   (     )    
                                                                                           (   ) 

   √
  

   
   *  (

  
  
)
    ⁄

+    
                                                                  (   ) 

This equation also holds for any two points within the nozzle. When the chamber cross section 

is large compared to the nozzle section, the chamber velocity is comparatively small, and the 

term    
  can be neglected. The chamber temperature    is equal to the nozzle inlet temperature; 

for an isentropic nozzle flow process it is also equal to the stagnation temperature 

   √
  

   
   *  (

  
  
)
    ⁄

+                                                                         (   ) 

Example 7.2 A converging-diverging nozzle is designed to operate isentropically with an exit 

Mach number of    . The nozzle is supplied from an air reservoir in which The pressure is 

       ; the temperature is      . The nozzle throat area is      . Assume air to behave as a 

perfect gas, with         and                ⁄ . 

a) Determine the ratio of exit area to throat area. 

b) Find the range of back pressure over which the nozzle is choked. 

c) Determine the mass flow rate for a back pressure of       . 

d) Determine the mass flow rate for a back pressure of      . 

 

Solution 

a) To produce a supersonic Mach number of 1.5 at the nozzle exit, the Mach number at the 

throat must be 1. Therefore, the throat area is equal to    .From isentropic table for        ,  

             . So the ratio of exit area to throat area to produce Mach 1.5 is 1.176. or     

         . 

b) For all back pressures below that corresponding to (curve 4) of Figure 7.2, the nozzle is 

choked. For (curve 4), sonic flow is attained at the throat, followed by subsonic deceleration. The 

subsonic solution for               is found from isentropic table,       . At this Mach 
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number,    ⁄        . Therefore, the greatest back pressure at which the nozzle is choked is 

        (       )            . In other words, over the range                , the 

nozzle is choked. 

c) For a back pressure of        , the nozzle is not choked; subsonic flow occurs 

throughout the nozzle. For this condition, the exit-plane pressure is equal to the back pressure. 

From isentropic, for    ⁄        ,          and            . Exit-plane pressure    and 

temperature    are respectively,         and        . 

 ̇         

 ̇  
  
   

   √     

 ̇  [
   

           
]                √              

                                          ⁄  

d) For back pressure of       , the nozzle is choked, with the exit–

plane pressure not equal to the back pressure .   For this condition the 

Mach number at the throat is 1, with the throat pressure and temperature 

equal respectively to            and        .  

 ̇             

 ̇  [
     

           
]             √              

               ⁄  

The results of this example is plotted in figure (7.6) 

 

Example 7.3 A nozzle is to be designed for a supersonic helium wind tunnel. Test section 

specifications are as flow: Diameter,        , Mach number    , Static pressure          at 

      altitude and Static temperature,         at this altitude. Determine the mass flow that 

must be provided, the nozzle throat area and the reservoir temperature and pressure. Assume 

isentropic flow in the nozzle at the design condition, and neglect boundary layer effects (Figure 

7.7). Assume that helium behaves as a perfect gas, with         (constant) and   

             .  

 Solution: 

Test section mass flow rate 

 ̇      

 ̇  
  
   

(
 

 
  )  √     
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 ̇  [
    

           
]  
 

 
       √                           ⁄  

From gas dynamics tables for isentropic flow, at       ; 

   
 ⁄      

                  
  
  
 

 
     

   
 
        

 
                   

     ⁄          

          
  
  
 

    

       
           ⁄  

     ⁄        

         
  
  
 
     

     
         

 

Example 7.4 A converging–diverging nozzle with an area ratio of 3.0 exhausts into a receiver 

where the pressure is 1 bar. The nozzle is supplied by air at 22°C from a large chamber. At what 

pressure should the air in the chamber be for the nozzle to operate at its design condition ? What 

will the outlet velocity be? 

 

Solution 

  
  
  

  
  
     

From isentropic table 

           
  
  
           

  
  
        

         
  
  
 

 

      
          

   
  
  
           (      )          

              √                      
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Chapter Eight /Thrust of Rocket Engine 

 

 
Some say that the first recorded use of a rocket in battle was by 

the Chinese in 1232 against the Mongol hordes. Rocket technology 

first became known to Europeans following their use by 

the Mongols, Genghis Khan and Ögedei Khan, when they 

conquered parts of Russia, Eastern, and Central Europe. The 

first iron-cased and metal-cylinder rocket artillery, made from iron 

tubes, were developed by the weapon suppliers of Tipu Sultan, an 

Indian ruler of the Kingdom of Mysore, and his father Hyder Ali, 

in the 1780s. 

In 1903, high school mathematics teacher Konstantin 

Tsiolkovsky (1857–1935) published Исследование мировых пространств реактивными 

приборами (The Exploration of Cosmic Space by Means of Reaction Devices), the first serious 

scientific work on space travel.  

In 1912, Robert Esnault-Pelterie published a lecture on rocket theory and interplanetary 

travel. Robert Goddard began a serious analysis of rockets in 1912, concluding that conventional 

solid-fuel rockets needed to be improved in three ways. In 1920, Goddard published these ideas 

and experimental results in A Method of Reaching Extreme Altitudes. Modern rockets were born 

when Goddard attached a supersonic (de Laval) nozzle to a liquid-fueled rocket engine's 

combustion chamber.  

Some of the first successful American rockets were the JATO (jet-assisted take-off) units used 

during the war (solid in 1941 and liquid in 1942). Also famous was the V-2 rocket developed by 

Wernher von Braun in Germany. This first flew in 1942 and had a liquid propulsion system that 

developed 56,000 pounds of thrust. The first rocket-propelled aircraft was the German ME-163. 

 

8.1 Thrust of rocket engine 

 

Select a control volume as shown in figure 8.1. The 

forces acted on this control volume are thrust and the 

unbalance pressure force acting on the exit plane.  

(Other forces such gravity, friction …etc. are ignored) 

Applying eq. 4.6 

http://en.wikipedia.org/wiki/Mongols
http://en.wikipedia.org/wiki/Genghis_Khan
http://en.wikipedia.org/wiki/%C3%96gedei_Khan
http://en.wikipedia.org/wiki/Iron
http://en.wikipedia.org/wiki/Cylinder_(firearms)
http://en.wikipedia.org/wiki/Rocket_artillery
http://en.wikipedia.org/wiki/Tipu_Sultan
http://en.wikipedia.org/wiki/Hyder_Ali
http://en.wikipedia.org/wiki/Konstantin_Tsiolkovsky
http://en.wikipedia.org/wiki/Konstantin_Tsiolkovsky
http://en.wikipedia.org/wiki/Robert_Esnault-Pelterie
http://en.wikipedia.org/wiki/Robert_Goddard_(scientist)
http://en.wikipedia.org/wiki/A_Method_of_Reaching_Extreme_Altitudes
http://en.wikipedia.org/wiki/De_Laval_nozzle
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∑  ∬    (   ̂)   

  

                                      (   ) 

(                              )  

       ∬      (  )   
  

      (   )  

This force is the thrust obtained for any true rocket propulsion engine.  It assumes a uniform 

exhaust velocity that does not vary across the area of the jet. The preceding equation shows that 

the thrust is proportional to the propellant flow rate and the exhaust velocity. The surrounding 

fluid (usually air) has an influence on the thrust. 

Figure (8.2) shows schematically the external pressure acting uniformly on the outer surface 

of a rocket chamber and the gas pressures on the inside of a typical rocket engine. The size of the 

arrows indicates the relative magnitude of the pressure forces. The axial thrust can be determined 

by integrating all the pressures acting on areas that can be projected on a plane normal to the 

nozzle axis. The radially outward acting forces are appreciable but do not contribute to the axial 

thrust, because the rocket is axially symmetrical. 

By inspection it can be seen that at the exit area    of the engine's gas exhaust there is an 

unbalance of the external environmental or atmospheric pressure   and the local pressure    of 

the hot gas jet at the exit plane of the nozzle. Thus, for a steadily operating rocket engine flying 

in a homogeneous atmosphere (neglecting localized boundary layer effects), the thrust is equal to 

   ̇   (     )                                                                                                                     (    ) 

        
  (     )                                                                                                              (    ) 

The thrust acting on the vehicle is composed of two terms. The first term, the momentum 

thrust, is the product of the propellant mass flow rate,  ̇, and the exhaust velocity relative to the 
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vehicle,    . The second term, the pressure thrust, consists of the product of the cross-sectional 

area of the exhaust jet leaving the vehicle and the difference between the e xhaust pressure and 

the fluid pressure. Equation (8.2) gives values of the thrust variations of rockets with altitude. 

If the exhaust pressure is less than the surrounding fluid pressure, the pressure thrust is 

negative. Because this condition gives a low thrust and is undesirable, the rocket exhaust nozzle 

is usually so designed that the exhaust pressure is equal to or slightly higher than the fluid 

pressure. 

When the fluid pressure is equal to the exhaust pressure, the pressure thrust term is zero, and 

the thrust is expressed as 

   ̇                                                                                                                                                (   ) 

This condition gives a maximum thrust for a given propellant and chamber pressure. The 

rocket nozzle design, which permits the expansion of the propellant products to the pressure that 

is exactly equal to the pressure of the surrounding fluid, is referred to as the rocket nozzle with 

optimum expansion ratio. When expanding into a vacuum,     , and the thrust is then simply 

        
                                                                                                                                 (   ) 

The supersonic convergent – divergent nozzle is used in rockets. The ratio between the inlet 

and exit pressures in all rockets is sufficiently large to induce supersonic flow. Only if the 

chamber pressure drops below approximately          then there is a danger of not producing 

supersonic flow in the divergent portion of the nozzle when operating at sea level. 

We know that the velocity of sound is equal to the velocity of propagation of a pressure wave 

within the medium, sound being a pressure wave. If, therefore, sonic velocity is reached at any 

one point within a steady flow system, it is impossible for a pressure disturbance to travel 

upstream past the location of sonic or supersonic velocity. Therefore, any partial obstruction or 

disturbance of the flow downstream of the nozzle throat section has no influence on the flow at 

the throat section or upstream of the throat section, provided that this disturbance does not raise 

the downstream pressure above its critical value.  

It is not possible to increase the throat velocity or the flow rate in the nozzle by lowering the 

exit pressure or evacuating the exhaust section. 

The flow through the critical section of a supersonic nozzle is calculated from 
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The mass flow through a rocket nozzle is therefore proportional to the throat area A ,  and the 

upstream pressure   ,  inversely proportional to the square root of the absolute nozzle inlet 

temperature   , and a function of the gas properties. 

For a supersonic nozzle the ratio between the throat area and any downstream area at which 

the pressure    prevails can be expressed as a function of the pressure ratio and the specific heat 

ratio as follows,  
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+                                      (   ) 

 

For an ideal rocket with   being constant throughout the expansion process, the exit velocity is; 
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Eq. (8.2) is general and applies to all rockets. It can be written as; 
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(

 

   
)

   

   

[  (
  

  
)

   

 
]  (     )                                                     (    ) 

This equation shows that the thrust is proportional to the throat area         and the nozzle 

inlet pressure    and is a function of the pressure ratio across the nozzle     ⁄ , the specific heat 

ratio  , and the pressure thrust. It is called the ideal thrust equation.  

An under-expanding nozzle discharges the fluid at a pressure greater than the external 

pressure because the exit area is too small. The expansion of the fluid is therefore incomplete 

within the nozzle and continues outside. The nozzle exit pressure is higher than the local 

atmospheric pressure. 

In an over-expanding nozzle the fluid is expanded to a lower pressure than the external 

pressure; it has an exit area that is too large. 

When a supersonic nozzle is operating in the under- or overexpanded regimes, with flow in 

the nozzle independent of back pressure, the exit velocity is unaffected by back pressure. Thus, 

over this range of back pressures, Eq. (8.2) shows that the greater thrusts are developed in the 

underexpanded case, and the lesser in the overexpanded case.  

For back pressures greater than the upper limit indicated, a normal shock appears in the 

diverging portion of the nozzle, the exit velocity becoming subsonic, and this analysis no longer 

applies. 

For jet turbine engine, for simplicity we shall assume here that the mass flow  ̇ is constant (i.e. 

that the fuel flow is negligible), the net thrust   due to the rate of change of momentum is 
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   (     )                                                                                                                                  (    ) 

where    is speed of air that enters aircraft intakes which is equal to the aircraft speed for steady 

level flight.     is called the gross momentum thrust and     the intake momentum drag. When 

the exhaust gases are not expanded completely to      in the propulsive duct (which is a duct 

ends with a nozzle), the pressure    in the plane of the exit will be greater than      and there 

will be an additional pressure thrust exerted over the jet exit area  · The net thrust is then the 

sum of the momentum thrust and the pressure thrust, namely 

   (     )  (     )                                                                                                        (    ) 

For design condition, i.e. maximum   , the exhaust gases must expanded completely to      

 

8.2 characteristics of rocket engine 

 

Thrust coefficient, CF: is defined as the thrust divided by the chamber pressure    and the 

throat area   .  

   
 

     
 √

   

   
(

 

   
)

   

   

[  (
  

  
)

   

 
]  

(     )

  

  

   
                                            (   ) 

For any fixed pressure ratio (    ⁄ ) the thrust coefficient    has a maximum value when 

     . This value is known as the optimum thrust coefficient. The use of the thrust coefficient 

permits a simplification of Equation (8.2) 

                                                                                                                                              (    ) 

Thrust power output of the propulsive device is the actual rate of doing useful propulsion work 

and is designated as    

                                                                                                                                             (    ) 

Total impulse,    is the thrust force   (which can vary with time) integrated over the burning 

time. 

   ∫    
 

 

                                                                                                                                       (    ) 

For constant thrust and negligible start and stop transients this reduce to 

                                                                                                                                                   (    ) 

Specific impulse,    is the total impulse per unit weight of propellant consumption,   ̇. The units 

are     

   
∫    

 

 

∫  ̇  
 

 

                                                                                                                                        (   ) 
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For constant thrust and propellant flow 

   
 

 ̇
                                                                                                                                                  (    ) 

Effective exhaust velocity,  : is the average equivalent velocity at which propellant ejects from 

rocket nozzle, the units are    . 

      
 

 ̇
                                 ⁄                                                                                               (    ) 

Specific propellant consumption the required propellant weight to produce a unit thrust in an 

equivalent rocket. The units are        ⁄  

                                
 

  
 

 ̇

 
 

  ̇

 
                  ⁄                                           (    ) 

For other engines the specific propellant consumption in common is based on the power 

output with units        ⁄ . 

Mass ratio, which is define as the ratio of final rocket mass to the initial rocket mass. 

    
      

  
 

      

            
 

where       is useful propellant weight. 

Equation (8.2) shows that the thrust of a rocket 

unit is independent of flight velocity in opposite to 

jet turbine engine. Because changes in the fluid 

pressure (         ) affect the pressure thrust as 

well as   , a variation of the rocket thrust with 

altitude is to be expected. As the atmospheric 

pressure decreases with increasing altitudes, the 

thrust and therefore also the specific impulse will 

increase if the vehicle is propelled at a higher 

altitude. The change in pressure thrust due to 

altitude changes can amount to           of the 

overall thrust, as shown for a typical rocket engine in Figure (8.3). 

 

Example 8.1: A rocket projectile has the following characteristics:  

Initial mass                  

Mass after rocket operation               

Payload, non propersive structure, etc.           

Rocket operating duration                

Average specific impulse of propellent                ⁄  
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Determine mass ratio, propellant mass fraction, propellant flow rate, thrust, thrust-to-weight 

ratio, acceleration of vehicle, effective exhaust velocity, total impulse, and the impulse-to-weight 

ratio. 

 

Solution: 

Mass ratio of vehicle 

    
      

  
 

   

   
      

mass ratio of rocket system  

    
  

  
 

       

       
       

Note that the empty and initial masses of the rocket are    and    kg respectively. Propellant 

mass fraction 

                         (     )   ⁄  (     )   ⁄         

The propellant mass is              . 

Propellant mass flow rate is                    . 

The thrust      ̇                               

Thrust-to-weight ratio of vehicle, 

Initial value                  (         )       

Final value                  (         )       

Maximum acceleration of vehicle is                    . 

Effective exhaust velocity is                                

Total impulse                                      

This result can also be obtained by multiplying the thrust by the duration. 

The impulse-to-weight ratio      ⁄           (       )            

 

Example 8.2: An ideal rocket chamber is to operate at sea level using propellants whose 

combustion products have a specific heat ratio of     . Determine the required chamber pressure 

and nozzle area ratio between throat and exit if the nozzle exit Mach number is     . The nozzle 

inlet Mach number may be considered to be zero. 

 

Solution: 

For optimum expansion the exit pressure should be equal to the atmospheric pressure of 

          . If the chamber velocity is small, the chamber pressure is equal to the total pressure 

and is  
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(   )

 
  +

 (   )⁄

 

        *  
(     )

 
    +

   (     )⁄

          

The area ratio 

     

      
 

  

  
 

  

  
 

 

  
(
   (   )  ⁄    

 

(   )  ⁄
)

(   )
 (   )⁄

 

  
  

  
 

 

   

√
(
   (     )  ⁄      

(     )  ⁄
)

(     )
(     )⁄

        

Or using isentropic table , at         for       gives     ⁄        

 

Example 8.3 A rocket nozzle is designed to operate supersonically with a chamber pressure of 

      and an ambient pressure of        . Find the ratio between the thrust at sea level to the 

thrust in space (0 kPa). Assume a constant chamber pressure, with a chamber temperature of 

      . Assume the rocket exhaust gases to behave as a perfect gas with        and   

            ⁄ . 

 

Solution 

Apply the momentum equation. 

       (     )         
    

The exit plane pressure and exit velocity are the same in space as at sea level. 

From isentropic table at    ⁄         ⁄          

       and    ⁄         

Then          ⁄                      

The exhaust velocity is then 

              √                       ⁄  
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            ⁄  

                          
                    

                (     )         
  

                                                               

                   

               
 

                 

                            
       

 

Example 8.4: Design a nozzle for an ideal rocket that has to operate at a       altitude and give 

a        thrust at a chamber pressure of           and a chamber temperature of       . 

Assuming        and              ⁄ , determine 

a) Exit velocity, temperature and area 

b) Throat velocity, temperature and area 

c) Area ratio 

 

Solution. 

 

At a    km altitude, the atmosphere pressure equals          , and as      , then The 

pressure ratio is, 

a)  

  

  
 [

  

  
]
(   )  ⁄

 [
       

     
]
      ⁄

        

                      

   √
  

   
   *  (

  

  
)
    ⁄

+ 

 √
   

   
           *  (

       

     
)
      ⁄

+               ⁄  

 ̇     ⁄              ⁄             ⁄  

   
   

  
 

            

          
            ⁄  

      ⁄         ⁄             ⁄  
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 ̇

    
 

     

              
                

b)  

  

  
 [  

   

 
  

 ]
 (   )⁄

 [
   

 
]
      ⁄

       

   
     

     
           

  

  
 [  

   

 
  

 ]  [
   

 
]       

   
    

    
            

      √     √                                ⁄  

   
   

  
 

              

         
             ⁄  

   
   ̇

  
 

             

        
               

      ⁄               ⁄       

Try to use isentropic flow Table and resolve this example. 

 

Example 8.5 A rocket operates at sea level (         ) with a chamber pressure of    

          ⁄ , a chamber temperature of           and a propellant consumption of 

 ̇        ⁄ . calculate the value of      ,       , in the nozzle at a section where    

          . Calculate also the ideal thrust and the ideal specific impulse. Take         , 

                  ⁄ , and             ⁄  

 

Solution: 

In an isentropic flow at a point ( ). Initial specific volume 

   
   

  
 

          

         
            ⁄  

The specific volume is 

     (
  

  
)
  ⁄

       (
     

     
)

    ⁄

            ⁄  

The temperature is  

     (
  

  
)
(   )  ⁄

     (
     

     
)
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The velocity is  

   √
  

   
   *  (

  

  
)

    ⁄

+   √
     

     
           [  (

     

     
)

   

   

] 

                ⁄  

The cross section area is 

 ̇         

   
 ̇   

  
 

        

       
              

And the Mach number is then 

   
  

√    

 
       

√                
       

At optimum expansion the ideal exhaust velocity    is equal to the effective exhaust velocity 

and       

   √
  

   
   *  (

  

  
)
    ⁄

+  √
   

   
           *  (

       

     
)

      ⁄

+ 

            ⁄  

which is equal to effective exhaust velocity, and  as      , then 

   ̇                         

As the effective exhaust velocity is      , the specific impulse is; 

     ⁄              ⁄              

 

Note: If you chose different sections pressure, you can simply plot the variation of       ,  

     . Figure (8.5) shows a plot of the variation of the velocity, the specific volume, the area, 

and Mach number, and the pressure in this nozzle. 

 

Example 8.6 For  the rocket of example 8.5 , calculate Exit temperature and Mach number, 

Throat area and area ratio and Gas velocity at throat. 
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Chapter Nine/Stationary Normal Shock Waves; part 1 

  

9.1 Introduction 

 

The shock process represents an abrupt change in fluid properties, in which finite variations 

in pressure, temperature, and density occur over a shock thickness comparable to the mean free 

path of the gas molecules involved. It has been established that supersonic flow adjusts to the 

presence of a body by means of such shock waves, whereas subsonic flow can adjust by gradual 

changes in flow properties. Shocks may also occur in the flow of a compressible medium 

through nozzles or ducts and thus may have a decisive effect on these flows. An understanding 

of the shock process and its ramifications is essential to a study of compressible flow. 

It was pointed out previously that a series of weak compression waves can coalesce to form 

a finite compression shock wave. The mechanism by which this process occurs will be discussed 

in detail. The thermodynamics of the shock process will be reviewed, and the one-dimensional 

equations of continuity, momentum, and energy applied to the normal shock. Solutions of these 

equations will be presented to enable the working of practical engineering problems. 

 

9.2 Formation of a Normal Shock Wave 

 

It was shown that, when a piston in a tube is given a 

steady velocity to the right of magnitude    (Figure 

9.1), a sound wave travels ahead of the piston through 

the medium in the tube. Suppose the piston is now given 

a second increment of velocity   ,  causing a second 

wave to move into the compressed gas behind the first 

wave. The location of the waves and the pressure 

distribution in the tube, after a time   , are shown in 

Figure 9.2. Each wave travels at the velocity of sound 

with respect to the gas into which it is moving. Since the 

second wave is moving into a gas that is already moving 

to the right with velocity   ,  and since it is moving into 

a compressed gas having a slightly elevated 

temperature, the second wave travels with a faster 

absolute velocity than the first wave and gradually 

overtakes it. After a time    (   greater than   ). 
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Now suppose the piston is accelerated from rest to a 

finite velocity increment of magnitude    to the right. This 

finite velocity increment can be thought to consist of a large 

number of infinitesimal increments, each of magnitude   . 

Figure (9.3) shows the velocity of the piston versus time, with 

the incremental velocities    superimposed.  The waves next to 

the piston tend to overtake those farther down the tube. 

As time passes, the compression wave steepens. The 

tendency of the higher density parts of the wave to overtake the 

lower density parts is finally counteracted by heat conduction 

and viscous effects taking place inside the wave. The resultant 

constant-shape compression shock wave produced by the 

addition of the weak compression waves then moves through the 

undisturbed gas ahead of the piston. The slopes of temperature 

and pressure versus distance in the wave itself are very large, 

and so the shock can be approximated by a discontinuity (Figure 

9.4).  

 

 

 

 

 

 

 

 If the piston in Figure 9.5 is 

suddenly given an incremental 

velocity    to the left, a weak expansion wave propagates to 

the right at the velocity of sound. When the piston is given 

a second increment of velocity, a second expansion wave 

moves into the expanded gas behind the first wave. 

Again, each wave travels at the velocity of sound with 

respect to the gas into which it is moving. In this case, the 

waves and gas are moving in opposite directions. 

Furthermore, the second wave is traveling into a gas that 

has already been expanded and cooled, which lowers the 
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sound velocity. Both effects reduce the absolute wave 

velocity, and cause the second wave to fall farther and 

farther behind the first. In this manner, expansion 

waves spread out; they are not able to reinforce one 

another (see Figure 9.6). The creation of a finite 

expansion shock wave is impossible.  

 

9.3 Equations of Motion for a Normal Shock Wave 

 

A shock involves finite, rapid changes in pressure and temperature. The processes taking 

place inside the wave itself are extremely complex and cannot be studied on the basis of 

equilibrium thermodynamics. Temperature and velocity gradients inside the shock provide heat 

conduction and viscous, dissipation that make the shock process internally irreversible. 

In a practical sense we don’t focus on the interior details of the shock wave, but on the 

net changes in fluid properties taking place across the entire wave.  

If one chooses a control volume encompassing the shock wave, the flow equations can be 

written without regard to the complexities of the internal processes. For this purpose, it is 

sufficient to note that the shock process is thermodynamically irreversible. Furthermore, with the 

shock temperature gradient inside the control volume, there is no external heat transfer across the 

control volume boundaries, so the shock process is adiabatic.  

Figure 9.7 shows a standing normal shock in a section of varying area. We first establish 

a control volume that includes the shock region and an infinitesimal amount of fluid on each side 

of the shock. In this manner we deal only with the changes that occur across the shock. It is 

important to recognize that since the shock wave is so thin (about       ), a control volume 

chosen in the manner described above is extremely thin in the x-direction.  

This permits the following simplifications to be made without introducing error in the 

analysis:  

1. The area on both sides of the shock may be considered to be the same. 

2. There is negligible surface in contact with the wall, and thus frictional effects may be 

omitted. 

Adiabatic                         or          

No shaft work                   

Neglect potential             

Constant area                  

Neglect wall shear 
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Continuity  

                                             

      

      √    

Then continuity equation becomes; 

    

√  
 

    

√  

                               

Momentum 

The x-component of the momentum equation for 

steady one-dimensional flow is; 

∑    ̇(            )   ̇        

With pressure force the only external forces acting on 

the control volume, then  

∑                      

Thus the momentum equation in the direction of flow becomes 

          ̇                   

Canceling the area and     can be written as either               , then 

       
          

                                                                                                                           

   
  

   
  

          
  

   
  

        

        
            

   

  

  
 

      
  

       
   

                                                                                                                                      

Energy 

               

         i.e.       
  ⁄        

  ⁄    , Then 

                                                                                                                                                          

     (  
   

 
  ) from stagnation properties at each point, then 

  (  
   

 
  

 )    (  
   

 
  

 ) 
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(  
   

   
 )

(  
   

   
 )

                                                                                                                           

Eqs. (9.4), (9.5) and (9.6) are the principle equations for a standing normal shock, in addition to 

the foregoing assumptions. They called the jump conditions and must be satisfied to preserve 

conservation of mass, momentum and energy across the shock. 

In the next chapter we seek a relationship between    and    to solve these equations. 

 

There are seven variables involved in these equations:                  and   . Once the 

gas is identified,   is known, and a given state before the shock fixes             . Thus 

equations (9.2), (9.4), and (9.6) are sufficient to solve for the unknowns after the shock: 

            .  

We proceed to combine these equations above and derive an expression for    in terms of 

the information given. First, we rewrite these equations 

    

    
 √

  
  

                                                                                                                                              

  

  
 

       
  

      
  

                                                                                                                                      

  
  

 (
  

   
   

 

  
   

   
 
)                                                                                                                            

Substitue eqs (10.2) and (10.3) into eq (10.1) gives; 

       
  

      
  

  

  
 (

  
   

   
 

  
   

   
 
)

   

                                                                                             

 At this point notice that    is a function of only    and by inspection, it is evident that one 

solution to Eq. (9.7) is the trivial one,      . This solution, involving no change in properties 

in a constant area flow, corresponds to isentropic flow and is not of interest for the irreversible 

normal shock.. Squaring both sides, cross-multiply, and arrange the result as a quadratic in   
 : 

gives: 

  
 (  

   
   

 )

      
   

 
  

 (  
   

   
 )
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)+                                                                                 

  *    (
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   (
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 Solution of the quadratic equation (9.8) is lengthy and difficult. The solution is;  

  
  

  
        ⁄

[  (     )⁄ ]  
   

                                                                                                         

The result of Eq. (9.10) is plotted in Figure 9.8 for 

     . 

For     ,     is always less tha 1, and vice 

versa. But when      it is not important since 

there is no shock. 
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Chapter Ten/ Stationary Normal Shock Waves; part 2 

 

 

10.1 Normal Shock Table 

 

We have found that for any given fluid with a specific set of conditions entering a normal 

shock there is one and only one set of conditions that can result after the shock. For the perfect 

gas further simplifications can be made since equation (9.10) yields the exit Mach number    

for any given inlet Mach number    and we can now eliminate    from all previous equations. 

 

Pressure ratio; 

  

  
 

     
 

     
                                                                                                                      

substitute from eq. 9.10 gives 

  

  
 

  

   
  

  
   

   
                                                                                                     

 

Temperature ratio; 

  

  
 

  [      ⁄ ]  
 

  [      ⁄ ]  
                                                                                                  

substitute from eq. 10.7 gives 

  

  
 

{  [      ⁄ ]  
 } {[       ⁄ ]  

 }

[            ⁄ ]  
                                                            

 

Density ratio 

From state equatio 

  

  
 

  
  

 
  

  
 

 and from eqs. (10.1) and (10.2); 

  

  
 

       
 

       
   

                                                                                                     

 

Other interesting ratios can be developed, each as a function of only   . For example, since 

    (  
   

 
  )

      ⁄

 

   

   
 

  

  
(
  [      ⁄ ]  

 

  [      ⁄ ]  
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      ⁄
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Eliminating of     and substitute from eq. (10.4) 

   

   
 

  

  
(

[      ⁄ ]  
 

  [      ⁄ ]  
 )

      ⁄

 [
  

   
  

  
   

   
]
      ⁄

               

 

10.2 Area ratio 

For isentropic flow, the area at which the Mach 

number is equal to   was defined as A*, with this area 

being used as a reference. A normal shock, however, is 

not an isentropic process; so, for example, if a shock 

occurs in a channel (Figure 10.2a), flow areas 

downstream of the shock (         )  have   
    

  

a n d  for the flow areas upstream the shock (          ). 

have   
    

 .  B u t     
     

  since flow upstream the 

shock differs from that downstream the shock.  

It is sometimes convenient to have a relationship 

between   
  and   

  . From Figure (10.2b), apply the 

continuity equation between    
  and    

 , assuming a 

perfect gas with constant specific heats. Since mass flow 

at    
  equal mass flow at    

  . From Eq. (8-5), 

 ̇  
   

 √  
                                                                                                            

 ̇  
      

 

 √   

        
      

 

 √   

        

But     at     
  and     

 . Also          and   is constant, then; 

      
        

                                                                                                            

   

   
 

   
 

   
                                                                                                                        

 

10.3 Entropy Change 

Since flow through the shock is not isentropic, the there are a friction losses appear as 

increase in entropy. From the following thermodynamic relation 

 

          

         
  

 
 



UOT 

Mechanical Department / Aeronautical Branch 

Gas Dynamics 

Chapter Ten/ Stationary Normal Shock Waves; part 2 

--------------------------------------------------------------------------------------------------------------------------------------------  

3-8 ch.10 

Prepared by A.A. Hussaini  2013-2014 

  

 
 

  

 

  

 
 

  

 
 

    
 

 
  

 
  

  

  
   

  

  
     

Subdtitute from eq.(10.4)  for     ⁄  and (9.4) for     ⁄  , gives; 

    
 

 
  

 
  *

  [      ⁄ ]  
 

  [      ⁄ ]  
 +    {
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  [      ⁄ ]  
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      ⁄

}  

  

 
 

 

   
 

    
 

    
   

   
                                 

   

   
                                                 

As      then         for stationary (fixed) normal shock wave. 

Values of Mach number    from eq. (9.10) , and for pressure ratio     ⁄  from eq. (10.1) and 

for temperature ratio     ⁄  from eq. (10.2), and for density ratio     ⁄  from eq.(10.3) and for 

stagnation pressure ratio       ⁄  from eq.(10.4), as well as the value of the ratio (     ⁄ ) are all 

computed in terms of     and have been tabulated in normal shock table. 

For an adiabatic process, stagnation pressure represents a measure of available energy of the 

flow in a given state. A decrease in stagnation pressure, or increase in entropy, denotes an energy 

dissipation or loss of available energy. 

The shock phenomenon is a one-way process (i.e., irreversible). It is always a compression 

shock, and for a normal shock the flow is always supersonic before the shock and subsonic after 

the shock. One can note from the table that as    increases, the pressure, temperature, and 

density ratios increase, indicating a stronger shock (or compression). One can also note that as 

   increases,       ⁄  decreases, which means that the entropy change increases. Thus as the 

strength of the shock increases, the losses also increase. 

 

Velocity Change 

We can also develop a relation for the velocity change across a standing normal shock for use 

later. Starting with the basic continuity equation; 

 

          

  

  
 

       
 

       
   

                                                                                                       

  

  
 

  

  
 

       
   

       
   

Subtract one from each side 
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Example 10.1 An airstream with a velocity of        , a static pressure of       , and a static 

temperature of       undergoes a normal shock. Determine the air velocity and the static and 

stagnation conditions after the wave. 

Solution 

The Mach number of the airstream,   , is given by 

   
  

√    
 

   

√           
       

From table B 

    ⁄       ,    ⁄       ,       ⁄       ,          ⁄         and  

         

From continuity equation 
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Or, for stationary (fixed) normal shock        , and from table A; 
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Example 10.2 An airstream at Mach    , with pressure of         and temperature of      , 

enters a diverging channel, with a ratio of exit area to inlet area of     (see Figure 10.3). 

Determine the back pressure necessary to produce a normal shock in the channel at an area equal 

to twice the inlet area. Assume one-dimensional steady flow, with the air behaving as a perfect 

gas with constant specific heats; assume isentropic flow except for the normal shock. 

Solution 

 

At      , from table A with      ; 

  

   
        

Therefore, 

  

   
  

  

  
 

  

   
                  

Then from table A at    ⁄        we have          . 

With the shock Mach number determined, ratios of properties across the shock can be found 

from normal shock table; 

   

   
        

   
 

   
  

  

   
  

  

  
 

  

   
  

   
 

   
                         

Flow after the shock is subsonic, so that, from table A, the 

Mach number at exit,  

           We can now solve for exit,   ; 

  

  
 

  

   
 
   

   
 
   

  
               

 

      
       

       
  

  
                           

With subsonic flow at the channel exit, the channel back 

pressure is equal to the exit plane pressure.  
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Example 10.3 Helium with        is flowing at a Mach number of      and enters a normal 

shock. Determine the pressure ratio across the shock. 

 

Solution 

Since normal shock table does not include       , we use equation (10.7) to find the Mach 

number after the shock and (10.2) to obtain the pressure ratio. 

  
  

  
        ⁄

[  (     )⁄ ]  
   

                                                                                

  
  

                ⁄

[     (        )⁄ ]        
       

         

  

  
 

       
  

      
  

                                                                                                       

  

  
 

                

                 
      

 

Example 10.4 A rocket exhaust nozzle has a 

ratio of exit to throat areas of 4.0. The exhaust 

gases are generated in a combustion chamber 

with stagnation pressure equal to        . and 

stagnation temperature equal to        (see 

figure  10.4). Assume the exhaust-gas mixture 

to behave as a perfect gas with        and  

                   .  

Determine the rocket exhaust velocity for isentropic nozzle flow and for the case where a 

normal shock is located just inside the nozzle exit plane. 

 

Solution 

For isentropic flow in the exhaust nozzle, with     ⁄     ,  from isentropic Table ( at   

    .                 ⁄         

          ⁄                      

  
 ̅

 ̅
 

      

  
            ⁄  

     √           √                        

Consider next the case of a normal shock at the nozzle exit plane. With isentropic flow up to the 

shock wave,         and                 .  



UOT 

Mechanical Department / Aeronautical Branch 

Gas Dynamics 

Chapter Ten/ Stationary Normal Shock Waves; part 2 

--------------------------------------------------------------------------------------------------------------------------------------------  

7-8 ch.10 

Prepared by A.A. Hussaini  2013-2014 

From normal shock table (      , at         gives;               . 

From isentropic table (      , at           gives;      ⁄         

               ⁄                     

        √             √                         

 

Example 10.5 Fluid is air and can be treated as a perfect gas. If the conditions before the shock 

are:        ,             , and           . Determine the conditions after the shock and 

the entropy change across the shock. 

 

solution 

First we compute     with the aid of the isentropic table. From isentropic table at          we 

have       ⁄        . 

            ⁄  
 

      
                  

Now from the normal-shock table, Table B, opposite       , we find 

          ,       ⁄       ,       ⁄        ,          ⁄          

Thus 

          ⁄                    

          ⁄                       

              ⁄                               

Also     can be computed with the aid of the isentropic table            ,      ⁄         

            ⁄      
 

      
           

To compute the entropy change, we use equation (8.19): 

         
   

   
  

            
     

        
            ⁄  

 

Example 10.6 Air has a temperature and pressure of 300 K and 2 bar abs., respectively. It is 

flowing with a velocity of         and enters a normal shock. Determine the density before and 

after the shock. 

Solution 

   
  

   
 

     

       
          ⁄  

   √     √                    
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From shock Table B; at         , gives;      ⁄       , and      ⁄        

  

  
 

  

  
 
  
  

       
 

     
       

      
  

  
                     ⁄   

 

Example 10.7 Oxygen enters the converging section shown in the figure (10.5), and a normal 

shock occurs at the exit. The entering Mach number is     and the 

area ratio     ⁄     . Compute the overall static temperature at 

exit if the inlet temperature is       . Neglect all frictional losses. 

 

Solution 

From isentropic flow isentropic table at       ,  

     ⁄        ,      ⁄        ,     ⁄      

  

  
  

  

  
 
  

  
  

  
 

  
  

 

   
            

From same table at     
 ⁄        we get          and      ⁄  

       

From normal shock wave normal shock table at         

                  ⁄        

  

  
 

  

  
 

  

   
 
   

   
 
   

  
                

 

      
      

             ⁄                 
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Chapter Eleven/Normal shock in converging–diverging nozzles 
 

We have discussed the isentropic operations of a converging–diverging nozzle. This type of 

nozzle is physically distinguished by its area ratio, the ratio of the exit area to the throat area. 

Furthermore, its flow conditions are determined by the operating pressure ratio, the ratio of the 

receiver (back) pressure to the inlet stagnation (reservoir) pressure (            ⁄ ). From figure 

(11.1) we identified two significant critical pressure ratios.  

With      , there is no flow in the nozzle (curve 1) 

from figure (11.1a). As    is reduced below   , subsonic 

flow is induced through the nozzle, with pressure 

decreasing to the throat, and then increasing in the 

diverging portion of the nozzle (curve 2 and 3).. For any 

pressure ratio above       ⁄ , for curve (a), the nozzle is not 

choked and has subsonic flow throughout (typical venturi 

operation). When the back pressure is lowered to that of 

curve a, sonic flow occurs at the nozzle throat. Pressure 

ratio       ⁄  is called the first critical point which 

represents flow that is subsonic in both the convergent and 

divergent sections but is choked with a Mach number of 1.0 

in the throat. ((chocked means flow maximum and fixed)) 

When the back pressure is lowered to that of curve f, 

subsonic flow exits in the converging section, and sonic 

flow exits in the throat and it is choked where      . A supersonic flow exists in the entire 

diverging section. This is the third critical point which represents the design operation condition. 

The first and third critical points are the only operating points that have; 

(1) Isentropic flow throughout the nozzle, and 

(2) A Mach number of 1 at the throat, and 

(3) Exit pressure equal to receiver (surrounding) pressure. 

Remember that with subsonic flow at the exit,      , and    is back or receiver pressure. 

Imposing a pressure ratio slightly below that of the first critical point presents a problem in 

that there is no way that isentropic flow can meet the boundary condition of pressure equilibrium 

at the exit. However, there is nothing to prevent a non-isentropic flow adjustment from occurring 

within the nozzle. This internal adjustment takes the form of a standing normal shock, which we 

now know involves an entropy change (losses). 



UOT 

Mechanical Department / Aeronautical Branch 

Gas Dynamics 

Chapter Eleven/Normal shock in converging–diverging nozzles 

------------------------------------------------------------------------------------------------------------------------------ -------------- 

2-6 ch.11 

Prepared by A.A. Hussaini  2013-2014 

 As the pressure ratio is 

lowered below the first critical 

point, a normal shock forms 

just downstream of the throat. 

The remainder of the nozzle is 

now acting as a diffuser since 

after the shock the flow is 

subsonic and the area is 

increasing. The shock will 

locate itself in a position such 

that the pressure changes that 

occur ahead of the shock, 

across the shock, and 

downstream of the shock will 

produce a pressure that exactly 

matches the outlet pressure. In 

other words, the operating 

pressure ratio determines the 

location and strength of the 

shock. An example of this 

mode of operation is shown in Figure 11.1b.  

As the pressure ratio is lowered further, the shock 

continues to move toward the exit. When the shock is 

located at the exit plane (curve d), this condition is referred 

to as the second critical point.  

When the operating pressure ratio is between the 

second and third critical points, a compression takes place 

outside the nozzle. This is called over-expansion (i.e., the 

flow has been expanded too far within the nozzle). As the 

back pressure is lowered below that of curve d, a shock 

wave inclined at an angle to the flow appears at the exit 

plane of the nozzle (Figure 11.2a). This shock wave, 

weaker than a normal shock, is called an oblique shock. 

Further reductions in back pressure cause the angle 

between the shock and the flow to decrease, thus 
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decreasing the shock strength (Figure 11.2b), until eventually the isentropic case, curve f, is 

reached 

If the receiver pressure is below the third critical point, an expansion takes place outside the 

nozzle. This condition is called under-expansion. A pressure decrease occurs outside the nozzle 

in the form of expansion waves (Figure 11.2c). Oblique shock waves and expansion waves 

represent flows that are not one dimensional flow and will be treated later.  

 

Illustrative example:  

 

For the present we proceed to investigate the operational regime between the first and second 

critical points. For the nozzle and inlet conditions illustrated in figure (11.3), the nozzle has area 

ratio to be               and is fed by air at         and      from a large tank. 

Solution  

The inlet conditions are essentially stagnation. For these fixed inlet conditions we find that a 

receiver pressure of            (for operating pressure ratio of 0.9607) identifies the first 

critical point and a receiver pressure of            (for operating pressure ratio of 0.06426) 

identifies the third critical point. 

 What receiver pressure do we need to operate at the second critical point? Figure 11.4 

shows such a condition and you should recognize that the entire nozzle up to the shock is 

operating at its design or third critical condition. 

From the isentropic table at             , 

                        ⁄          

From the normal-shock table for        ,  

                   
  

  
        

and the operating pressure ratio will be 

    

   
 

  

   
 

  

  
 

  

   
 

                      

                          

                                 

Thus for our converging–diverging nozzle with an area 

ratio of 2.494, any operating pressure ratio between 0.9607 

and 0.436 will cause a normal shock to be located 

someplace in the diverging portion of the nozzle starting 
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from the throat and ending at exit plane.  

Suppose that we are given an operating pressure ratio 

of      . The logical question to ask is: Where is the 

shock? This situation is shown in Figure 11.5. We must 

take advantage of the only two available pieces of 

information and from these construct a solution. We know 

that 

  

  
                 

  

   
      

We assume that all losses occur across the shock and we know that          . Since there 

are no losses up to the shock, the flow is isentropic and we know that 

     
   

Thus 

  

  
 

  

   
 

  

  
  

  

   
 

We know also across the normal shock        
        

 , i.e. 

   

   
 

  
 

  
  

So 

  

  
  

  

   
 

  

  
  

  

   
 

The following data is known,     ⁄       ,      ⁄       then; 

  

  
 

  

   
                   

And from isentropic table at        
     ⁄         

        and      ⁄         

To locate shock position, we seek the ratio       ⁄ .  

 We have        , isentropic after the shock, and        , isentropic before the shock. Then  

   

   
 

   

   
 

   

  
 

  

   
 

 

     
            

Then from normal shock table at       ⁄        

                        

And then from the isentropic table that this Mach number,        , will occur at an area 

ratio of about     ⁄      ⁄        .. 
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We see that if we are given a physical 

converging–diverging nozzle (area ratio is known) 

and an operating pressure ratio between the first and 

second critical points, it is a simple matter to 

determine the position and strength of the normal 

shock in the diverging section. 

Example 11.1 A converging–diverging nozzle has an 

area ratio of     . At off-design conditions, the exit 

Mach number is observed to be    . What operating pressure ratio would cause this situation? 

 

Solution 

 

We have the nozzle area ratio         ⁄ . 

Using the section numbering system of Figure 10.6, for         , We have  

  

  
 

  

   
        

  

  
          

     
       

  

  

   
 (

    

     
 )  (

     
 

     
 )  

  
 

  
 
  

  
             

 

    
       

Could you now find the shock location and Mach number? 

   

   
 

  
 

  
  

  
 

  
 
  

  
  

 

   
                 

   

   
 

From shock table at       ⁄          gives     

From isentropic table at             gives     
 ⁄      ⁄   

 

Example 11.2 Air enters a converging–diverging nozzle that has an overall area ratio of      . A 

normal shock occurs at a section where the area is      times that of the throat. Neglect all 

friction losses and find the operating pressure ratio. Again, we use the numbering system shown 

in Figure 11.6. 

 

Solution 

From the isentropic table at     ⁄      ,           . 

From the shock table at        ,              and                .  

From isentropic table at           gives     
 ⁄        . Then 
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Since        and   
    

  

Thus from isentropic Table  at     
 ⁄          

        . 

  

   
 

  

   
 
   

   
                      

Where          and         

Example 11.3 A converging-diverging nozzle is designed to operate with an exit Mach number 

of     . The nozzle is supplied from an air reservoir at      . Assuming one-dimensional flow, 

calculate the following: 

a) Maximum back pressure to choke the nozzle. 

b) Range of back pressures over which a normal shock will appear in the nozzle. 

c) Back pressure for the nozzle to be perfectly expanded to the design Mach number. 

d) Range of back pressures for supersonic flow at the nozzle exit plane. 

 

Solution 

The nozzle is designed for             . From Appendix A. at             ,        ⁄  

       and        ⁄         

a) The nozzle is choked with       at the throat, followed by subsonic flow in the 

diverging portion of the nozzle. From Appendix A. at        ⁄        .               and 

       ⁄        .  

             ⁄                        

Therefore the nozzle is chocked for all back pressures bellow          . 

b) Or a normal shock at the nozzle exit plane (Figure 11.7b).          and  

                      .  

From normal shock, at         ,     ⁄        .  

For a normal shock at the nozzle exit, the back pressure is  

                         . 

For a shock just downstream of the nozzle throat, the back pressure is            a, i.e. 

the flow downstream the throat in the divergent part is subsonic. So A normal shock will appear 

in the nozzle over the range of back pressures from                   . 
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c) From isentropic table , at             .        ⁄         . For a perfectly expanded, 

supersonic nozzle. the hack pressure is           

d) Referring again to Figure 11.7a supersonic flow will exist at the nozzle exit plane for all 

back pressures less than          . 
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Chapter Twelve/Converging–Diverging Supersonic Diffusers 

 

 

12.1 Converging-Diverging Supersonic Diffuser 

 

With the jet engine, the inlet (diffuser) takes the incoming air, traveling at high velocity with 

respect to the engine, and slows it down and then delivers it to the axial compressor of the 

turbojet or the combustion zone of the ramjet engine. The amount of static pressure rise achieved 

during deceleration of the flow in the diffuser is very important to the operation of the jet engine, 

since the pressure of the air entering the nozzle affects the nozzle exhaust velocity. 

The maximum pressure that can be achieved in the diffuser is the isentropic stagnation 

pressure.  Any loss in available energy (or stagnation pressure) in the diffuser, or for that matter 

in any other component of the engine, will have a harmful effect on the operation of the engine 

as a whole. For a supersonic diffuser, it would be highly desirable to provide shock free 

isentropic flow.  

A first approach is to operate a converging-diverging nozzle in reverse (see Figure 12.1.) At 

the design Mach number,   , for such a diffuser, there is no loss in stagnation pressure 

(neglecting friction). However, off-design performance has to be 

considered, since the external flow must be accelerated to the 

design condition. For example, if a supersonic converging-

diverging diffuser is to be designed for a flight       , the 

ratio              ⁄           (see isentropic flow table). 

However, for a supersonic flight Mach number less than design Mach number,     , the 

area ratio    ⁄  is less than      , i.e. required throat area should be larger. This indicates that 

the actual throat area is not large enough to handle this flow. Under these conditions, flow must 

be bypassed around the diffuser. A normal shock stands in front 

of the diffuser with subsonic flow after the shock able to sense the 

presence of the inlet and an appropriate amount of the flow "spills 

over" or bypasses the inlet (see Figure 12.2). 

As the Might Mach number is increased, the normal shock 

moves toward the inlet lip. When the design Mach number is 

reached during start-up, however, with a normal shock in front of 

the diffuser, some of the flow must still be bypassed, since the 

throat area of less than   
  is still not able to handle the" entire subsonic flow after the shock. 
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As the flight Mach number is increased above   , the shock moves eventually to the inlet 

lip. A further increase in   causes the shock to reach a new equilibrium position in the diverging 

portion of the diffuser, in other words, the shock is "swallowed." Once the shock has been 

swallowed, a decrease in flight Mach number causes the shock to move back toward the throat, 

where it reaches an equilibrium position for   equal to   . 

At this position, the shock is of vanishing strength, at         , so no loss in stagnation 

pressure occurs at the design condition. In actual operation, it is desirable to operate with the 

shock slightly past the throat; since operation at the design condition is unstable in that a slight 

decrease in Mach number results in the shock's moving back out in front of the inlet. In this case, 

the operation of over speeding to swallow the shock would have to be repeated (see Figure 12.3). 

Another method for swallowing the shock is to use a variable throat area. With a shock in 

front of the diffuser, the throat area should be increased, which would allow more flow to pass 

through the inlet and consequently bring the shock closer to the inlet lip. To swallow the shock, 

the throat area would have to be slightly larger than that required to accept the flow with a shock 

at    at the inlet lip, that is, slightly larger than   
  with a normal shock at the design Mach 

number.  

For       ,   
   

 ⁄        , so an increase in area of greater than             

                  is required to swallow the shock. Once the shock is swallowed, the throat 

area must be decreased to reach the design condition. 

Although the converging-diverging diffuser has favorable operating characteristics at the 

design condition, it involves severe losses at off-design operation. Operation with a normal 

shock in front of an inlet causes losses in the stagnation pressure.  

To swallow this shock, the inlet must be accelerated beyond its design speed, or a variable 

throat area must be provided. Except for very low supersonic Mach numbers, the amount of over 

speeding required to swallow the shock during start-up becomes large enough to be totally 

impractical. 
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 Furthermore; the incorporation of a variable throat area into a diffuser presents many 

mechanical difficulties. For these reasons, the converging-diverging diffuser is not commonly 

used; most engines utilize the oblique-shock type diffuser to be described later. 

 

Example 12.1. A supersonic converging-diverging diffuser is designed to operate at a Mach 

number of     with design back pressure. To what Mach number would the inlet have to be 

accelerated in order to swallow the shock during stand-up?  

Solution 

From isentropic table at             ,      ⁄          

So the diffuser is designed with              ⁄        

The inlet must be accelerated to a Mach number slightly greater than that required to position the 

shock at the inlet lip (see Figure 12.4). 

Assume a normal shock stands at diffuser lips as shown. For         at the diffuser throat 

and subsonic flow after a shock at the inlet lip, we have: 

From isentropic table at     ⁄                     . 

From normal shock table at                      . 

  If the back pressure conditions imposed on the diffuser are such that 

a Mach number of     cannot be achieved at the throat, then    will 

be less than      , and a value of    greater than      will be required. However, with    

     at the diffuser throat, the diffuser must be accelerated to a Mach number slightly greater than 

     to swallow the initial shock during start-up.  

 

6.7 Supersonic Wind Tunnel 

 

To provide a test section with supersonic flow requires a converging–diverging nozzle. To 

operate economically, the nozzle–test-section combination must be followed by a diffusing 

section which also must be converging–diverging. 

Starting up such a wind tunnel is another example of nozzle operation at pressure ratios above 

the second critical point. Figure 12.5 shows a typical tunnel in its most unfavorable, off design, 

operating condition, which occurs at startup. 
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Figure 12.5, which shows the 

shock located in the test section. The 

variation of Mach number 

throughout the flow system is also 

shown for this case. This is called 

the most unfavorable condition 

because the shock occurs at the 

highest possible Mach number and 

thus the losses are greatest. We 

might also point out that the diffuser 

throat (section 5) must be sized 

(adjusting area) for this condition.  

As the exhauster fan is started, 

this reduces the pressure         

and produces flow through the 

tunnel. At first the flow is subsonic 

throughout, but at increased power 

settings the exhauster fan reduces 

pressures still further and causes 

increased flow rates until the nozzle 

throat (section 2) becomes choked. 

At this point the nozzle is operating 

at its first critical condition. As 

power is increased further, i.e the 

ratio        ⁄  is lowered further. a 

normal shock is formed just 

downstream of the throat, and if the 

tunnel pressure is decreased 

continuously, the shock will move 

down the diverging portion of the 

nozzle and pass rapidly through the 

test section and into the diffuser. If 

the ratio        ⁄  is lowered further 

then the diffuser swallows the 

normal shock to the diverging part 
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of diffuser. Increasing this pressure ratio a little will move the normal shock upstream to the 

diffuser throat, the position at which the shock strength is a minimum .Figure 12.6 shows this 

general running condition, which is called the most favorable condition. 

Across the shock of figure 12.5 

     
       

  

At throat section 2 & 5 during start-up    , then  

            

Due to the shock losses (and other friction losses)         and then        

For example if the test section Mach number is 2 then from normal shock table  

   

   
        

  

  
 

And           ⁄               

Knowing the test-section-design Mach number fixes the shock strength in this unfavorable 

condition and    is easily determined. Keep in mind that this represents a minimum area for the 

diffuser throat. If it is made any smaller than this, the tunnel could never be started (i.e., we 

could never get the shock into and through the test section). In fact, if    is made too small, the 

flow will choke first in this throat and never get a chance to reach sonic conditions in section 2. 

Once the shock has passed into the diffuser throat, knowing that       we realize that the 

tunnel can never run with sonic velocity at section 5. Thus, to operate as a diffuser, there must be 

a shock at this point, as shown in Figure 12.6.We have also shown the pressure variation through 

the tunnel for this running condition. 

To keep the losses during running at a minimum, the shock in the diffuser should occur at the 

lowest possible Mach number, which means a small throat. However, we have seen that it is 

necessary to have a large diffuser throat in order to start the tunnel. A solution to this dilemma 

would be to construct a diffuser with a variable area throat. After startup,    could be decreased, 

with a corresponding 

decrease in shock 

strength and operating 

power. However, the 

power required for any 

installation must always 

be computed on the basis 

of the unfavorable startup 

condition. 
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Example: 

A continuous supersonic wind tunnel is 

designed to operate at a test section Mach 

number of 2.0, with static conditions duplicating 

those at an altitude of       where           

and          . Take       and    

            ⁄ . The test section is to be 

circular,       in diameter, with a fixed 

geometry and with a supersonic diffuser 

downstream of the test section. Neglecting fric-

tion and boundary-layer effects, determine the 

power requirements of the compressor during 

startup and during steady-state operation, [See 

Figure 12.8(a)]. Assume an isentropic 

compressor, with a cooler located between 

compressor and nozzle (after the compressor), so 

the compressor inlet static temperature can be assumed equal to the test section stagnation 

temperature.  

 

solution 

During startup, the worst possible case [see Figure 12.8(c)] is that of a shock in the test sec-

tion with       . For this situation, which fixes the ratio of the two throat areas, we have 

   

   
        

  
 

  
  

   

   
 

To fix the size of the diffuser throat area, we first use the design Mach number to find 

    ⁄      . From isentropic table,     ⁄                

       
  

 
  

     

 
            

    ⁄                

    
  

    ⁄      
 

     

      
          

The throat area is then; 

  
      

     

    ⁄      
 

       

      
            

  
      

  
 

  
   

 ⁄
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During steady-state operation [see Figure 12.8(a)], the mass flow through the test section is 

given by 

 ̇      
     

      
      √        

 
   

           
          √                        ⁄  

For this fixed geometry (i.e.,       ⁄          ⁄        ), the optimum condition for 

steady- state operation is a normal shock at the diffuser throat. This means that the nozzle, test 

section and the converging part of the diffuser act as a duct of variable area with isentropic flow, 

where       and                   . 

From isentropic table at     ⁄        ⁄         ⁄         

            (
               

               
)         

From normal shock table at           

   

   
                          (

             

             
)         

The loss in stagnation pressure must be compensated for by the compressor. For isentropic 

compressor, [see Figure 12.7(b)], the energy balance is 

                     (                ) 

At design stage, i.e. steady state operation 

       

        
 (

   

   
)

   
 

 (
 

      
)

   
   

        

                                                          

                           ⁄  

       ̇                            

At off-design stage, i.e. during startup 

       

        
 (

   

   
)

   
 

 (
 

      
)

   
   

        

                                                           

                           ⁄  

       ̇                           

A more power is needed during startup by 
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Chapter Thirteen/Moving Normal Shock Waves 

 

12.1 Moving Normal Shock Waves 

 

Previous sections have dealt with the fixed normal shock wave. However, many physical 

situations arise in which a normal shock is moving. When an explosion occurs, a shock wave 

propagates through the atmosphere from the point of the explosion. As a blunt body reenters the 

atmosphere from space, a shock travels a short distance ahead of the body. When a valve in a gas 

line is suddenly closed, a shock propagates back through the gas. To treat these cases, it is 

necessary to extend the procedures already developed for the fixed normal shock wave.  

 Consider a normal shock moving at constant velocity into still 

air,                     , (Figure 13.1a). Let    

                        and                    s behind the 

wave; both velocities are measured with respect to a fixed observer. 

For a fixed observer, the flow is not steady, since conditions at a point 

are dependent on whether or not the shock has passed over that point. 

 Now consider the same physical situation with an observer 

moving at the shock-wave velocity, a situation, for instance, with the 

observer "sitting on the shock wave.'" The shock is now fixed with 

respect to the observer (Figure 13.1b). But this is the same case 

already covered in previously. Relations have been derived and 

results tabulated for the fixed normal shock-To apply these results to 

the moving shock, consideration must be given to the effect of observer velocity on static and 

stagnation properties. 

Static properties are defined as those measured with an instrument moving at the absolute 

flow velocity. Thus static properties are independent of the observer velocity, so 

  

  
 

  

  
      

  

  
 

  

  
  

 Stagnation properties are measured by bringing the flow to rest. Comparing the situations 

shown in Figure 13.1, if       and      ,  it is evident that        and        since the 

gas at state 1 has velocity   , and the gas at state a has zero velocity,        and       . 

Thus stagnation properties are dependent on the observer velocity. To calculate the variation of 

stagnation properties across a moving shock wave, static conditions and velocities must first be 

determined. 
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Transformation of a stationary coordinate system to a coordinate system that moves with the 

shock makes analysis of the moving normal shock as of the steady-flow situation shown in 

Figure 13.1(b). The relations for stationary normal shock is now prevail.  

                      

From continuity eq.: 

  (     )                                                                    

  

  
   

  

  
 

     

  
                                                        

From momentum eq.: 

     (     )
 
        

                                       

  

  
 

  

   
  

  
   

   
                                                     

From energy eq.: 

   
(     )

 

 
    

  
 

 
                                                

   
(     )

 

   
    

  
 

   
                                               

  

  
 

{  [      ⁄ ]  
 } {[       ⁄ ]  

 }

[            ⁄ ]  
             

And from eq.10.3 for velocity ratio: 

  

  
 

  

  
 

  
  

 
  

  
 

       
 

       
   

                             

  

     
 

       
     ⁄

       
     ⁄   

                                      

 

 First Case: 

Either the shock velocity is known or the gas velocity behind the wave is known. When the 

shock velocity is known the gas velocity and other properties behind the moving wave are 

required. But when the velocity of the gas behind  the shock is known, then shock velocity and 

other properties are required. 

 

Example 13.1 A normal shock moves at a constant velocity of         into still air 

(             ). Determine the static and stagnation conditions present in the air after passage 

of the wave, as well as the gas velocity behind the wave. 
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Solution 

For a fixed observer, the physical situation is shown in Figure 13.3a. 

With respect to an observer moving with the wave, the situation 

transforms to that shown in Figure 13.3b. 

   
  

√    
 

   

√           
       

From normal shock table 

  

  
               

  

  
                   

  

  
               

  

  
                   

From continuity equation 

  

  
 

  

  
       

  

  
 

  

      
       

           ⁄  

Since the velocity of the observer does not affect the static properties, 

             

           

The Mach number of the gas flow behind the wave is given by 

   
  

√    

 
     

√             
       

With the Mach number and static properties determined, the stagnation properties of the gas 

stream can be found from isentropic table at M = 0.613, 

   ⁄          and    ⁄         

After passage of the wave, the stagnation pressure is 

    
  

     ⁄
 

     

      
         

    
  

     ⁄
 

     

      
           

Note that for a fixed observer the stagnation temperature after passage of the wave is greater 

than that before passage of the wave. For an observer "sitting on the wave," however, there is no 

change of stagnation temperature across the wave. 
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Example 13.2 An explosion occurs which produces a normal shockwave that propagates at a 

speed of         into still air. The pressure and temperature of the motionless air in front of the 

shock are           and      , respectively. Determine the velocity, static pressure, and static 

temperature of the air following the shock, i.e. (            ). 

 

Solution 

   
  

√    
 

   

√           
       

From isentropic table at          gives 

     ⁄        ,      ⁄         

And from normal table at          gives 

    ⁄        ,     ⁄        ,       ⁄         and          . So; 

    
  

      ⁄  
 

   

      
             

    
  

      ⁄  
 

     

      
              

    (
   

   
)                              

   (
  

  
)                              

   (
  

  
)                             

      √     √                            

(     )                                 

     (     )                          

   
  

  
 

        

      
        

From isentropic table at          , gives; 

     ⁄         and      ⁄        , then 

    
  

     ⁄
 

        

      
               

    
  

     ⁄
 

        

      
            

 

Example 13.3 The shock was given as moving at          ⁄  into air at            and 289 

K.  Solve the problem represented in Figure 13.4. 
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Solution 

 We solve for fixed normal shock, i.e. moving coordinate 

system, (figure 13.4b). 

   √     √             

          ⁄  

   
  

  
 

      

      
      

From isentropic, at        , 

      ⁄        , then 

    
  

     ⁄
 

       

      
             

From normal shock table, at          

          
  

  
        

  

  
        

Thus 

      
  

  
                            

      
  

  
                     

   √     √                        ⁄  

                              ⁄  

And from isentropic table at          ,      ⁄         and      ⁄        , then 

    
  

     ⁄
 

       

      
           

    
  

     ⁄
 

      

      
          

                                ⁄  

It is apparent that         as expected. 

 Now we solve for moving shock, i.e. fixed coordinate system (figure 13.4a). 

Remembering that pressure, temperature and sonic velocity values after the shock wave are not 

changed due to shock wave movement. 

               

            

            ⁄  
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And from isentropic table, at          ,      ⁄         and      ⁄         , then; 

    
  

     ⁄
 

       

      
             

    
  

     ⁄
 

      

      
         

Therefore, after the shock passes (referring now to Figure 13.4a), the pressure and 

temperature will be             and         , respectively, and the air will have acquired a 

velocity of          ⁄  to the left. It will be interesting to compute and compare the stagnation 

pressures in each case. Notice that they are completely different because of the change in 

reference that has taken place. 

 

 Second case 

Developing an expressions for the case of a normal shock traveling at a 

constant speed    into a gas that is moving with a speed  . The shock induces 

a speed    of the gas it passes over, as shown in Figure 13.6. here simply 

replace each    &    in eqs. 13.1 to 13.5 by      &      . 

 

Example 13.4 A piston in a tube is suddenly accelerated to a velocity of 

      , which causes a normal shock to move into the air at rest in the tube. Several seconds 

later, the piston is suddenly accelerated from              , which, causes a second shock to 

move down the tube. Calculate the velocities of the two shock waves for an initial air 

temperature of      .  

 

 

Solution 

 

The air next to the piston must move at the same velocity as the piston, since it can neither 

move through the face of the piston nor move away from the piston and leave a vacuum behind. 

Therefore, for a fixed observer, the air velocities are as shown in Figure (13.7). 

   √     √                    ⁄  

From eq. 13.5 
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 √(

       

 
)

 

   
     

    
         

 
 √(

         

 
)

 

        

                      ⁄   

    
   

  
 

     

     
       

From normal shock table, at                 ⁄       ,  so; 

                     

 

For the second shock, the situation is shown in 

Figure (13.8a). Figure (13.8b) shows an observer “sitting 

on the second wave”. Using eq. (10.5), we obtain  

  

  
 

       
 

       
   

 

Where  

                                     

  
   

         

    
   

Substituting yields  

      

       
 *    

         

             
+ *    

         

             
  +⁄  

 
            

                        
 

To solving this quadratic equation, Let            

 

    
 

     

               
 

                             

                     

  
   √      

  
 

    √                  

   
 

  
    √                  
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             ⁄  

Thus, the second wave travels at a greater velocity than the first and eventually overtakes it. This 

result is a demonstration of the principles formation of normal shock.  Compression waves are 

able to overtake and reinforce one another. In this example problem, the second wave travels at a 

greater velocity because it is both moving into the compressed, higher-temperature gas behind 

the first wave and also moving into a gas stream already traveling in the same direction with a 

velocity of       . A new set of gas properties now can be computed before and after the 

second shock. 

 

12.2 Reflected Waves.  

 

When a wave impinging on the end of a tube, two cases 

should be studied, a closed tube and a tube open to the 

atmosphere. The reflected wave in closed end tube is treated as a 

reflected normal shock while for open end tube is treated as 

reflected expansion waves. 

To complete this study of moving normal shock waves, 

consider the result of a wave impinging on the end of a tube. 

Two cases will be studied; a closed tube and a tube open to the 

atmosphere. In both cases it is desired to determine whether the 

reflected wave is a compression shock wave or a series of weak 

expansion waves. For reflected wave in closed tube, (see Figure 

13.9), the gas next to the fixed end of the tube must be at rest, with the gas behind the incident 

shock moving to the right with velocity   . For an observer moving with the reflected wave, the 

physical indicates that a decrease in velocity and a corresponding increase in static pressure 

across the reflected wave, which is physically the situation for 

a normal shock. Therefore, a normal shock reflects from a 

closed tube as a normal shock.  

For reflected in open tube to atmosphere, the boundary 

condition imposed on the system is the static pressure at the 

end of the tube. Because the flow in front of the moving shock 

is subsonic, the back pressure and the exit pressure must be 

the same, see figure 13.10. there will be a decrease in pressure 

across the reflected wave and a normal shock reflects from an 

open end of a tube as a series of expansion waves.  
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Example 13.4 A normal shock wave with pressure ratio of 4.5 

impinges on a plane wall (see Figure 13.11a). Determine the static 

pressure ratio for the reflected normal shock wave. The air temperature 

in front of the incident wave is 20°C. 

 

Solution 

 Solution for incident wave: 

To determine the velocity Vg of the gas behind the incident wave, 

utilize a reference system moving with the wave, as shown in Figure 

13.11b. 

 From normal shock table     ⁄     ,  gives: 

      ,      ⁄        and     ⁄        

       √         √                    ⁄  

   

      
 

  

  
 

  

  
       

(        )              

            ⁄   

      
  

  
                   

 

 Solution for reflected wave:  

To find the reflected shock velocity, fix the reflected shock by using  

(see Figure 13.11c) 

  

  
 

       
 

       
   

                                                      

For this case  
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   √      

  
 

        √                      

   
 

   
             

 
            ⁄            

   
             

 
           ⁄  

                          ⁄  

For the fixed shock, back to fig. 13.10a 

  

  
 

         
   

 
       

     
       

  

  
 

From normal shock table, at     ⁄       , gives 

    ⁄        static pressure ratio for reflected normal shock.  

  

  
 

  

  
 
  

  
              

That means the in zone 3 after reflection becomes fifteen times the pressure in zone 1 before 

incident. 

 

Another type of moving shock is occurred when air is 

flowing through a duct under known conditions and a 

valve is suddenly closed, as shown in fig. 13.12.. The 

fluid is compressed as it is quickly brought to rest. This 

results in a shock wave propagating back through the 

duct. In this case the problem is not only to determine the 

conditions that exist after passage of the shock but also to 

predict the speed of the shock wave.   This can also be viewed as the reflection of a shock wave, 

similar to what happens at the end of a shock tube. We transfer the fixed coordinate into a 

moving coordinate system by riding the shock wave and superimpose the reflected wave velocity 

    on the entire flow field. With this new frame of reference we have the standing normal-shock 

problem shown in Figure 13.12.  
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Example 13.5 Air of speed of       ⁄  is flowing through a duct where its pressure and 

temperature are       and       respectivilly. Then a valve exists in the duct is suddenly closed. 

Find fluid properties nest to the valve after it closed and shock velocity, as show in figure 13.13.  

 

Answer 

          

  

  
 

       
 

       
   

 

  

      
 

     
       ⁄

     
       ⁄   

 

     
                  

       
  

   
                 

  
   √      

  
 

   
    √               

   
           ⁄  

                         ⁄  

   √     √                      ⁄  

       ⁄               ⁄        

From normal shock table at        gives  

         ,     ⁄        and     ⁄        

                      

                   

 

12.3 Shock Tube 

 

The shock tube is a device in which normal shockwaves are generated by the rupture of a 

diaphragm separating a high-pressure gas from a gas at low pressure. As such, the shock tube is a 

useful research tool for investigating not only shock phenomena, but also the behavior of 

materials and objects when subjected to the extreme conditions of pressure and temperature 

prevalent in the gas flow behind the wave. Thus, the kinetics of a chemical reaction taking place 

at high temperature can be studied, as well as the performance, for example, of a body during 

reentry from space back into the earth’s atmosphere. 
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Chapter Fourteen/Oblique Shock Waves 
 

 

14.1 Introduction. 

 

An oblique shock wave, a compression shock wave that is inclined at an angle to the flow, 

either straight or curved, can occur in such varied examples as supersonic flow over a thin airfoil 

or in supersonic flow through an over-expanded nozzle.  

The oblique shock wave is a two-dimension problem. The method 

of handling the oblique shock is alike that of handling the normal 

shock. Even though inclined to the flow direction, the oblique shock 

still represents a sudden, almost discontinuous change in fluid 

properties, with the shock process itself being adiabatic.  Attention will 

be focused on the two-dimensional straight oblique shock wave, a type 

that might occur during the presence of a wedge in a supersonic stream 

(Figure 14.1a) or during a supersonic compression in a corner (Figure 

14.1b). As with the normal shock wave, the equations of continuity, 

momentum, and energy will first be derived. An additional variable is 

introduced because of the change in flow direction across the wave. 

However, momentum is a vector quantity, so two momentum equations 

are derivable for this two-dimensional flow.  

With the additional variable and equation, the analysis of two-

dimensional shock flow is somewhat more complex than that for 

normal shock flow. However, as with the normal shock wave, solutions 

to the equations of motion will be presented in a form suitable for the 

working of practical engineering problems. 

 

14.2 Equations of Motion for a Straight Oblique Shock Wave 

 

When a uniform supersonic stream is forced to undergo a finite change in direction due to the 

presence of a body in the flow, the stream cannot adjust gradually to the presence of the body; 

rather, a shock wave or sudden change in flow properties must occur. A simple case is that of 

supersonic flow about a two-dimensional wedge with axis aligned parallel to the flow direction. 

For small wedge angles, the flow adjusts by means of an oblique shock wave, attached to the 

apex of the wedge. Flow after the shock is uniform, parallel to the wedge surface (as shown in 

Figure 14.2), with the entire flow having been turned through the wedge half-angle  . 
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The equations of continuity, momentum, and 

energy will now be written for uniform, supersonic 

flow over a fixed wedge. If one selects the control 

volume indicated in Figure 14.2. The continuity 

equation for steady flow is 

∬   (   ̂)   

  

   

For the case under steady, it simplifies to 

                

                                                     (    ) 

Where    and     are the velocity components 

normal to the wave.   is the control volume surface 

and it is the same for both sides. The momentum 

equation for steady flow is;  

∑  ∬   (   ̂)   

  

   

Momentum is a vector quantity, so momentum 

balance equations can be written both in the 

direction normal to the wave and in the direction 

tangential to the wave. The normal momentum equation yields; 

                 
         

  

The shock is very thin so as we assume that      . Thus; 

           
       

                                                                                        (    ) 

In the tangential direction there is no change in pressure so; 

  ∬    ( ⃗⃗   ̂)   

  

   

(       )    (       )    

Cancelling, we obtain; 

                                                                                                                             (    ) 

where           are the velocity components tangential to the wave. The energy equation for 

adiabatic, no work steady flow simplifies to; 

(   
 ⃗⃗  
 

 
    )  (   

 ⃗⃗  
 

 
    ) 
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Expanding this equation and ignoring potation term for gas and remembering that a velocity is a 

vector ( ⃗⃗       ), we get; 

(   
   
 

 
 
   
 

 
)  (   

   
 

 
 
   
 

 
) 

Since         then; 

(   
   
 

 
)  (   

   
 

 
)                                                                                      (     ) 

                                                                                                                            (     ) 

                                                                                                                    (     ) 

                                                                                                                    (     ) 

          (   )                                                                                             (     ) 

          (   )                                                                                             (     ) 

From the geometry of the oblique wave; 

It can be seen that eqs. (14.1), (14.2).and (14.4) contain only the normal velocity 

components, and as such are the same as eqs. (9.1), (9.2) and (9.4) for the normal shock wave. In 

other words, an oblique shock acts as a normal shock for the component normal to the wave, 

while the tangential velocity component remains unchanged. The pressure ratio, temperature 

ratio, and so on, across an oblique shock can be determined by first calculating the component of 

  , normal to the wave and then referring this value to the normal shock tables. 

Note that the Mach number after an oblique shock wave can be greater than   without 

violating the second law of thermodynamics. The normal component of    however, must still 

be less than  . In most cases, the shock wave angle   is not known, but rather incoming Mach 

number    and deflection angle   appear as the independent variables. Therefore, it is more 

convenient to express the wave angle   and    in terms of         , From eq. 14.1 

             

  
  
 
   
   

 
        

      (   )
 

    

   (   )
                                                          (    ) 

A cross the normal shock 

  
  
 

(   )   
 

(   )   
   

                                                                                              (    ) 

    

   (   )
 

(   )   
 

(   )   
   

                                                                             (     ) 

    

   (   )
 

(   )  
      

(   )  
        

                                                                   (     ) 

Eq. 14.8 relates deflection angle   incoming Mach number    and shock wave angle  . 
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Now   can be plotted versus   for a given value of   .  A l s o     

can be plotted versus   for given   .  For       , the results appear 

as shown in Figures 14.4a and 14.4b.  

Detailed oblique shock charts are provided in charts C1 and C2 for 

     . But chart C2 is not accurate and it will not recommended. 

Several characteristics of the solution to the oblique shock equations 

can be seen from these charts. For a given    and  , either two 

solutions are possible or none at all. For supersonic flow in varying area 

channels, it is the pressure boundary conditions imposed on the channel 

that determines the type of solution. 

If a solution exists, there may be  

1 .  A weak oblique shock, with    either supersonic or slightly less 

than  .  

2. A strong oblique shock, with    subsonic.  

Both oblique shocks have different characteristics, see figure 14.5, 

such as;  

a. For the strong oblique shock: 

- The wave makes a large angle   (close to    ) with the approach 

flow. 

-  It accompanied by a relatively large pressure ratio 

b. For the weak oblique shock,  

- The wave makes a much less angle   with the approach flow. 

- It accompanied by a relatively small pressure ratio 

c. The supersonic flow is turned through the same angle in both cases. 

A strong oblique shock with (   ), gives a normal shock. A weak 

oblique shock with (   ) gives an isentropic flow (no shock). Therefore, the 

normal wave can be generalized to the oblique shock. The strong oblique 

shock occurs when a large back pressure is imposed on a supersonic flow, as 

might possibly take place during flow through a duct or intake. 

When a wedge or airfoil travels through the atmosphere at supersonic velocities with an 

oblique shock attached to the body only a weak shock solution is found to occur, since, with a 

uniform pressure after the shock, large pressure differences cannot be exist. This is identical to 

determine whether isentropic flow or a normal shock will occur in a supersonic flow for flow 

through converging-diverging nozzles, we know that for low enough back pressures, isentropic 
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flow occurs in the nozzle; for higher back pressures, a normal shock takes place in the diverging 

section of the nozzle. 

 

14.3 Detached shock Wave 

 

Another characteristic of the oblique shock equations is that, for a great enough turning angle 

      , no solution is possible. Under these conditions it is observed that the shock is no 

longer attached to the wedge, but stands detached, in front of the body (see Figure 14.6). 

The detached shock is curved, as shown, with the shock strength 

decreasing progressively from that of a normal shock at the apex of the 

wedge to that of a Mach wave far from the body. Thus, with a detached 

shock, the entire range of oblique shock solutions is obtained for the 

given Mach number   . 

 The shape of the wave and the shock-detachment distance are 

dependent on the Mach number and the body shape. Flow over the 

body is subsonic in the vicinity of the wedge apex, where the strong 

oblique shocks occur, and it is supersonic farther back along the 

wedge, where the weak oblique shocks are present. 

A detached oblique shock can also occur with supersonic flow in a 

concave corner. Again, if the turning angle is too great, a solution 

cannot be found in Charts Cl and C2, so a detached shock forms ahead 

of the corner (see Figure 14.7). The characteristics of this shock are 

exactly the same as those of the upper half of the detached shock 

shown in Figure 14.6. Thus flow after the shock is subsonic near the 

wall and supersonic farther out in the flow and it is treated as a 

stationary normal shock near the wall. 

 

Example 14.1 A uniform supersonic airflow traveling at          

passes over a wedge (Figure 14.4). An oblique shock, making an angle of 40° with the flow 

direction, is attached to the wedge under these flow conditions. If the static pressure and 

temperature in the uniform flow are, respectively,        and      , determine the static 

pressure and temperature behind the wave, the Mach number of the flow passing over the wedge, 

and the wedge half-angle. 

 

Solution 
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From Figure 14.4,  

                                . 

                                  

Therefore, from normal shock table at           

              
  
  
            

  
  
       

      
  
  
                    

      
  
  
                    

For the adiabatic shock process,        . From isentropic table at       , 

     ⁄         , Then  

        
  

     ⁄
 

   

      
         

Now  

     ⁄            ⁄         

From isentropic table A at      ⁄        ;           

   (   )  
   
  
 
      
    

 
      

     
       

              

          

                end of the solution. 

 

Solving graphically; 

From Chart C1 at                gives         

From Chart C2 at                  gives         

 

Solving by the exact equations; 

     (    ) (
  
        

   

 
  
  (  

        )
) 

     (     )(
            

   

 
  
  (            )

) 

 (       ) (
      

          
)         
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   √
   

      
 
      

      
       

 

Example 14.2 Uniform flow at       passes over a wedge of     half-angle., find   ,     ⁄ , 

    ⁄  and       ⁄ , and also the half-angle above which the shock will become detached. 

 

Solution 

From Chart Cl at       and      , the weak solution yields         

                             

                             

From the normal shock tables at          

    ⁄                      ⁄                          ⁄                            

From Chart Cl it can be seen that     , for               

 

Example 14.3 A supersonic two-dimensional inlet is to be designed to 

operate at      . Two possibilities will be considered, as shown in 

Figure 14.8. In one, the compression and slowing down of the flow take 

place through one normal shock; in the other, a wedge-shaped diffuser, 

the deceleration occurs through two weak oblique shocks, followed by a 

normal shock. The wedge turning angles are each 8°. Compare the loss 

in stagnation pressure for the two cases shown. 

 

Solution 

For the normal shock diffuser, the ratio       ⁄  can be found from 

normal shock table at       : so 

      ⁄       . 

For the wedge-shaped diffuser,    and   , as well as the wave angles, 
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can be found from Charts Cl and C2.Thus 

        and         . 

The wave angles are, respectively,       and      .  

                            

From normal shock table at        0,        ⁄        

                             

From normal shock table at         ,        ⁄       . 

From normal shock table at         ,        ⁄       , so that; 

   
   

 
   
   

 
   
   

 
   
   

                         

Note; Solve the same example without using chart C2.  

Therefore, the overall stagnation pressure ratio is      . The advantage of diffusing through 

several oblique shocks rather than one normal shock can be seen. The greater the number of 

oblique shocks, the less the overall loss in stagnation pressure. Theoretically, if the flow is 

allowed to pass through an extremely large number of oblique shocks, each turning the flow 

through a very small angle, the inlet flow should approach that of an isentropic compression. The 

oblique shock diffuser will be discussed in detail in later. 

 

14.4 Oblique Shock Reflections 

 

When a weak, two-dimensional oblique shock impinges on a plane wall, the presence of a 

reflected wave is required to straighten the flow, since there 

can be no flow across the wall surface (see Figure 14.11).  

Flow after the incident wave is deflected toward the 

wall. Hence, a reflected oblique shock wave must be present 

to deflect the flow back through the same angle and restore 

the flow direction parallel to the wall. The reflected shock is 

weaker than the incident shock, since      . 

 

Example 14.4 For       , and       , determine              . Refer to Figure 14.11. 

 

Solution 

From Chart C1, for        and       , the deflection angle   is equal to      . This 

corresponds to the angle through which the flow is turned after the incident wave and also the 

angle through which the flow is turned back after the reflected wave. 
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From Chart C2, for        and         ,    is equal to 1.62.  

From the same chart, for          and        ,    is equal to 1.24. 

From Chart C1, for        and        ,  the shock wave angle  is      , which is the angle 

between the flow direction in region   and the reflected wave. From geometrical consideration, 

                         . 

If    is low enough, a simple shock reflection may be impossible. That is, for a given   , the 

required turning angle may be great enough so that no solution exists from Charts C1 and C2.  

In a real fluid, the problem of oblique shock reflections is complicated by the presence of a 

boundary layer on the wall. the analysis presented here of oblique shock reflections is an 

approximate one, which neglects real fluid effects. 

 

14.5 Conical Shock Waves  

 

Supersonic flow about a right circular cone is considerably more complex than that about a 

wedge. But it has many similarities to wedge flow. For a cone at zero angle of attack with the 

oncoming stream, a conical shock is attached to the apex of the cone for small cone angles. (see 

Figure 14.12.) 

It is interesting to compare the resultant wedge and cone flows (see Figure 14.13.) For a 

wedge, straight parallel flow exists before the oblique shock and after the shock.  

For the three-dimensional semi-infinite cone, this is no longer possible. Streamlines after the 

conical shock must be curved in order that the three-dimensional continuity equation be satisfied. 

For axisymmetric flow about a semi-infinite cone, with no characteristic length along the cone 

surface, conditions after the shock are dependent only on the conical coordinate  . That is, along 

each line of constant  , the flow pressure, velocity, 

and so on, are constant. This indicates that the 

pressure on the surface of the cone after the shock is 

constant, independent of distance from the cone 

apex.  

At each point on the conical wave, the oblique 

shock equations already presented are valid. Conical 

flow behind the wave is isentropic, with the static 

pressure increasing to the cone surface pressure. A 

solution for the conical shock thus requires fitting 

the isentropic compression behind the shock to the 

shock equations already derived. Results are shown 
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in Charts C3, C4, and C5, which show the variation of shock wave 

angle, surface pressure coefficient, and surface Mach number with 

cone semi-vertex angle and Mach number.  

Whereas the conical flow equations yield two shock solutions, the 

only one observed on an isolated conical body is the weak shock. As 

with wedge flow, for large enough cone angles there is no solution; 

the shock stands detached from the cone. 

If we compare again the wedge and cone solutions, it can be seen 

from Charts C3, C4. and C5 that, for a given body half-angle and    

the shock on the wedge is inclined at a greater angle to the flow 

direction than the shock on the cone; this indicates that a stronger 

compression takes place across the wedge oblique shock. In other 

words, the wedge presents a greater flow disturbance than the cone. 

Again, this results from three-dimensional effects. 

From a physical standpoint, the flow is unable to pass around the 

side of the two-dimensional wedge since it extends to infinity in the 

third dimension. Flow can pass around the sides of the three-

dimensional cone, however, so the cone presents less overall 

disruption to the supersonic flow.  

 

Example 14.5 Uniform supersonic flow at Mach     and          passes over a cone of 

semi-vertex angle of     aligned parallel to the flow direction. Determine the shock wave angle, 

Mach number of the flow along the cone surface, and the surface pressure coefficient. 

 

Solution 

From Chart C3, the shock wave angle is      . 

From Chart C4, the Mach number along the cone surface is     . 

From Chart C5, the surface pressure ratio is 1.29 

                    

 
(     )

       
  

(     )

           
  

(     )
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14.6 Supersonic oblique Shock Diffuser. 

For a turbojet or ramjet traveling at high velocity, it is necessary to provide an inlet, or 

diffuser, that will perform the function of slowing down the incoming air with a loss of 

stagnation pressure. The use of a converging-diverging passage as an inlet for supersonic flow 

was studied in Chapter 4. Because such an internal deceleration device can operate isentropically 

only at the design speed, this type of diffuser has been found to be impractical during startup and 

when operating in an off-design condition. In fact without provisions for either varying the throat 

area or over speeding, the design condition could not be attained.  

To eliminate the starting problem involved with the converging-

diverging passage, the internal throat must be removed. Thus, a 

possible design is the normal-shock diffuser, where the deceleration 

takes place through a normal shock followed by subsonic diffusion in a 

diverging passage. (See Figure 14.14.) The disadvantage of this setup 

is the large loss in stagnation pressure incurred by the normal shock. 

Only at Mach numbers close to unity would this design be practicable. 

The advantage of decelerating through several oblique 

shocks rather than one normal shock was shown. The 

oblique-shock spike-type diffuser takes advantage of this 

condition and hence represents a practical device for 

decelerating a supersonic flow. The operation of a single 

oblique-shock inlet at design speed is depicted in Figure 

14.15. External deceleration is accomplished through an 

oblique shock attached to the spike. Further deceleration 

takes place through a normal shock at the engine cowl inlet, 

with subsonic deceleration occurring internally. Even though 

a normal shock occurs in this system, the flight Mach number M has 

been reduced by the oblique shock, thus reducing the normal-shock 

strength and resultant stagnation pressure loss.  

Theoretically, the greater the number of oblique shocks, the less 

the resultant total loss in stagnation pressure becomes. For example, 

a two-shock inlet is shown in Figure 14.16. Note, however, that 

along the surface of the spike, the boundary layer increases in 

thickness. The adverse pressure gradient created by the second 

shock may be sufficient to cause flow separation, with resultant loss 

of available energy. The greater the number of shocks, then, the 
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greater the tendency toward flow separation is.  

It is necessary to affect a compromise in 

supersonic diffuser design between the increased total-

pressure recovery achieved by increasing the number of 

oblique shocks through which the flow must be diffused 

and the increased tendency toward separation brought 

about by the shocks. For this reason, with flight Mach 

numbers up to 2.0, a single-shock diffuser is generally 

employed, whereas multiple-shock inlets are required for 

higher flight Mach numbers.  

Several different modes of operation of the spike 

diffuser may occur, depending on the downstream engine 

conditions such as nozzle opening, turbine speed, and fuel 

flow rate. This situation is in contrast to the converging-

diverging inlet, where operation was dependent on the 

inlet’s geometry. The spike diffuser’s modes of operation 

are termed subcritical, critical, and supercritical, 

depending on the location of the normal shock.  

Critical operation occurs with the normal shock at 

the cowl inlet, as shown in Figure 14.17(a), with the 

engine operating at design speed. If the flow resistance 

downstream of the inlet is increased, with the engine still 

at the design flight Mach number, the normal shock moves 

ahead of the inlet, with some of the subsonic flow after the 

shock able to spill over or bypass the inlet. [See Figure 14.17(b).] For this subcritical condition, 

the inlet is not handling the maximum flow rate; furthermore, the pressure recovery is 

unfavorable, since at least some of the inlet air passes through a normal shock at the design 

Mach number. 

If the downstream resistance is reduced below that for critical operation, the normal 

shock reaches an equilibrium position inside the diffuser. For this supercritical condition [see 

Figure 8.4(c)], the inlet is still handling maximum mass flow, yet the pressure recovery is less 

than that for critical operation, since the normal shock occurs at a higher Mach number in the 

diverging passage.  

A turbojet engine must be able to operate efficiently both at other-than-design speeds and 

at different angles of attack. An engine operating at the critical mode may be pushed over into 
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the undesirable subcritical mode by a small change of speed or angle of attack. For this reason, 

in actual operation, it is more practical to operate in the supercritical mode. While not providing 

quite as good a pressure recovery as critical operation, the supercritical mode still yields 

maximum engine-mass flow and makes a safety margin so that a small decrease in engine speed 

will not cause a transition to the subcritical mode. Thus, the supercritical mode provides a more 

stable engine operation.  

 

Example 14.6. Compute the pressure recovery in one- and two-shock spike inlets. Compare the 

loss in total pressure for a one-shock spike diffuser (two dimensional) 

with that for two-shock diffuser operating at         . Also repeat 

for inlet         . (See Figure 14.18.). Assume that each oblique 

shock turns the flow through an angle of      . Take      . 

 

Solution 

From the charts C1 & C2 at        and      , the weak 

solution yields 

        .  and         . 

                               

 For one oblique shock spike diffuser 

From normal shock wave table at            

            (               )  
             

             

         

       
  (     ⁄ )       (           ⁄ )         

      ⁄          (               )  
             

             
        

From normal shock wave table at         

            and       ⁄          
   

   
 
   

   
 
   

   
                       

 

 For two oblique shock spike diffuser 

From the charts C1 & C2 at         and      , the weak solution yields 

        .  and         . 

                                

From normal shock wave table at            
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            (               )  
             

             
        

       
  (     ⁄ )       (          ⁄ )         

      ⁄          (               )

 
             

             
        

From normal shock wave table at         

            and       ⁄          

   
   

 
   
   

 
   
   

 
   
   

                       

        

            
             

      
            

When       : 

   
   

                         
   
   

        

            
             

      
            

The improvement in total-pressure ratio gained by using a two- shock inlet over a one-shock 

inlet is (     ) when        and (     ) when       . Thus, at flight Mach numbers of 

2.0 and below, the use of an inlet with one oblique shock is satisfactory; at flight Mach numbers 

of 4.0, an inlet with two oblique shocks (or more) is necessary. 

 

Example 14.7 A two-dimensional, spike-type inlet is operating in the supercritical mode at a 

flight Mach number of    . The local static pressure and temperature are        and      , 

respectively. The flow cross-sectional area at the cowl inlet         
 ; the cross-sectional 

area at the location where the normal shock occurs in the diverging passage       

       . (See Figure 14.19.) Calculate the mass-flow rate and total-pressure ratio       ⁄ . 

Neglect friction. The spike half-angle is    , and the ratio of specific heats is      . 

 

Solution 

From the oblique shock wave charts C1 and C2         and      , the weak solution yields 

         and         

                               

From normal shock wave table at            
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            (                )  
             

             
       

       
  (     ⁄ )       (        ⁄ )         

      ⁄          (               )  
             

             
        

The flow from region 2 to region 3 is assumed to be isentropic. Thus, from isentropic flow table 

at        gives     
 ⁄          , then: 

  
  
  

  
  
 
  
  
  

    

   
                       (  

    
                     ) 

From isentropic at this value gives 

        (         )
             

               
        

      ⁄    (               ) 

From normal shock table at           

      ⁄          (               )  
            

            
        

So the total pressure ratio is: 

   
   

 
   
   

 
   
   

 
   
   

                          

To calculate mass flow rate  

       
   
  
    (  

     

 
  )

   

     

                       ⁄  

        
   
   

                             ⁄   

      (  
   

 
  
 )

   

     

⁄          (  
     

 
    )

   

     

⁄              ⁄  

   
  
 (  

   

 
  
 )  (  

   

 
  )      

   
  
 (  

   

 
  
 )  (  

   

 
    )       

   
  
   

 
   
  
    

 

    
                                                    

 ̇         (
  
   

)    √     

 ̇  (
        

           
)          √                         ⁄  
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Lecture Fifteen / Prandtl Meyer Flow 

 

 

15.1 Introduction 

When a supersonic compression takes place at a concave corner, an oblique shock has been 

shown to occur at the corner. When supersonic flow passes over a convex corner, it is evident 

that some sort of supersonic expansion must take 

place. Previous results indicate that an expansion 

shock is impossible. However, a means must be 

available for the supersonic flow of Figure (15.1) to 

negotiate the corner. Here will present an analysis 

of the mechanism of two-dimensional, supersonic 

expansion flow, as might occur, for example during 

supersonic flow over a convex corner or at the exit 

of an under-expanded supersonic nozzle. 

 

15.2 Thermodynamic Considerations 

Two-dimensional, supersonic flow is to be turned through a 

finite angle at a convex corner. The mechanism of the resultant 

flow is of interest. Consider first the possibility of an oblique 

adiabatic shock occurring at the corner. Figure 15.2 shows the 

velocity vectors normal and tangential to such a wave. For this 

two-dimensional flow, uniform conditions prevail upstream and 

downstream of the wave. The equations of motion are exactly the 

same as those presented for oblique shock compression shock. 

Again, with no pressure gradient in the direction tangential to the 

wave, the tangential momentum equation yields 

                                                                                                                                

From geometrical considerations, as      , it follows that     must be greater than    . The 

normal momentum equation, eq. (14.2), yields 

        
          

  

Combining this with the continuity equation, eq. (14.1), where           ; 

                

 We obtain,  

                                                                                                         



UOT 

Mechanical Department / Aeronautical Branch Mechanical Department / Aeronautical Branch 

Gas Dynamics 

Chapter Fifteen / Prandtl Meyer Flow 

 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

2-9 ch.15 

Prepared by A.A. Hussaini  2013-2014 

Since        , see figure (15.2), it follows that      , indicating that the resultant flow 

must be an expansion. 

It has been shown that an oblique shock reduces to a normal shock for the velocity 

component normal to the wave, with the tangential component remaining unchanged. The ratios 

of pressure, temperature, and density across an oblique shock are functions of    alone. The 

entropy change across an oblique shock can be written, then, in terms of    , the resultant 

variation of    with     being exactly the same as that for the normal shock. Hence, an oblique 

expansion shock        , just as a normal expansion shock, would involve a decrease in 

entropy during an adiabatic process. This violates the second law of thermodynamics and is 

impossible since      . Therefore, the expansion shock, with sudden changes in flow 

properties, cannot occur at the convex corner. Instead, a more gradual type of supersonic 

expansion must take place. 

 

15.3 Gradual Compressions and Expansions 

When a supersonic stream undergoes a compression due to a finite, 

sudden change of direction at a concave corner, an oblique shock 

occurs at the corner. However, if the flow is allowed to change 

direction in a more gradual fashion, the compression can approach an 

isentropic process. Allowing supersonic flow to pass through several 

weak oblique shocks rather than one strong shock has been shown to 

reduce the resultant loss in stagnation pressure (or entropy rise) for a 

given change in flow direction (see Figure 15.3). In the limit, as the 

number of oblique shocks gets larger and larger, with each shock 

turning the flow through a smaller and smaller angle, the oblique 

shocks approach the Mach waves. The Mach wave, brought about by 

the presence of an infinitesimal disturbance in a supersonic flow, here 

corresponds to an oblique shock of vanishing strength, with 

infinitesimally small changes of velocity, flow direction, entropy, and 

so on, taking place across the wave (see Figure 15.4).  

 The wave angle is given by Equation           ⁄  . Note that, 

from the oblique shock charts, Tables C, for an oblique shock of 

vanishing strength (   ),   is evaluated from Mach number; for example, at       ,     

and        .  
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 So, by employing a smooth turn, with the resultant oblique 

shocks approaching Mach waves, a continuous compression is 

achieved in the vicinity of the wall with vanishingly small entropy 

rise (see Figure 15.5).  

 Away from the wall, however, the compression waves 

converge (Figure 15.6), coalescing to form a finite oblique shock 

wave. The characteristics of this shock are the same as those 

already discussed previously for an oblique shock wave of given 

   and turning angle  . In fact, far enough away from the wall, 

flow about the smooth turn cannot be distinguished from the flow 

about a sharp, concave corner of angle  . It is important to note 

that here, again, the weak compression waves, each involving 

only an infinitesimal entropy rise, are able to reinforce one 

another to form a compression shock wave, with the resultant 

shock process involving a finite increase of entropy.  

Now consider a supersonic expansion through a series of infinitesimally small convex turns 

(see Figure 15.7). Mach waves are generated at each corner, with each wave inclined at an angle 

to the flow direction. For this expansion flow, unlike the compressive flow discussed previously, 

waves do not coalesce but rather spread out. The divergent waves cannot reinforce one another; 

the oblique expansion shock is physically impossible. 

Flow between each of the waves in Figure (15.7) is uniform, so the length of the wall 

between waves has no effect on the variation of flow properties. Thus the lengths of the wall 

segments can be made vanishingly small, without affecting the overall variation of flow 

properties across the expansion. By thus reducing the wall segments, the series of convex turns 

becomes a sharp corner (see Figure 15.8.) The resultant series of expansion waves, centered at 

the corner, is called a Prandtl Meyer expansion fan. 
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15.4 Flow Equations for a Prandtl Meyer Expansion Fan 

It has been shown that supersonic expansion flow around a convex corner involves a smooth, 

gradual change in flow properties. The Prandtl Meyer fan consists of a series of Mach waves, 

centered at the convex corner. The initial wave is inclined to the approach flow at an angle 

            ⁄   the final wave is inclined to the downstream flow at an angle    

         ⁄  . Flow conditions along each Mach wave are uniform; the variation of pressure, 

velocity and so on, through the expansion is only a function of angular position. 

The equations for two-dimensional Prandtl Meyer flow will now be presented so that the 

variation of flow properties can be determined for a given flow turning angle. A perfect gas with 

constant specific heats will be assumed in the following analysis. 

Consider first a single Mach wave, expanding the supersonic flow through an angle of 

magnitude   . With no pressure gradient in the tangential direction, there is no change of the 

tangential velocity component across the wave. Equating the expressions for    upstream and 

downstream of the Mach wave (see figure 15.9);  

                      

                                           

Since    is very small, then 

                       , therefor; 

                           

                                                                        

The last term, containing the product of two differentials, can be dropped in comparison with 

the other terms of the equation. Simplifying, we obtain 
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Since           ⁄  , i.e.        ⁄ , it follows that 

     
 

√    
 

  

 
 

 

√    
                           

To solve for   as a function of  , velocity   must be expressed in terms of  . For a perfect 

gas with constant specific heats, we can write, 

   √    

Taking log and differentiatng, we obtain 

             √   
 

 
     

  

 
 

  

 
 

 

 

  

 
                                                                                                             

But, for this adiabatic flow, there is no change in stagnation temperature. 

             (  
     

 
  ) 

Taking logs and differentiating, we obtain  

  
  

 
 

        

  
     

 
  

                                                                                                 

Cobining eqs. 5 & 6 gives 
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]                                                                                          

Substitute eq. 8 into eq.4 gives 

   
  

 
[

√    

(  
     

 
  )

]                                                                                          

To determine the change of Mach number associated with a finite turning angle, the above eq. 

(15.9) can be integrated 
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           ∫
√    
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       [√
   

   
     √

   

   
            √    ]

  

  

                           

For the purpose of tabulating this result, it is convenient to define a reference state 1, so that 

   (       )  [√
   

   
     √

   

   
            √    ]

    

  

 

Let the reference state be             . Now 

 

  [√
   

   
     √

   

   
            √    ]                                    

The symbol   represents the angle through which a stream, initially at    , must be 

expanded to reach a supersonic Mach number    . Values of   have been tabulated in 

isentropic table, for Mach numbers from            for      . Also presented are values of the 

wave angle  , with both   and   expressed in degrees. 

To determine the angle through which a flow would 

have to be turned to expand from    to   with    not 

equal to  , it is necessary only to subtract the value of 

   at    from the value of    at   , where    and    

are found in isentropic table (see Figure 15.10). 

The variation of pressure, temperature, and other 

thermodynamic properties through the expansion can 

be found from the usual thermodynamic relations for isentropic flow, presented in Chapter 3. For 

this isentropic process, with no change in stagnation pressure; 
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Example 15.1 A uniform supersonic flow at Mach    , with static 

pressure of        and a temperature of      , expands around a 

    convex corner. Determine the downstream Mach number   , 

pressure   , temperature   , and the fan angle. See Figure (15.11). 

 

Solution 

From isentropic table , at          

                           

But                  

Again from isentropic table at                                   

From isentropic table at                         ⁄ ,              ⁄  

From Table A at                 ⁄                     ⁄        . 

With no change in stagnation pressure         and constant stagnation temperature 
  

  
 

  

   
 
   

  
 

       

      
       

                      

  

  
 

  

   
 
   
  

 
      

      
       

                   

                        

                                                  

 

EXAMPLE 15.2  FLOW in Example 15.1 is expanded through a second 

convex turn of angle     (sec Figure 15.12). Determine the 

downstream Mach number    and the angle of the second fan. 

 

Solution 

The initial wave of the second fan must he parallel to the final wave 

of the first fan. Again, the distance between waves can have no effect on the resultant flow, since 

the flow between the waves is uniform. Therefore, the variation of properties is the same whether 

the flow is expanded through two 10° turns or one     turn. 

                            

From isentropic table at                                   
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EXAMPLE 15.3  An under-expanded, two-dimensional, supersonic nozzle 

exhausts into a region where            (Figure 15.13). Flow at the 

nozzle exit plane is uniform, with            and       . 

Determine the flow direction and Mach number after the initial 

expansion. 

 

Solution 

From isentropic table at                 ⁄          

Since         for an isentropic expansion, then 

  

   
 

  

  
 

  

   
 

   

   
               

From isentropic table at      ⁄                       

From isentropic table, at                         

                         

So the flow is turned through 

                             

 

15.5 Prandtl Meyer Row in a Smooth Compression 

It was shown in Section 15.3 that, at a smooth compressive turn in supersonic flow, Mach 

waves emanate from the wall, coalescing farther out in the stream to form an oblique shock 

wave. In the region from the wall out to the point of coalescence of the waves (see Figure 15.6), 

the flow is isentropic and possesses the same characteristics as Prandtl Meyer flow. Therefore, 

the equations derived for Prandtl Meyer flow can be applied to the isentropic flow region at a 

concave corner, even though a compression takes place at the corner. Naturally, the turning 

angle,    will here be negative, corresponding toa decrease inMach number. The extent of the 

isentropic flow region at a concave corner depends on the curvature of the wall. For a sharp turn, 

the region that can be treated as Prandtl Meyer flow is negligible; for a gradual turn, with a large 

radius of curvature, a much greater region has the characteristics of Prandtl Meyer now.  

 

15.6 Maximum Turning Angle for Prandtl Meyer Flow 

 From Eq. (15.11), it can be seen that, as     , or as 

the static pressure       (see Figure 15.14), the turning 

angle approaches a finite value of       . This result has 

significance, for example, in a determination of the shape of 

the exhaust plume of an under-expanded nozzle discharging 
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into the vacuum of Space. To prevent the impingement of rocket exhaust gases on a part of a 

Spacecraft, the designer must have knowledge of the shape of the rocket-nozzle exhaust plume; 

modification of a spacecraft geometrical design may be (required to prevent possible damage 

from the hot exhaust gases. Furthermore, the axial thrust of a rocket depends on the direction of 

the exhaust velocity vectors. 

The actual magnitude of the maximum turning angle presented here has only academic 

interest, in that effects such as liquefaction of air gases and other departures from perfect gas 

flow would occur long before the ultimate pressure could be attained. However, the result does 

indicate the presence of a maximum turning angle for a supersonic expansion.  

 

15.7 Reflections 

When a Prandtl Meyer expansion flow 

impinges on a plane wall, as shown in Figure 

(15.15), sufficient waves must be generated to 

maintain the wall boundary condition; that is, at 

the wall surface, the flow must be parallel to the 

wall. Each Mach wave of the initial Prandtl 

Meyer fan, then, must reflect as an expansion 

Mach wave. The resultant wave interactions 

present complexities that render an exact analysis 

of the flow extremely difficult; however, the 

general nature of the flow can be recognized. An 

application is the expansion that takes place at 

the exit of an under-expanded, two-dimensional 

nozzle. Since, from symmetry, there can be no 

flow across the center streamline; this streamline 

can be replaced by a plane wall. The resultant 

flow situation is shown in Figure (15.16)  
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Chapter Sixteen / Plug, Underexpanded and Overexpanded Supersonic 

Nozzles 

 

 
16.1 Exit Flow for Underexpanded and Overexpanded Supersonic Nozzles 

The variation in flow patterns inside the nozzle obtained by changing the back 

pressure, with a constant reservoir pressure, was discussed early. It was shown that, 

over a certain range of back pressures, the flow was unable to adjust to the prescribed 

back pressure inside the nozzle, but rather adjusted externally in the form of 

compression waves or expansion waves. We can now discuss in detail the wave pattern 

occurring at the exit of an underexpanded or overexpanded nozzle.   

 Consider first, flow at the exit plane of an underexpanded, two-dimensional 

nozzle (see Figure 16.1). Since the expansion inside the nozzle was insufficient to reach 

the back pressure, expansion fans form at the nozzle exit plane. As is shown in Figure 

(16.1), flow at the exit plane 

is assumed to be uniform and 

parallel, with      . For 

this case, from symmetry, 

there can be no flow across 

the centerline of the jet. Thus 

the boundary conditions 

along the centerline are the 

same as those at a plane wall in nonviscous flow, and the normal velocity component 

must be equal to zero. The pressure is reduced to the prescribed value of back pressure 

in region 2 by the expansion fans. However, the flow in region 2 is turned away from 

the exhaust-jet centerline. To maintain the zero normal-velocity components along the 

centerline, the flow must be turned back toward the horizontal. Thus the intersection of 

the expansion fans centered at the nozzle exit yields another set of expansion waxes, 

just as did the reflection of the expansion fan from a plane wall (reflected Pradtl-Myer 

waves. The second expansion, however, produces a pressure in region 3 less than the 

back pressure, so the expansion waves reflect from the external air as oblique shocks. 

These compression waves produce a static pressure in region 4 equal to the back 

pressure, but again turn the flow away from the centerline. The intersection of the 

oblique shocks from either side of the jet then requires another set of oblique shocks to 

turn the flow back toward the horizontal, with the shocks reflecting from the external 

air as expansion waves.  
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The process thus goes through a complete cycle and continues to repeat itself. The 

flow pattern discussed appears as a series of diamonds, often visible at the exit of high -

speed rocket nozzles. Theoretically, the wave pattern should  extend to infinity. 

Actually, however, mixing of the jet with ambient air along the jet boundaries 

eventually causes the wave pattern to die out.   

Flow at the exit of an overexpanded nozzle is shown in Figure (16.2). Since the exit-

plane pressure is less than the back pressure, oblique shock waves form at the nozzle 

exit. The intersection of these shocks at the centerline yields a second set of oblique 

shocks, which in turn reflect from the 

ambient air as expansion waxes. Thus, 

except for being out of phase with the 

wave pattern from the underexpanded 

nozzle, the jet flow of the overexpanded 

nozzle exhibits the same characteristics as 

the underexpanded nozzle. 

 

Example 16.1 A supersonic nozzle is designed to operate at Mach 2.0. Under a 

certain operating condition, however, an oblique shock making a 45° angle with the 

flow direction is observed at the nozzle exit plane, as in figure (16.3). What percent of 

increase in stagnation pressure would be necessary to eliminate this shock and maintain 

supersonic flow at the nozzle exit?  

 

Solution 

From isentropic table, for         gives       ⁄      . 

The component of    normal to the oblique wave is            

    . 

From normal shock table,     ⁄      . Therefore, with the oblique shock, the ratio  

  
   

 
  
  
 
  
   

                      

With the shock,     is equal to  

    
 

     ⁄
   (      ⁄ )            

For supersonic exit flow with no shocks (perfectly expanded case),  

    (      ⁄ )            

(           )     ⁄              

Thus, an increase of     in stagnation pressure is required. 
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16.2 Plug Nozzle 

The thrust developed by a nozzle is dependent on 

the nozzle exhaust velocity and the pressure at the 

nozzle exit plane. In a jet propulsion device, when an 

exit-plane pressure greater than ambient gives a 

positive contribution to the thrust of the device, 

whereas when an exit-plane pressure less than ambient 

gives a negative thrust component. 

   ̇   (     )                             (     )  

When a supersonic nozzle is operating in the 

under- or overexpanded regimes, with flow in the 

nozzle independent of back pressure, the exit velocity is unaffected by back pressure (    ). 

Thus, over this range of back pressures, Eq. (16.01) shows that the greater thrusts are developed 

in the underexpanded case (     ), and the lesser in the overexpanded case (     ). A plot 

of thrust versus back pressure for a converging-diverging nozzle is shown in Figure 16.4. For 

back pressures greater than the upper limit 

indicated, a normal shock starts to appear in the 

diverging portion of the nozzle, the exit velocity 

becoming subsonic, and this analysis no longer 

applies.  

The plug nozzle ( figure 16.5) is a device 

that is intended to allow the flow to be directed 

or controlled by the ambient pressure rather 

than by the nozzle walls. In this nozzle, the 

supersonic flow is not confined within solid 

walls, but is exposed to the ambient pressure. 

Plug nozzle operation at the design pressure 

ratio is depicted in Figure 16.6. Figure 16.6a 

shows the expansion wave pattern and part b 

shows the streamlines at the nozzle exit. The 

annular flow first expands internally up to 

    at the throat. The remainder of the 

expansion to the back pressure occurs with the 

flow exposed to ambient pressure. Since the 

throat pressure is considerably higher than the 
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back pressure, a Prandtl Meyer expansion fan is attached to the throat cowling as shown. The 

plug is designed so that, at the design pressure ratio, the final expansion wave intersects the plug 

apex. Thus, under this operating condition, the pressure at the plug wall decreases continuously 

from throat pressure to ambient pressure, just as with the converging-diverging perfectly 

expanded nozzle. 

To produce a maximum axial thrust, it is necessary for the exit flow to have an axial 

direction. Therefore, the flow at the throat cowling must be directed toward the axis so that the 

turning produced by the expansion fan will yield axial flow at the plug apex.  

For the underexpanded case, the 

operation of the plug nozzle (Figure 16.7) 

is similar to that of the converging-

diverging nozzle. The pressure along the 

plug is the same as for the design case, 

just as the static pressure along the 

converging-diverging nozzle wall is the 

same as for the perfectly expanded case. 

With a lower back pressure than that for 

the design case depicted in Figure 16.6, 

the flow continues to expand after the 

apex pressure, yielding a non-axial jet velocity component, just as with the underexpanded 

supersonic converging-diverging nozzle.  

The major improvement to be derived from the plug nozzle occurs with the overexpanded 

mode of operation. This is significant, in that a rocket nozzle, for example, accelerating from sea 

level up to design speed and altitude, must pass through the overexpanded regime. With the 

ambient pressure greater than the design back pressure, the flow expands along the plug only up 

to the design back pressure. The final wave of the expansion fan centered at the cowling 

intersects the plug at a point upstream of the apex. As shown in Figure 16.7, the outer boundaries 

of the exhaust jet are directed inward. Further weak compression and expansion waves occur 

downstream of the point of impingement of the final wave from the fan; the strength and location 

of these waves are dependent on the plug contour. Thus the expansion along the plug is 

controlled by the back pressure, whereas the converging-diverging nozzle expansion is 

controlled by nozzle geometry.  

A plot of pressure along the plug surface versus x is given in Figure 16.8. The pressure 

along the plug surface does not decrease below ambient, so there is not a negative thrust term 
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due to pressure difference. As a result, the plug 

nozzle provides improved thrust over the 

converging-diverging nozzle for the overexpanded 

case (see Figure 16.9). 

It would appear desirable to design the plug 

so as to provide for isentropic expansion flow along 

its curved pointed surface. However, this design 

leads to a rather long plug and heavy design. it has 

been shown that replacement of the curved shape 

with a simple cone results in only a small loss of 

thrust for a cone half angles up to 30°. Thus the plug 

nozzle has the further advantage over the 

converging-diverging nozzle of being short and 

compact. One major problem with the plug nozzle, 

however, is that of designing a plug to withstand the 

high temperatures that exist, for example, in the 

exhaust gases of a rocket engine. This requires 

cooling of the plug or allowance for its ablation is 

necessary. 

Studies have shown that one half of the plug 

length provides almost no thrust and only added 

weight. a truncated plug have been considered. The 

flow pattern of these shortened plugs is complicated. 

 

Example 15.2 

A rocket nozzle is designed to operate with a ratio of chamber pressure to ambient pressure 

(    ⁄ ) of 50. Compare the performance of a plug nozzle with that of a converging-diverging 

nozzle for two cases where the nozzle is operating overexpanded; (    ⁄    ) and (    ⁄  

  ). Make the Comparison on the basis of thrust coefficient;             (          ). 

Assume         and in both cases neglect the effect of non-axial exit velocity components. 

 

Solution 

 For the design case,  

From (    ⁄     ⁄      ) and since the flow in the design case the flow is isentropic, then: 

          and  (    ⁄ )         ,      ⁄         
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(         )  

     
 

   (
   
    

)
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(      )(    )

  
 

   (
   
    

)
(      )(    )

  
 

For design condition the nozzle is choked and Mach number at throat is unity, then 

     ⁄          and       ⁄         

   (
         
          

)
√                     √              

  
 

          

 For the converging-diverging nozzle operating off design: 

   
 ̇    
     

 
  (     )

     
  
 ̇    
     

 
  
   

(
  
  
 
  
  
) 

For      ⁄     

                (
 

  
 
 

  
)         

For      ⁄     

                (
 

  
 
 

  
)         

 For the plug nozzle operating off design: 

Flow in the plug nozzle does not continue to expand below ambient pressure, so there is no 

pressure term in the expression for thrust. 

Now from isentropic table at     ⁄       gives  

        (         )
             

             
        

  
  
        (             )

             

             
        

   (
         
          

)
√                     √              

  
 

                                  

Now from isentropic table at     ⁄       gives  

        (         )
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Chapter Seventeen / Supersonic Airfoils 

 

 

17.1. Supersonic lift and drag coefficients 

The shape of a wing section to be used in low-speed, incompressible flow is the teardrop, or 

streamlined, profile. This shape is predicated on incompressible aerodynamics, where, for 

example, drag is composed of skin friction on the airfoil surface and pressure or profile drag, due 

to the effects of flow separation at the rear of the airfoil. 

In supersonic flow, however, the design must be completely modified, 

owing to the occurrence of shocks. For example, if a streamlined profile with 

a rounded blunt nose were used in supersonic flow, either an attached shock 

of relatively high strength would occur at the nose or, if   were great enough, 

a detached shock (Figure 17.1) would take occur in front of the airfoil. In 

both cases, the high pressures after the shockwave produce excessive drag 

forces on the airfoil. To minimize the drag due to the presence of shocks, the 

supersonic airfoil must have a pointed nose and be as thin as possible. The 

ideal case is a flat-plate airfoil possessing zero thickness.  

Consider a two-dimensional flat 

plate at an angle of attack (AoA) to 

the approach flow as shown in Figure 

17.2. (It should be noted that the flat 

plate is an idealization; structurally, 

such an airfoil is not exist). Flow over 

the upper surface is turned through an 

expansion fan centered at the nose; 

flow over the lower surface is 

compressed through an oblique shock 

attached to the nose. The difference in 

pressure between the upper and lower 

surfaces causes a net upward force, 

directed normal to the flow direction, 

the lift, on the airfoil. A force 

opposing the motion of the airfoil, the 

drag, on the airfoil, accompanies this 
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lift. The latter force is called wave drag, since it exists only because of the supersonic wave 

pattern involved with this flow. 

For the lift and drag for supersonic flow past a flat-plate airfoil operating at an angle of attack 

a to the flow direction are given by 

   (                        )      (                        )      

   (        )      (        )      

      (             )                                                                                        (    ) 

   (        )      (        )      

      (             )                                                                                        (    ) 

 

17.2. Existence of an Oblique Shock and an Expansion Fan. 

When a thin body, for example a flat 

plate of zero thickness, is placed at an angle 

of attack within a supersonic stream, both 

oblique shocks and expansion fans will ap-

pear at various locations on the body, (See 

Figure 17.3.). Oblique shocks will appear at 

locations where the flow must be turned 

because the plate forms a concave corner 

with the stream (on the bottom of the plate at 

the leading edge and on the top of the plate at 

the trailing edge). 

Expansion fans will appear at locations where the flow must be turned because the plate 

forms a convex corner with the stream (on the top of the plate at the leading edge and the bottom 

of the plate at the trailing edge). Here, we are interested only in the flow at the trailing edge of 

the plate. At this location, there is a confluence of an oblique shock and an expansion fan, as 

shown in Figure 17.3.  

Moreover, because the streams that pass over the top and bottom surfaces of the plate will 

not have the same value of entropy as after they have passed through the shock and expansions 

on each side of the plate, a contact discontinuity, originating at the trailing edge, will separate 

the two streams. The flow direction of the contact discontinuity is determined by requiring that 

the flow on either side of the discontinuity have the same flow angle and that the pressure across 

the discontinuity remain constant. And the following is valid (see figure 17.4): 
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At rear of trailing edge there are many unknowns 

(  ,   ,    and    ) and the solution procedure is 

iterative and it is left for the interest student.   

For a supersonic airfoil, a thin airfoil with a 

pointed nose is required. The curved, symmetrical 

airfoil represents one possibility. For small angles 

of attack, oblique shocks are attached to the nose, 

with the stronger shock occurring on the lower surface, since 

the flow turning angle must be greater on this surface. (See 

Figure 17.5.) Due to the continuous curvature of the airfoil, 

flow over the airfoil continually changes direction, and a 

gradual expansion occurs over the upper and lower surfaces. 

Expansion waves are produced as shown in Figure 17.5. If 

the angle of attack becomes too great, or if the nose half-

angle A is too large, the oblique shocks may detach from the 

nose, yielding excessive drag. 

Another airfoil shape for supersonic flow is the diamond 

profile, shown in Figure 17.6. Flow over the upper surface is 

first expanded through a fan centered at A and then is turned 

through another expansion fan at B. If the angle of attack is 

small enough, or if the airfoil is thick enough, flow over the 

upper surface may first be compressed through an oblique 

shock attached at A. (See Figure 17.7.) Flow over the lower 

surface is turned through an oblique shock at A and then 

through an expansion fan at C. As shown by the pressure 

distribution, higher pressures over the lower surfaces yield a 

lift force; higher pressures at the front surfaces caused a drag force. 
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Example 17.1. Compute of the lift and drag coefficients of a flat-plate airfoil at an angle of 

attack in a supersonic stream. The flat-plate airfoil is of chord length     m in supersonic flow 

through air at       and      . 

 

Solution 

From figure 17.2 

For lower surface: find the static pressure on the lower surface behind the oblique shock. 

From oblique shock tables at        and      gives 

The shock angle          and            

                               

From normal shock table at              gives  

      
  

         (               )
           

           
        

For upper surface:  find the static pressure on the upper surface behind the Prandtl-Meyer fan. 

From Prandtl-Meyer table at        gives            
  

And the final shock wave angle is  

                                
  

From Prandtl-Meyer table at                
  gives   
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            (         )
                

                 
        

The flow through the expansion fan is isentropic; that is stagnation pressure is constant, so 

              , and from isentropic flow table at               

      

  
         (               )

           

           
          

And from isentropic flow table at        gives     ⁄          

Then 

      

  
 
      

  
 
  
  
 
        

       
         

   
 

          
 

 

          
 
 (             )     

          
 

 
(              )      

            
 
      

     
        

   
 

          
 
(             )     

         
        

                    

 

 

Example 17.2. For the two-dimensional 

symmetrical airfoil with a diamond profile 

    , shown in Figure 17.7, compute the 

lift and drag coefficients in supersonic flow 

through air       , with an angle of 

attack (   )       . 

 

Solution 

On the upper surface, supersonic flow is first 

expanded through a Prandtl-Meyer fan. The 

Prandtl-Meyer function for the free stream 

conditions is obtained as  

From Prandtl Meyer tables at        ,             

The Prandtl-Meyer function in region 2 is therefore 

                             

And the value of the Prandtl Meyer function in region 4 is 
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Using the Prandtl-Meyer tables, we determine the respective Mach numbers for these functions 

to be 

        (         )
               

               
        

        (         )
               

               
        

The static-to-total-pressure ratios at these two Mach numbers, as well as the freestream ratio, can 

be readily determined, 

   
  

 (  
   

 
  
 )

 (   )⁄

 (  
   

 
    )

      ⁄

         

   
  
 (  

   

 
  
 )
 (   )⁄

 (  
   

 
       )

      ⁄

         

   
  
 (  

   

 
  
 )
 (   )⁄

 (  
   

 
       )

      ⁄

          

And since the flow between the freestream and regions 2 and 4 is isentropic 

            

 Then 

  
  
 
  
   

 
   
  

 
       

       
        

  
  
 
  
   

 
   
  

 
       

        
        

Flow on the lower surface is first compressed through an oblique shock, and from oblique shock 

charts at         and    (     )          , give 

    and          

                              

From normal shock tables at             gives 

   
   

         (               )
             

             
        

  
  
        (              )

             

             
        

Now from Prandtl Meyer tables at          gives  

            (                 )
           

           
          

And  

   
  
 (  

   

 
  
 )
 (   )⁄

 (  
   

 
      )

      ⁄
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And from Prandtl Meyer tables at           
  

        (         )
                

                 
        

   
  
 (  

   

 
  
 )
 (   )⁄

 (  
   

 
       )

      ⁄

         

As         for isentropic flow throw Prandtl-Meyer fan, then 

  
  
 
  
   

 
   
  
 
  
  
 

 

       
                      

The lift force is calculated, ( we have 4 equal quarters for the diamond airfoil), as 

The straight segment line length for each quarter, , is 

  
  ⁄

    
 

 

     
         

The depth of the airfoil is unity and the surface area is        . Now  

   (          )    (   )  (          )    (   ) 

         (          )    (   )  (          )    (   ) 

   (          )      
  (          )     

  

         (          )     
  (          )      

  

                                                   

                                                         

                                         

             

   
 

          
 

 

          
 
         

          
 

      
      

            
        

   (          )      
  (          )     

  

         (          )     
  (          )      
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The computation of the angle of the slip line, and therefore the angle of the flow downstream of 

the airfoil at regions 5 and 6 is left for the interested student. 
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Chapter Eighteen/ Fanno flow-Part 1 

 

18.1. Introduction 

We have mentioned that area changes, friction, and heat transfer are the most important factors 

affecting the properties in a flow system. Up to this Chapter we have considered only one of these 

factors, that of variations in area. We now wish to take a look at the subject of friction losses. To study 

only the effects of friction, we analyze flow in a constant-area duct without heat transfer. We consider 

first the flow of an arbitrary fluid and discover that its behavior follows a definite pattern which is 

dependent on whether the flow is in the subsonic or supersonic regime. 

Working equations are developed for the case of a perfect gas, and the introduction of a reference 

point allows a table to be constructed. As before, the table permits rapid solutions to many problems of 

this type, which are called Fanno flow. 

 

18.2. Working Relations for Fanno Flow 

Consider one-dimensional steady flow of perfect gas with constant specific heats through constant 

area duct. In case of adiabatic, no work exchange, the flow is Fanno flow where friction effect is 

considered. The basic equations of continuity, energy, and momentum under the following 

assumptions, are derived: 

Adiabatic                ,        

Friction exist               

No shaft work                 

Neglect potential             

Constant area                  

Constant specific heat          

The stagnation temperature will be proved to be constant along the duct while the stagnation 

pressure will suffer from losses due to friction. The entropy is expected to increase. 

 

 State  

      

  

 
 

  

 
 

  

 
                                                                                                                    

 

 Continuity 

 ̇             

                                                                                                                         

The flow area is constant.   is a constant, which is referred to as the mass velocity. 
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 Energy 

We start with s.f.e.e. 

               

For adiabatic and no work, this becomes 

                                                                                                                                   

If we neglect the potential term, this means that 
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From continuity equation 
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 Entropy 
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Substitute for Temperature and pressure ratio, from eqs. (18.4) and (18.6) gives 
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To derive an expression for stagnation pressure ratio for adiabatic, no-work flow of a perfect gas, 

we start from the following thermodynamic relation for stagnation (total) properties 

          
   

  
                                                                                                              

                                                                                                                     

Since              for adiabatic flow and        from energy equation, then 

   

  
                                                                                                                              

         

   

  
  

     

 
 

     

 
    

   

   
                                                                                                                    

Substitute from eq. (18.7) into eq. (18.11) gives 
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 Momentum 

∑  ∬         ̂    

  

 

The external forces that act on the element are the pressure and shear forces as shown in figure (17.1). 
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  is shear stress due to wall friction and      duct 

surrounding surface area. The hydraulic diameter; 

   
                  

                
 

  

 
 

   
      ⁄

  
   

Surface area is  

                             

                  
  

 
 

Friction factor, , is four times friction coefficient,   . 

              ⁄  

                     ⁄  

Substitute for   and      in eq. (18.13) 

     
       

 
  

  

 
         

             
  

 
        

Divided by   

  

 
    

  

  
 
  

 
 

  

  

  

 
   

  

 
        

  

 
    

  

 
                                                                                      

From state equation and the definition of Mach number 
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Taking logarithmic of this expression and then differentiating gives  
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Substitute for    ⁄  and    ⁄  into eq (18.15) gives 
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Then 
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For this type of flow, the stagnation temperature is constant, then 
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Taking logarithmic of this expression and then differentiating gives  
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Substitute for    ⁄  into eq (18.18) gives 
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Eq (18.19) should be simplified further. The last term can be manipulated to be 
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Substitute this expression into eq (18.19) and rearrange gives 
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Integration of this equation gives 
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For Fanno flow, the integration limits are 
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At                   .  This is reference length. 

At                       . This is the section under consideration. 
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)             

Eq (18.21) relates friction factor,  , to   directly. For air        , then;  

For supersonic the value of        ⁄  lies between          and                 

For subsonic the value of        ⁄  becomes very large as   becomes very small.  

 

18.3 Reference state and Fanno Flow Table 

Eqs 18.4, 5, 6, 7, 12 and 18.21 are casted with respect to reference point   where     and tabulated 

in a table called Fanno flow table.  

The equations developed in this chapter are the means of computing the properties at one location 

in terms of those given at some other location. The key to problem solution is predicting the Mach 

number at the new location through the use of equation (18.21). The solution of this equation for the 

unknown    presents a messy task, as no explicit relation is possible between          .  

In   reference case we imagine that we continue by Fanno flow (i.e., more duct is added) until the 

velocity reaches    . Figure (18.2) shows a physical system together with its T –s diagram for a 

subsonic Fanno flow. We know that if we continue 

along the Fanno line (remember that we always 

move to the right), we will eventually reach the 

limiting point where sonic velocity exists. The 

dashed lines show assumed elongation duct of 

sufficient length to enable the flow to traverse the 

remaining portion of the upper branch and reach 

the limit point. This is the ( ) reference point for 

Fanno flow. 

The isentropic   reference points have also 

been included on the T –s diagram to emphasize 

the fact that the Fanno   reference is a totally 

different thermodynamic state. One other fact 

should be mentioned. If there is any entropy 

difference between two points (such as points 1 

and 2), their isentropic ( ) reference conditions are 

not the same      . But for Fanno flow       . 
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19.1 Fanno Flow line 

If we want to study the behavior of Fanno Flow on T-s diagram, we must establish a relationship 

between entropy and temperature. From isentropic relation as    is constant:  
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Where    is the static temperature at    , and from eq. (17.7) 
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Figure (19.1), a plot of eq. (19.2), shows the Fanno line on     coordinates. For a perfect 

gas with constant specific heats, the T-s and h-s diagrams are similar. It represents the locus 

of states that can be obtained under the assumptions of Fanno flow for a fixed mass flow and 

total enthalpy. Consider the point of tangency  , where     ⁄    . To determine the 

characteristics of this point, let us starts from energy equation. 

     
  

 
       

  √ (    )  √   (    ) 

From thermodynamics relations 
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Substitute from continuity equation for constant area duct  (   ⁄     ⁄  )  
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Substitute from energy equation,    √ (    )  √   (    )  
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Differentiating with respect to    
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Dividede by    and rearrange 

   (   )     (    ) 

       (    ) 

      

so means that at point A the Mach number is unity,   .  

According to the energy equation, higher velocities are associated 

with lower enthalpies or temperatures, so the section of the Fanno line 

on     coordinates that lies above (A) corresponds to subsonic flow, 

and the section below (A) to supersonic flow. The Fanno line becomes 

a most useful tool in describing the variations in properties for this 

frictional compressible flow.  

Consider a subsonic adiabatic flow in a constant-area tube. The 

flow is irreversible because of friction, so for this adiabatic case, 

      . In other words, the entropy increases in the flow direction.  

Returning to the     diagram in Figure 19.2, we see that for a 

given mass flow, the state of the fluid continually moves to the right, 

corresponding to an entropy rise. Thus, for subsonic flow with friction, 

the Mach number increases to 1. For supersonic flow, the entropy must 

again increase, so the flow Mach number here decreases to 1.  

Suppose now that the duct is long 

enough for a flow initially subsonic to 

reach Mach 1, and an additional length is 

added, as shown in Figure (19.3). The 

flow Mach number for the given mass 

flow cannot go past   without decreasing 
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entropy. This is impossible from the second law. Hence the 

additional length brings about a reduction in mass flow. The 

flow jumps to another Fanno Line (see Figure 19.4). 

Essentially, the duct is choked due to friction. 

Corresponding to a given inlet subsonic Mach number, there 

is a certain maximum duct length      beyond which a flow 

reduction occurs.  

Now suppose the inlet flow is supersonic and the duct 

length is made greater than      to produce Mach 1. With 

the supersonic flow unable to sense changes in duct length 

occurring ahead of it, the flow adjusts to the additional 

length by means of a normal shock rather than a flow 

reduction. The location of the shock in the duct is 

determined by the back pressure imposed on the duct. (This 

subject will be discussed in detail later) 

 

 19.2 Friction factor   

Dimensional analysis of the fluid flow in 

fluid mechanics shows that the friction factor 

can be expressed as     (      ⁄ ). Where 

   ⁄  is the relative roughness. The relationship 

among,   , and    ⁄  is determined 

experimentally and plotted on a chart called a 

Moody chart or a Moody diagram. Typical 

values of  , the absolute roughness are shown in 

Table (19.1). 

 

Example 19.1 for the duct in figure (19.5), given        ,                ⁄ , and       , 

find   ,     ⁄  and stagnation pressure ratio. 

 

Solution  

Since both Mach numbers are known, we can 

solve immediately.  

From Fanno flow table, at         

   
 ⁄          

     
 ⁄          
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        ⁄          

From Fanno flow table at         

   
 ⁄          

     
 ⁄          

        ⁄         , then 

   
  
  
 
  

  
            

 

      
                     ⁄   

   
   

 
   
  
 
  

   
         

 

       
        

   

 
 
       
 

 
       
 

                        

Notes that for supersonic flow, due to friction effect        , but        . 

 

Example 19.2 for frictional constant area duct, 

see figure (19.6), given         ,         , 

and         , find    and     ⁄ . Also 

calculate stagnation pressure ratio 

 

Solution 

From Fanno flow table at         

   
 ⁄         ,     

 ⁄         and      
 ⁄          

To determine conditions at section 1, figure (19.6), we must establish the ratio 

  
  
 
  
  
 
  
  
 
   

   
                

From Fanno table at    
 ⁄         

        ,     
 ⁄         and      

 ⁄          

  
  
 
  
  
 
  

  
       

 

      
       

   
   

 
   
  
 
  

   
         

 

       
         

Notes that for subsonic flow, due to friction effect        and         

Notice that these examples confirm previous statements concerning static pressure changes. In 

subsonic flow the static pressure decreases, whereas in supersonic flow the static pressure increases, 

while the stagnation pressure ratio decreases in both cases due to the effect of friction losses. 
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Example 19.3 Air flows in a          diameter, insulated, galvanized iron duct. Initial conditions are 

               ⁄ ,        , and             ⁄ . The absolute roughness is   

          and viscosity is               ⁄ . After        , determine the final Mach number, 

temperature, and pressure.  

 

Solution 

Since the duct is circular we do not have to compute an equivalent diameter. The relative roughness 

 

 
 
      

     
       

   
  
   

 
       

         
        

  
  ⁄  

    
     

 
 
                        

        
         

From the Moody diagram at Re = 1.7 × 106 and ε/D = 0.001, we determine that the friction factor is f = 

0.0198. To use the Fanno table (or equations), we need information on Mach numbers. 

   √     √                      

   
  
  
 
      

     
      

From the Fanno flow table at         

   
 ⁄         ,     

 ⁄         and           ⁄         

The key to completing the problem is in establishing the Mach number at the outlet, and this is done 

through the friction length: 

   

 
 
            

      
       

Since   and   are assumed constant, then 

   

 
 
       
 

 
       
 

 

       
 

 
       
 

 
   

 
                    

From Fanno flow table at         ⁄        

        ,     
 ⁄            and,     

 ⁄         , Thus 
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) (   )        

In the example above, the friction factor was assumed constant. 
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Example 19.4 Flow enters a constant-area, 

insulated duct with a Mach number of 

    , static pressure of        , and static 

temperature of      . Assume a duct 

length of      , duct diameter of     , 

and a friction coefficient of     . 

Determine the Mach number, static 

pressure, and static temperature at the duct 

outlet 

 

Solution 

From Fanno flow tables, at          

         ⁄         ,      
 ⁄           and    

 ⁄         

The actual Fanno flow friction coefficient is 

   

 
 
(    )(  )

 
            

       
 

 
       
 

 
   

 
                     

Thus from Fanno flow tables at          ⁄          gives  

        ,    
 ⁄            and,     

 ⁄        , Thus 

  
  
 
  
  

  
  

⁄  
      

      
        

  
  
 
  
  

  
  

⁄  
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Chapter Twenty/ Fanno Flow through a Nozzle-Duct System 

 

20.1 Converging Nozzle and Duct Combination 

Very often a situation occurs where a duct is fed by a 

nozzle; with the back pressure and nozzle stagnation 

pressure are the known quantities. Consider, for 

example, a duct supplied by a converging nozzle, with 

flow provided by a reservoir at pressure      (see Figure 

20.1). Assuming isentropic nozzle flow, with Fanno flow 

in the duct, the system pressure distribution (          ), 

can be determined for various back pressures for fixed 

    . As    is lowered below     , curves such as ( ) and 

( ) are obtained, with pressure decreasing in both nozzle 

and duct. Finally, when the back pressure is decreased to 

that of curve ( ), Mach number   occurs at the duct exit 

(note that the Mach number at the nozzle exit is still less 

than  ).  

Further decreases in back pressure cannot be sensed by the 

reservoir; for all back pressures below that of curve ( ) the mass flow 

rate remains the same as that of curve ( );  ̇ is plotted versus    in 

Figure (20.2). The system here is choked by the duct, not the 

converging nozzle. The maximum mass flow that can be passed by 

this system is less for the same reservoir pressure than that for a 

converging nozzle with no duct.  

For a subsonic Fanno flow situation, figure (20.1) 

shows a given length of duct fed by a large tank and 

converging nozzle. If the receiver (back) pressure is below 

the tank pressure, flow will occur, producing a T –s 

diagram shown as path 1–2–3. Note that we have isentropic 

flow at the entrance to the duct and then we move along a 

Fanno line.  

As the receiver pressure is lowered still more, the flow 

rate and exit Mach number continue to increase while the 

system moves to Fanno lines of higher mass velocities    

(shown as path        ). It is important to recognize 
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that the receiver pressure (or more properly, the operating pressure ratio) is controlling the flow. This is 

because in subsonic flow the pressure at the duct exit must equal that of the receiver.  

Eventually, when a certain pressure ratio is reached, the Mach number at the duct exit will be unity 

(shown as path          ). This is called duct choking and any further reduction in receiver 

pressure would not affect the flow conditions inside the system. What would occur as the flow leaves 

the duct and enters a region of reduced pressure? 

Let us consider this last case of choked flow with the exit pressure equal to the receiver pressure. 

Now suppose that the receiver pressure 

is maintained is kept constant but more 

duct length is added to the system. 

What happens? We know that we 

cannot move around the Fanno line, yet 

somehow we must reflect the added 

friction losses. This is done by moving 

to a new Fanno line at a decreased flow 

rate. The T –s diagram for this is shown 

as path (             ) in Figure 

(20.4). Note that pressure equilibrium is 

still maintained at the exit but the 

system is no longer choked, although 

the flow rate has decreased. What 

would occur if the receiver pressure 

were now lowered? 

In summary, when a subsonic 

Fanno flow has become duct choked 

and more duct is added to the system, 

the flow rate must decrease. Just how 

much it decreases and whether or not 

the exit velocity remains sonic depends 

on how much duct is added and the receiver pressure imposed on the system. 

 

Example 20.1 A constant-area duct,       in length by      in diameter, is connected to a 

reservoir through a converging nozzle, as shown in Figure (20.5a). For a reservoir pressure 

and temperature of       and      . Determine the maximum air flow rate in kilograms per 

second through the system and the range of back pressures over which this flow is realized. 

Repeat these calculations for a converging nozzle with no duct. Assume          
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Solution  

For maximum mass flow through the nozzle-duct 

system,     . For this condition, the actual    ⁄  of 

the duct becomes equal to       ⁄ , so that 

      ⁄           ⁄       

From Fanno tables at       ⁄       gives 

         

For isentropic nozzle flow, from isentropic flow 

tables at          gives 

(   ⁄ )         and (   ⁄ )         

                       

                      

 ̇      (
  

   
)    √     

 [
     

           
] [

 

 
(      ) ] [     √             ]            ⁄  

Also. 

    ⁄      ⁄         

         (       ⁄ )            

So the system is choked over the range of back 

pressures from (  to          ). 

If the duct were to he removed, choking would 

occur with Mach   at the nozzle exit. For this 

condition  

From isentropic table at      gives  

(   ⁄ )         and (   ⁄ )         

         (        )              

         (     )            

So the maximum mass flow (for choked flow) is 

 ̇    [
     

           
] [

 

 
(

 

    
)]  [   √             ]            ⁄  

For this case, the system is choked over the back pressure range from (              ) Results 

are shown in Figure (20.5b). 
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20.2 Converging–Diverging Nozzle and Duct Combination 

When a duct is connected to a 

reservoir through a converging-

diverging nozzle, the situation 

becomes somewhat more complex. 

Consider first the case of subsonic 

flow in both nozzle and duct. A 

typical pressure distribution is 

shown in Figure (20.6). Depending 

on the duct length, the minimum 

pressure point, or point of 

maximum Mach number, can occur 

at the nozzle throat or duct exit.  

If the duct is long enough (see dashed curve), the system reaches Mach 1 first at the duct 

exit; in this case, the nozzle is not choked. Once Mach 1 is reached, no further increase in 

mass flow rate can occur by reduction of the system back pressure. Supersonic flow in this 

system is impossible with the converging-diverging nozzle unchoked.  

 Generally, however, the duct length required to cause choking is very long. For this 

reason, the more important case is that in which the system is choked at the nozzle throat, and 

supersonic flow can occur in the duct. 

With supersonic flow at the nozzle exit, there is the possibility of shocks in the  duct. 

Note, however, that once the back pressure is just low enough to produce Mach 1 at the 

nozzle throat, the system is choked, with no further increase in mass flow possible. Unlike 

the case previously discussed, in which mass flow was affected by duct  length, here, once the 

throat velocity reaches the velocity of sound, the mass flow rate is unaffected by duct length. 

Now the system is choked by the nozzle, not the duct. Let us consider the flow pattern 

obtained with supersonic flow at the duct inlet.  

 First, suppose the duct length is less than the maximum length corresponding to the 

given duct inlet supersonic Mach number     needed to reach Mach 1 at the duct exit i.e. 

         . The change in flow pattern is to be described as the back pressure    is increased 

from      . A back pressure of      , or a very low back pressure, implies the existence of 

expansion waves at the duct exit. This means that the exit Mach number must be either 

supersonic or unity. Since L is less than     , supersonic flow occurs at the duct exit, with 

the exit static pressure      ,See curve (a) in Figure 20.7. When    is raised to a value 

corresponding to curve (b),      . A further increase in back pressure yields oblique shock 

waves at the duct exit where      ,curve (c), until eventually a normal shock stands at the 
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duct exit for a back pressure equal to that of curve (d). It can be seen that the flow described 

is exactly the same as that obtained at the exit of a converging-diverging nozzle. Increases in 

back pressure over that of curve (d) cause the shock to move into the duct. For a high -enough 

back pressure, the shock moves into the nozzle, thus eliminating supersonic flow in the duct. 

For a high enough back pressure, the shock moves into the nozzle, thus eliminating 

supersonic flow in the duct. 

 

Example 20.2 A converging-diverging nozzle, with area ratio of      is supplied by a reservoir 

containing air at        . The nozzle exhausts into a constant-area duct of length-to-diameter 

ratio of    and friction coefficient        . Determine the range of system back pressure 

over which a normal shock appears in the duct.  Assume an isentropic flow in the nozz le and 

Fanno flow in the duct. 

 

Solution 

From isentropic flow tables  at    ⁄     , gives 

         and      ⁄          

From Fanno flow tables at         , gives 

 (      ⁄ )        . 

For the duct under consideration 

   ⁄               

So that     (    ) . Calculations must be made for two limiting cases, one with shock at the 

duct inlet (Figure 20.8a), and the other with shock at the duct outlet. 
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(a)  Shock at the duct inlet  

From normal shock tables at         , gives    

       and     ⁄         

From isentropic flow tables at           gives 

    ⁄         

From Fanno flow tables at          , gives  (       ⁄        )  Thus 

(
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)
 

 (
  

 
)
 
 

(
     

 
)
 

 (
     

 
)
 
 (

  

 
)
 
 

(
     

 
)
 

                    

So that from Fanno flow tables  at (      ⁄ )        gives           

From isentropic flow tables at           gives     ⁄         

Then 

      (
  

  
) (

  

  
) (

  

  
) (

  

   
)     

              
 

      
                              

 

(b)  Shock at the duct exit  

From Fanno flow tables at,         , gives      ⁄  

       and (      ⁄ )        . So  

(
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 (

     

 
)
 
 

(
     

 
)
 

 (
     

 
)
 
 

  

 
                    

From Fanno flow tables at (      ⁄ )         gives          . 

From isentropic table at           gives     ⁄         

For normal wave tables, at          gives     ⁄        , then 

      (
  

  
) (

  

  
) (

  

  
) (

  

   
)    

                    
 

      
                       

The shock will appear in the duct over the back pressure range  
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 Suppose L is greater than (    ) , i.e. that the duct length is larger than that required 

to reach Mach 1 at duct exit for supersonic duct flow. 

For a back pressure of       and for very low back pressures, it is evident that the back 

pressure is less than the exit-plane pressure, so expansion waves must occur at the duct exit, 

with the exit-plane Mach number equal to unity. (Flow after the shock cannot reach 

supersonic velocities without violating the second law of thermodynamics.) For curves (a) 

and (b) in Figure 20.9, therefore, a normal shock occurs inside the duct, with sonic flow at 

the duct exit and expansion waves outside the duct.  

For curve (c), the exit- plane pressure is equal to the back pressure. It should be noted 

that the location of the shock is the same for curves (a), (b), and (c). For this class of 

problem, this location represents the farthest downstream position that the normal shock is 

able to reach. Finding this location is beyond our stage.  

As the back pressure is raised above curve (c), the normal shock moves upstream toward 

the duct inlet, with the exit Mach number subsonic and the back pressure equal to the exit - 

plane pressure. Again, for high-enough back pressures, the shock moves into the nozzle, 

eliminating supersonic flow in the after-section of the duct.  

Example 19.3 A converging-diverging nozzle, with an area ratio of       . is supplied by a 

reservoir containing air at        . The nozzle exhausts into a constant-area duct of length-

to-diameter ratio of    and friction coefficient of     . Determine the range of system back 

pressure over which a normal shock appears in the duct.  Assume an isentropic flow in the 

nozzle and Fanno flow in the duct.  
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Solution 

From isentropic flow table at    ⁄      gives          ,     
 ⁄         and      ⁄  

      

From Fanno flow tables at          gives  

(      ⁄ )          (               )
           

         
        

For the duct          (  )       which is greater than (      ⁄ )  i.e.            

For this type of problem, a normal shock usually stands in the C-D nozzle-duct system. The 

range of back pressures over which a normal shock exists within the duct can be established 

as follows:  

(a) Shock at the duct inlet 

From normal shock tables at         , gives           

and     ⁄         

From isentropic flow tables at           gives     ⁄  

       

From Fanno flow tables at          , gives  (       ⁄        )  Thus 

(
     

 
)
 

 (
     

 
)
 
 (

  

 
)
 

                   

So that from Fanno flow tables at (      ⁄ )         gives  

          and     
 ⁄         

Because the exit flow is subsonic, the exit pressure is equal to the back pressure, which may 

be computed from 

      (
  

  
) (

  

  
) (

  

  
) (

  

   
)     

              
 

      
                               

Thus, a shock will reside within the duct for the following range of back pressures:       

            

(b) Shock inside the duct 

Since the value of           (      ⁄ ) , the shock 

cannot exist at duct exit. When the back pressure has the 

lowest value, (        ), the position of the normal shock 

is positioned far away from duct exit. As the back pressure is 

raised, the normal shock moves towards the duct inlet. Finding the position of the normal 

shock and the back pressure is left for the interested student. 
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For interested student: 

Since the back pressure for the first case of this example is      , the exit Mach number is 

clearly unity and      . However, to reach the low value of   , further expansion must take 

place outside the duct, as shown in curve (a) of Figure 20.9. To determine the location of the 

shock for this case, we proceed as flow; for the duct shown in Figure 20.10, the duct length 

can be written as: 

  [(    )  (    ) ]  [(    )  (    ) ] 

[(    )  (    ) ]    (    )  (    )  

Multiplying by the average friction coefficient,  , dividing by the hydraulic diameter,  , 

and rearranging yields 

 (  )  (
     

 
)
 
 (

     

 
)
 

 (
  

 
)  (

     

 
)
 
 (

     

 
)
 
 

Note that because the flow between the duct inlet, station i, and the upstream side of the 

shock, station 1, is supersonic and because the friction decelerates supersonic flows  so 

      and (    )  (    ) . 

Also because the flow between the downstream side of the normal shock, station 2, and 

the duct exit, station e, is subsonic and because friction accelerates subsonic flows  so  

      and (    )  (    ) . 

And from eq. 18.21. 

 
   

 
 (

   

  
)   (

   
 

  
   

   
)  

 

 
(  

 

  
)  (

   

  
)   (

 

  
)          (     ) 

And eq. 10.7 which relates    and    across the normal shock 

  
  

  
   (   )⁄

[  ((   ))⁄ ]  
   

                                                                                        (    ) 

Then we have an expression to evaluate    

 (  )  
   

 
  [

  (   )  
 

(   )  
 ]  

 (     
 )(  

   )

   
 [  (   )  

 ]
 

The value of    can be obtained by numerically solving this equation using the Newton-

Raphson method. Because the derivative of  (  ) is complicated, it was obtained using the 

finite-difference approach. The solution is beyond our scope. 

When    is known then we find   , (    )  and (    ) . This gives the position of the 

normal shock. 

(
  

 
)
   

 (
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Chapter One
Fundamental of Ftuid Dynamics

Introduction:
Gas dynamics is a branch of fluid mechanics which describe the flow of

compressible fluid. Fluids rvhich show appreciable variation in density as a resurts of the
flow - such as gases- are called_ compressible fluids. The variation in density is due
mainly to variation in pressure and temperature.
The flow of a compressibre flu.id is govemed by the first raw of thermodynamics, which
relates to energy balance, and by the second law of thermodynamics, which relates heat
interaction,and ineversibirity ro entropy. The flow is also a-ffected by both kinetic anJ
dynamic effects, which are described by Newton,s laws of motion. An inertial frame of
reference that is, a frame in *'hich NeMon's laws of motion are appricabre- is genera y
used. In addition, the flow furfils the requirement ofconservation oimass.

These laws are not dependent on the properties of particular fluid, therefore in
order to relate the motion to a particurar fluid it-is necessary to use subsidiary laws in
addition to these fundamental principles , such as the equation ofstate for perfeci gas.

p  -  p R r . . . . . . . (  l )
Ahhough the most obvious application of compressible fluid flow theory are in

the design ofhigh speed aircraft, and this remains an important application to the subject,
acknowledges ofcompressible fluid flow theory is requirld in the disign and operatioi of
many devices commonry encountered in engineering practice. Among these application
are:

1- Gas Turbine: the flow in the balding and nozzle is compressible.
2- Steam turbine. Here, too, the flow in the nozzles and biades must be treated as

compressible.
3- Reciprocating engines, flow of gases through the valves and intake and

exhaust.
4-

6-

Natural gas transmission line.
Combustion chambers
Explosive.

I.1 Co nserv ation of Mass :
The principle ofconservation of mass, when referred ro a system offixed identity,

simple states that the mass of the system is constanl consiier an arbitrary contr6i
volume through which fluid streams Fig,l. we wish to derive the form of the law of
conservation ofmass as it applied to this control volume. However, in order to apply
the law, we must begin with a system of fixed identity, and so we i"nn"a our ryitl"ri
as the fluid which some instant t occupies the control volume.

Next, we consider what happens during the succeeding time interval dt. By
definition, the control volume remains fixed in space, but the system moves in the
general direction ofthe stream.line. The two position of rhe system are shown in fig.1
by dashed lines. For convenience in analyiis, we considei three region of spice
deooted bt I,II,III in fig. r. At time r the system occupies spaces 1 and IiI, and atitme
/+d/ it occupies space l and .1L Thus, since the masi of rhe system is conserved, we
write-



tn t  r  +  nJr  t  =  f r  t  na ,  I  f r  u , *a , . . . . . . . . . . . - . . . . . .2

where m11 means the mass of ttre fluid in space t at time t, and so on. A simple
rearrangement then gives.

fr/ t+dt 
- frt t fru!, fru,*a

dtdtdt
The first term represent the time rate of change of mass within space .L But as d/ goes to
zero space.Icoincide with the contrcl volume, and so in the limit.

f f i t , * a t - f r t t  A .

dt 
'  

at 
\" 'c u l

where mn denoted the instantaneous mass within the control volume.
The third rerm may be wrinen.

*  l *  A*," 

 

ldt - /2q:I kdr =l.u,r'tt-,-a _ fa.^., ________-S
a t a t d t ) - '

where 6m1,*4l represent the amount of mass crossing the elementary surface dlo4 during
the time dr. The ratio \mp*4/dt is called the out going flux of mass cross the area dAol,
Or the mass rate of flow and is denoted for convenience by dmoul .
similar reasoning yields for inlet.

m,, , ,.:, = ldn,. _______________6
dI

and so the conservation law may now be expressed as

!o".t= !a^,.- [a,..,
for detailed computation we note that ajt any instant

^,.= Ja.""= Loo,
where dv is an element ofcontrol volume, p is the local mass density ofthat element and
the integral is to be taken over the entire control volume.
d n " "  0 r  r 0 o .

- = , I Pav = | :-4v
d t  d t  4v  r ,  d l

with the help of fig.1 we may express the mass rate of flow in the form.

dmo, _Myt-a _ p(dA-)(V"dt) 
= pyd4",,

fur,*u,
-------- 10

dt dt
where p is the local instantaneous mass density in the neighbourh ood of dA.,r and y, is
the conesponding local instantaneous component of velocity normal to dAo",., with the
forgoing expression equation 7 may now wriften.

Lp'= [cv.a't,.- !nv.a*
a form which is usually called the equation ofcontinuitv.

When the flow is steady, ihe identity of the fluid within the control; volume
changes continuously, but the total mass remains constant or mathematical\ api6t is zero
for each element of contror vorume . Then equation r r state that the incoming and
outgoing mass rate of flow are identical.

t 1



jov"ae,, = lor/"ae". I 2
For one dimensional steady state flow equation
become.

P,v,A, = prvrA, l 3

fi5.(1) Flow through a contol volume(conrinuie equation)

o
f 9.2 One dimensional f ow

.fig..1.flov, through control yolume with obstacle( momentum equation)

12 for rhe inlet and outlet condition

T



Example: l
Ten kglsec of air enters a tank of r 0m3 in volume whire 2 kg/sec is discharge from thetank as show in fig. Ifthe temperature ofthe air inside the tank remains "onrtu-nt at 300Ko.Find the rate ofpressure rise inside rhe tank.
Solution:
Appling continuity equation

n  A n

|  :4r= lpv"dA'- lpy-d,r , 8 r

t A " l ' - r 6  . \

et

* = 287 *300**:68880 pysec
OI lU

Example:2

A tank I ml in volume contains air at an initial pressure of6 atrrr (606.95 kpa) and an
initial temperature of25"c. Air is discharged isothermally Fom the tank at the rate of0.l
m3ls. Assuming that the discharged air has the same density as tbat ofthe air in the tanlg
find aa expression for the time rate of change of density of the air in tl'e tank what
would be tle rate of pressure drop i_n the tank a.fter 5 seconds?

solution:

Appling conrinuiry equation | 9k, = lpr/"A,. - lpV-d-A^ .t r '  o t

d p
1 . 0 ; :  - 0 .  1 0

or

d p

a r :  
- o ' t o

Separating variables and integrating gives:

/ " . \
p :  p , 2 _ 0 . 1 r :  [  

_ - t _  
l e _ o . r ,

\  ^ 1 1 /

where subscript I refers to initial conditions in the tank pressure change may be
expressed in terms of density cha-nge according to the relation

P :  P R T

dp dp

A :  R r A :  x z ( - 0 . l p )

but p= pRT 6p --6o
SO -1 = .(1 --1

ot dI

so that:



-n 1 p, y -!)-- o-0 tr" ' " "  R T , '

-0 .1p  , s -o ' t  '

Substituting numerical values gives:

#: 
- O.tX 606.95 X e-o.r(s) = -102.3 kpa/s

1.2- M o m e n t um co nse n ati o n t h eorem.
The fundamental principle of dynamics is Newton's law of motion, and according

to this law the resultant offorce applied to a particle which may be at rest or in motion is
equal to the rate of charge of momentum of the particle in the direction of the resultant
force. Newton's second law is vector relation. Consider the x-direction we write for the
system.

Tr'=!!hY"l -----------t4
d t '

Where the left hand side represent the algebraic sum ofthe X-force acting on the system
during the time interval d/, and the right hand side represent the time of change of the
total momentum of the system see fig.3.
d , . , , , , ,  ( ^v , ) , , .0 ,+ (nv , )n , * ,  - (mv, ) , ,  - (mv, ) , r ,

*\mt/,)=ff i  
-----15

(mv,) ' ,., - (mV,), , --- as dl goes to zero this term represent the time rate of
dl

change of the X-momentum within the control volume. = 9f^r,1""ot
so that :

a .
fr, =fit*v,t,.+ Jv.a^.,- !v,a.,.
or

l o

fi, = fa'!t+ !or.v.at",, - !nv,v,a,, ---------t7



Example:3
Air flowing isentropicarly in a nozzre strikes a stationary blade rvhen it leaves the

nozzle x shown in fig. Derermine :
l- The magnitude of the reaction in the x-direction and in the y-direction needed to

hold the blade in place.
2- The magnitude ofthe reaction in the x-direction and in the y-direction of the brade

moves towed the nozz.le at g0m/sec.
Solut ion:

/  p ,  \ t r - t | t ,  /  I  \ 0 . / r . 4
n : n l ; l  : 3 0 8 { , r r /  - 2 1 4 . 3 K

The eas v€locity at this scction is obtained from the enerEy equalion:

v2 t r2
,  , ' 1  ,  ,  / 2
nt -f -l- - n2 + -t*

Therefore:
r r 2  t r |

1 - =  
a P \ t t  -  t t ) - - i .

:  IOOO(3O8 -rroa*$

from which V2: 266.46 m/s. The mass rate of flow is:

. i - p t A r r r - ( r r L \ n , n ,

/  1 .5 x  l .or3 x  lo j  \: | _______;\1_;;;_ 
l(25 x r0-.X60)

\  2 8 .  . . - - -  , l
: 0.258 kr,/s

Applying the nroalenturn equation to the control volume shown giees:

&- i(Vt, - Y2) : O.258(V3 cos 30 + ,'2)
: 0.258(266.a6 cos 30 + 266.46) : 128.28 N

and

\ - , i '(Vt, - V7): O.25a(n sin 30 - 0)
- 0.258(266.46 sin 30) - 34.3? N

Y '-\\



(b) When ti.l1e blade 6oves toward the nozzle, the relative velocity is 26646+3A
:296.46 m/s. The mass sttikinB the blade per ullit time now becomes:

/ 296.46 \
i  :0.258 | ... ^. l= 0.281 kE/s

From the velociry diagram shown:

V1,: 256.'14 rr.ls ar,d Vr: 148.23 m./s

The momeatum equatioo then gives:

&: i(Vz. - Vu\ -0281(256 t4 + 266'46) : 149'7 N

and

Rr : ;(v3r - vzlr: 0.287(148.23 - 0) : 42 54 N

Example:4

An airplane is traveling at a constant speed of200 m/s. Air enters ihejet engjne's inlet at

the rate of40 kg/s while tlle combustion products are discharged at an erit velocity of

600 m/s relative to the airplane. The intake area is 0.3 m2 and the exit area 0 6 nP' The

ambient pressure is 0.? atm, ald the pressure at the exit is 0.72 am,- calculate the net

:hrust developed by the engine. Assume uniform steady conditions at the inlet and exit

planes and the properties of the products of combustion to be lh€ same as those of

air.

Solution: consider the jet engine as a control volume as in fig. the air enters the engine
with a speed of 200m,/s. assuming horizontal flight and neglecting the momentum of the
fuel, the net force opposite to thrust is:
Appling momentum equation:

Rr : ;(v3r - vzlr: 0.287(148.23 - 0) : 42.54 N

since the case is steady state thus mean that 6pl&:0 therefore the momentum equation
become

F:  (pzAz  +  ;Vz ,  -  (pLA . t  +  mVt )

:  l ( O . ' 1 2  -  O . ? ) l . o l 3  x  l d x 0 . 6 + 4 0 x 6 0 0 1  - ( 0 + 4 0 x  2 0 o )

:  1 7 , 2 1 5 . 6  N

Vz- 2Oo nls V: - 600 m/s

-  r d d v  r , , ,  t ,I ,= L- ; ;*  JV,dm., , -  JV,dm,"

A: '  0'6 mr
P2 - O-72 attn



1.3The First La the
Energy is conveyed a cross the boundary of control volume in he form of heat and

(E r , *a,  t  E n,*a, )  -  (E t ,  +  E nt  t )

work. Consider the flow through the control volume with of fig., with the system
defined as the material occcuping the control volume at time t. we considei what
happens during the time interval dt. passing through the control surface are a
stationary strut and a rotating shaft attached to a turbo-machine, perhaps a compressor
or turbine. The energy equation in a simple form can be written as following.
Q  _ d E  + 5 W
dt dt dt

Rate of change of total energy E:

dt

dE
dt

dtdt

B- work Done bv Shear stresses: This work may be conveniently divided into two
categories (i) the work done by the part of tle shaft inside the system on the part
outside the systemtowing to the torque in the rotating shaft resulting from the shear
stresses. (ii) the shear work done at the boundaries ofthe system on adjacent fluid
which is in motion. Therefore the rate change of rvork can be written as foilow.

# 
= r,* + W"0",, + ! n vd^.,, + [ n rd^,,

The total fluid energy per mass flow e is

dE _Et,*a,-Er,.* lrpr__ 116l_
d t d t J d t J d t

6
dE ,aE, | , t ,
a= \  a ) -+  Jeamou,  

-  
Jeamn

d E  1  d e p d v  s ,  I
a,=L a 

*  )edm." ' -  ledm.
Rate of work done.

Omitting from our consideration capiliary, magnetic, and electrical force, the
work done during the processes is the result of normal and shear stresses at the
moving boundaries ofthe system.
A- Work Done by Normal Stresses.

Taking the normal stress at the boundary of the system as the hydrostatic pressure.
the work done by the system owing to normal force at an element of area dAoul is
pdA""dx, where d: is the component of distance moved normal to dAo,,. BuI dAodx
is the volume of the mass element dr27,17, *.hich volume may be writeen as v6m11,*4,-
The total rate of work done by normal stresses during the process may now be set
down, with the aid of the foregoing, as

r\ t  ._ Jpvbm,,,*o, _ Jpvdmtt,

= [rvd*",,- !nd,,,

Total fluid energ)': internal energy + kinetic energy + potential energy



yz
e = u + - + g z

u = h - p v = h - P
p

Substitute rhese equations into the energy equation results

Q = r r , . r * .  * 1 o e d v ,  
"  r t 2  t t 2

d t  
.  ea r , . . . sh@, ,  L  d t  

. ) {h+V+g4am. , , -  
f h+L+gz1dm, "

I .4Ihe r€qe4d Law of Thermodynamics:
In a fixed-mass system entropy change occurJas a result of irreversibre events or as a

result of intemction with the environment in which there is heat transfer.
t  dQ  - , as ,  |  ,
1,7=t;l- * J'd,,,* I'd,,"
4 *, | 4!!+d spvd.t

.tr

for steady -one dimension flow
. rln

rn (s ,  - s , )2 {  }

for adiabatic flow dO=0 therefore
s, -s, )0 or ds>0 for isentropic flow ds=0 and flow adiabatic irreversible flow

ds>0

For most problem in gas dynamics, the assumption of perfect gas law is sufficiently
in accord with the properties ofreal gases as to be a acciptable. we shalr therefore set
down here the special thermodynamics relations which aiply to perfect gas.
1- Eauation qf state:

pv =  -  =  K l  = -1  - - - - - - - - - - - - - -- o J {

Where.T is the absolute temperarure (K1, R is rhe gas constant(ykg.mol.Ko), S is
the univenal gas consrant and is equal to g134.3 J&g.mol.d" ,La ful i, tt "



molecular weight kgkg.mol. For atmospheric air berw,--.een 0 and i00 km,
i\.{:28.966, therefore the air gas constant is 287.04 Jikg.K'

\!hen a perfect gas undergoes a thermodynamic process between to equilibrium
state.

r '  ' -  "  - h ,= f ' cn .d ru , - u t =  t r . c v . d l  a n a  k -  .  f , .

,6u  .  du  .Ah.  dho = li), = 
dT 

ana cP =\ 
*) e = 

7 
lor perlect gas

C p _ C u = 4 1  _ d u  _ d ( u +  p v )  _ d u  - d T r )'  d T d T  d t  d T  d T
C p - C v = R

The specif ic heat rat io y is 7= 
94 11.r.1or. Cp=-fR - and Cu= 

R,
C v  y - l  7 - 1

Changes of Entropy : Applying the special relation of a perfect gas to the general
relation between tz,y we get

.  du pdv ^ dT -dv
d s = - + - = C v - + R -

T T T v
and, upon integration

s, -.9, = cv ln A +.R Inh = cvtn( !21.1' r.,,u
T ,  , ,  ' T r ' ' v r '

Altematively, we may eliminate either Zor v from this express the aid of pv=RT,and
so obtain

S, -S, = 6'v1n P: + Cph!! = Crln(P' )(" ),
P t V t A V t

S . - S ,  =  C p l n 2 -  R l n 4 =  C v l n ( t z l r  1 P z ; t ' t
t t  Pr  l r  Pt

f -  ' ' l  |  / - t  I
lLh) " = Cp(r. - r,) = Cp I,l (;) - t | = Cpr,l t "]1, - t I

L r r  )  l h  l

The Isentropic. Often the isentropic process is taken as a model or as a Iimit for real
adiabatic processes. If entropy is constant at each step of the processes, it follows
from equation tha* Tand v,p and v, and T and p are connected with each other during
the prucesses by the following laws: 

/
+  , - t  P  T ' - )
l v  = C O n S I .  p v  = L = C O n S t -  - = C O n S t .

p p
For isentropic flow process the enthalpy change is important. It is calculated in terms
of the initial temperature and the pressure ratio as follows:

l 0



Chapter T*'o
Wave Propagation in Compressible f lorv

?.1 Lntroduction:
The term compressible f lo$, impl ies var iat ion in densi ty through the f ie ld of  f lou.

These r .ar iat lons are, in many cases, the resul t  pr incipal l l ,  of  pressure changes from

one point  to anolher.  The rate of  change of densi t l '  \ \ ' i th respect to pressurg IS'

therefore. an importanr parameter in-the anal; 's is of  compressible f lorv '  and, as ue

shal l  see. i r  is c iosely.connected ui th the veloci t l ,of  propagat ion of  snral l  pressure

d is tu rbance .  i . e .  s i t h  t he  ve loc i t y  o f  sound .

2.2 \\ 'ale Propagation in Elastic \4edia:
ler  us er.mlne rr .hat happens *hen a sol id elast ic object such as steel  bar is

subjeci ' �d ro a sudden unj form distr ibuled conrpressive stress appl!ed at  one end. In

rhe f i rs i  insranr of  r inte.  a thin Jal ,er ne.r t  to the point  of  appl icat icn is compressecj .

uhi le the remainder of the bar is unaffected. This compression is ihen transmit ted to

rhe nesr la ler.  and so on dor in the bar.  Thus a disturbance created at the lef t  s ide is

er,entual l r .sensel at  the opposi te end. The contpression $aYe ini t ia led at  the lef t  s jde

of rhe bar rakes a f in i te t ime to t rarel  to rhe r ight s ide. rhe rrare reloci i r  beinS

depenienr on the elast ic iq '  ancl  densi i l '  of  the media'

Gas:s and l iquid also are elast ic substance and longi tudinal  \ \ 'a\e can be

propagated through these media in the sa:re rral ' that \ \ 'aves propasated rhrough s-ol id '

L. , 'u g. ,  be cor l ined in a long tube u i th a piston at  the lef t  hand. The piston is gir  er l

a sudcien push to t l re r ighr.  In the f i rst  instant a layer of  gas pi les up nert  to the pls1on

and is compressed. the remirder of  the -sas is unaffected The compresslon rrare

creared b;, t i re pisron rhen mo'es through the gas unt i l  eventual ly al l  the gas is able to

s.ns. rh.  *o, , . i r rent of  rhe pisron. I f  the impulse given to the gas is inf in i tesimal l ; '

smal l .  the uare is cal ied a sound s 'ave and the resul tant compression \ \ave mo\e

rhrough the gas at  veloci ty equal to the veloci ty of  sound.

Let the pressure change across the u ave be dp and Jet the corresponding density and

,.rp.rrrur. change be dp and dT respectively. The gas into $hich the $'ave is

propagared is assrlmed to be at rest. The *'ave *,ill then induce a gas t'e)ocit; dl'.

tenirrJ it as it move rhrough the gas. The changes across the '.'are are, therefore as

sboru in fig.2.2. In order to analyze the florv through the uave and thus to deternline

(a).  i i  is  co-nr.enient to use a coordinated s)slem that is anached lo the $ave. i .e,  is

moving Nirh the $'aYe. In this coordinate s) 'stem, the rvave $' i l l  ofcourse be at rest

and rhJgas * i1 l  ef fecr i 'e ly, f lorv through i t  * l ih the 'e loci t , , .a.  ahead of the r 'ave and

a .'elocil'. a-til/, behind the rvare ln this coordinate system. lhen, the changes

through t ie \ \ar.e are shortn in f ig 2 3.  The pressure. temperature and densi ty change'

ofcourse. independent of the coordinate systeln used

i---+-
' D::t

, - a : =
l l
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lh'
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The cont inui t l '  and mqm-enfum equat ion are appl ied to a control  volume of un;t  area
:cross rhe \\,a\:e as indicated ln fig. For steady state the conrinuity equarion for the
control  volume is:
nt' - Sn :(p + dp)(a - dV) ------------------2. 1
r 'here m is ihe mass lo* '  rate per uni t  area through the u,a'e.  Since the case of a 'e11
*eak is being consider.  the second order term. dpdl l  ihat ar ises in equat ion can be
neg)ected and rhis equat ion rhen. eires:

n
d p  = '  ; 1 '  - " ' - - - - - - - - - - - - - - ' - - - - - - - l  l

Q

Cons:n ai : ; . :  of  ; t ro; , . rentum is nert  considei-ed. The onJl ,  for.ce acl i rg orr  ihe co;t t roi
'o iume ar:  ihe pressure force. The mor)tentur) t  eqrar ion for sreaciv state becorne:
p . .1  * (p+d t1 .1  = , , , ' l@-d t , ) -o ]  - - - - -  - - - - - -  - - - - - - - -2 . j
u hlch leaci  :o:

,4dp = n1'r11t o,  dp = padl '  - - -------  2.1
Subs r i : u te  equa i i on  2 .2  i n to  equar ion  2 .4  s i ves :

;- G.
T=o .  o ,  , = . :+  __ - . - ___ t . 5
a p  \ d p

In orcer to e 'aluare a using rbe abore equai ion. i t  is  necessary 1o kno* '  rhe process
lhat rhe sas undergoes in passing through the *,a 'e.  Because a 'erv *eak *are is
beins considered. the ternperarure and'eloci ty chanees rhrough the *,a 'e are 'er '
smal l  and t i :e sradient of  iemperature and'e)oci t1,* i rhin the u,ave remain smal l .  For
ihis reason. heat t ransfer and' iscous effect  for f lorv rhroush rhe u,ave are assunred to
be  nee ) ig ib le .  Hence .  i s  pass ing  rh roueh  rhe  r ra re .  rhe  sa i  i s  assumed  10  underso  an
isentropic p;ocess. The f lot '  through rhe u'ar e is.  therefore. assumed to sat isf_\ , :

tL = co tis!. --------------- - - --2.6
p

puuine this inro iogar irhlnic form. and di f ferenr iat ing ihe equarion;
) n p - ; r l n p = 6 6 p 5 1 .

lp do du .D
..L = -', --L

p p d p p
not ins lhat ihe f lu jd is compressible and is perfect gas, therefore p=pRf subst i tur ing
t h i s  i r t o  e " ' r : ' i n n  r  7 : n d  e n " : r j o n  1 . 5 .

/t,,
o  = *  =. / ;1R r  __--__________2.8

dp

t ' )



2.3 Pressure Field Created by a Moving Point Disrurbance:

In order to illustrare *le "ifeJt of the velJcity of rhe bodi' relarive to the speed of

sound on the f low R"tc,  consio. ,  rhe smal l  bodl ' ,  i  e,  essent ial ly a point  sou.rce of

disturbance, to be movlns ar a uni forrn l iner veloci ty '  through the gas and. let  the

;p: ; ;?"t i l " ; " ; ; " ; ; t  be a Al though the bodv is essenrial lv emit ted *are

cont lnuously,  a serres or * ,are emitred at  i ime inten'al  t  $ i l l  be consider.  Since the

U"i t  
' " "  

- ; ; f  "g rhrough t t t "  gut '  the or i -eir  of  
. these 

*a'es * ' i l l  be cont iniJal l - r '

.hrnoino \ \ rave senerated ar t i r ie 0 t '2t '  anJ i t  u i l l  be considered First '  consider ihe

:#i i ; :;. ;; 'pi. i  " i ,r," u"iv is i 'ei1 smat) compared ro the speed of sound'.The

;;;; ' ; ; ; ; ;;" '- irhich exjsts utinf in' i"nt is then iound bl superposit ion of al l the

pressure pulses rr l l ich t t t ' "  p"t iousl l  ernj t ted'  Fig shorrs sereral  pressure pulse

n a t t e l n f o i d i f f e r e n t r ' a | u e o f r h e s p e e d o | t h e s o u r c e c o m p a r e d r r i t h t ] r e s p e e J o f
- .oun d in rhe f l  u id.

l ' )

Fie (2.3).  Pressure f ie ld produced by a point  source ofdis lurbance mor ing at

uniform sPeed leftu ards'
(a) IncomPressible fluid (I//c : 0)'
iui Subsodic moriot (V /c = rr57-
icj Traosooic motion (7/c : l)
f;i S;;eff";'i-"";ot]on', iti*ttt'tiog Karman's three rules of supersonic flow

(v /c : 2).

*-  Incompressible Florv:  \ \ ihen the mediurn is incompressib)e ( f ig 2 3a )  or rr  hen the

speed ofrhe moving point  ai ' i ' i lunt"  is smal l  compared rr i th the speed ofsound'  rhe

pressure pulse spread uni forrnl i  in al l  d i rect ion'

I J



*-  Subsonic Flo*:  \ \ ihen the source mo'e at  subsonic speeds. Fig.2.3b. rhe pressure
disturbance is t 'eJr in al l  d i recr ion and ar al lpoints in spaie,  but th i  pressure parrem is no
)on ger s l  mmeir ical .
*-  Supersonic Floiv:  For supersonic speed Fig.2.3d indicates lhal  the phenomena are
entirel-v different from those at subsonic speed. All the pressure djsturLance are included
in a cone *hich has rhe point  source ofdisturbance. The cone r ' i th in r ' i r ich the
dislurbances are conf ined is cal led the Mach cone. Fig.2.3c shoq,s the pressure Denem at
the boundar-r '  benr een subsonic and supersonic.  that is-  for the case rr  lLere rhe si .eam
r eJocir l  is  ideni ical  rv i rh rhe sonjc ve)oci ty:  here the u,ave front is a plane.

Karman's RuJes ofSupersonic Fro* :  Fig 2.3 i i lusrrates the rhree rules ofsupersonic
i iorv proposed l r  \ r2n Karr lan's .

1- The Rules ofForbidden- Signars.  The effecl  ofpressure chanse produced by a
rodr r t ror ins ar a speed faster rhan sound cannol reach point  arread of rhe boir , .

2 . -  Thezone  o f  Ac t i on  and  the  Zone  o fs i l ences .  A  s la r i ona ry  po in r  sou rce  i n  a
supersoi ic srream produces ef lect  oni 'on J:oint  that l ie on or inside the \4ach
cone er:ending doNnsiream f lor:r  the poir ' r t  source. converselr ' .  tbe pressure anc. l
reloci t r  ar a:r  arbi t rarv point  of the slream can be inf luenced o,.r lv b 'disrurbun."
:cr ine ai  point  rhat l ies on or inside a cone ertending upsrrearn f ioni  rhe poinr
consideied and havine the sante verrex angle as the \ ,Jach cone.

, t -  The  Ru le  o fConcen t ra ted  Ac t j on .  The  p ressu re  d i s ru rbance  j s  l a ree l v
concenlrated in the neighbourhood ofrhe - \4ach cone that for:ns rhe-ourer l i ; r i r  of
ihe zone of act ion.

2. .1 Tbe \ lach Number and the i \ lach Angle:
I i  *as sho*n that the nature of the f lorv pal tern depends on rhe comparar i 'e

nrasnirudes ofrhe slreanr 'e locir1,  and rhe sonic 'eloci t l , .  The rat io of t i iese  . ,o
r eloci t l ,  is  cel led rhe \4ach , . -umber.  Thus.

I.'

-2.9
a

Tl ie semi-angle of  rhe,\4ach cone is relared ro the i r4ach nunrber b,r ,

Noie that  rhe mach ansle is

Example:

. i
s : : l d = -  - - - - - - 2 - 1 0

.\.!
imaginarv for subson ic fou,.

An obsener on the ground f inds that an airplane f fy ing bor izontal ly at  an al t i tude
of 5000 m has traveled l2 km from rhe overhead position before the sound of rhe
airp)ane is first heard. Estimate rhe speed ar u,hich rhe airplane is flying.

1 t



Solution
I t  is  assumed rhat  the net  d is turbance proCuced by the a i rcraf t  is  weak,  i .e . .  that ,
as ind icated b-v the wording of  the quest ion.  basica i ly  * 'hat  is  being invest igated is
how far  rhe a i icraf t  * i l l  have t raveled f rom the overhead posi t ion u 'hen the sound
waves emitted by the aircraft are first heard by the obsen'er. If the discussion of
lvlach s'aves given above is considered, it tt ' i l l be seen lhat, as indicated in Fig.
E3.9, rhe aircraft rvill first be heard by the obsen'er when the Mach \r'ave emanai-
ins f rom the nose of  the a i rcraf t  reaches the obsener .

Now, sincc thc lamperulure \ 'ar ies throlgh the a',nospheie, lhe spccd of
sounC |arjes as the sou;rd \r 'ales p!ss lsun through lhe almcsphere rhich
me!ns that tbe \{ach 'eres irom lhc aitcraf l  arc aclua:l !  cur\:d. This ef; ' :ct is,
ho\1c!ar, anal l  and r\ i l l  f 'a neglectcd here, th. sounC sPaed al th. avetala tem-
p3ratrre bai\rc.n :hc gio,Jid and lhe sirciaf i  bcitg used lo d: icrrbe the \ ' lach

No* as discuss3,j  in Erimple i . l ,  for al l i tuC.s, H. cf f :on 0m (se"- ;91; -
l . \ e l )  Lo  l l  019  n  I he  i cm le ra iu t c  i : l  ! : a  a lmosphc re  : s  g i r en  b1  I  =
: ( (  l 6  -  l '  0 /  A ( r /  sL1  ! :  l : . c  Fe r : r  i :  l i : u i :  c f  l j i l : : .  t h :  t e : r pe : . : t - : :  t s
: 33 .16  -  00065  x  l i l : {  =  l i l . 9  K .  Hen .e ,  t he  nca r  spe3d  o f sc r r , d  i s  g i r : n  b1 :

o = jlnr = \, Tlll$ or " r,-rg = 330.6m;s 
,_-

From rhe  abore  f igure  i t  * i i1  be  seen iha t  i f  o  i s  the  l r lach  ang le  based on  lhe
r.:]ean speeC of sound then

tan  o  =  50CO/ i2  000 =  0 .117

But  s ince  s i i ro  = l / -V , i t  fo i lo*s  tha t  "vns=1/v$ lz i  5s

HeDce. i t  fol)o$ s lhat:

| c loc i ty  o f  a i rc ra f r  =  l  6 '  l jO  6  .  859 6m. 's

Problem:
4 V

l . I  Air  at  a temperalure of  25"C is f louing ni th a veloci ty of  180 mis.  A project i le
is f i red into the air  stream rvi th a veloci ty of  800 m/s in the opposi te direct ion to
that of  the air  f fow. Calculate the angle that the Mach waves from the project i le
make to the direct ion of  mot ion.

2.2 An obsen'er al sea level does not hear an aircraft that is fl;'ing al an altitude of
?000 m until it is a distance of 13 km from the observer. Estimate the Mach
number at which the aircraft is ffying. In arriving at the answer, assume that the
average temperature of the air betrveen sea level and 7000 m is - l0'C.

An obsener on the ground finds that an airplane fl)ing horizontally at an
/ ' )  a l t i tude of2500m has traveled 6km from the overhead posi t ion before the

sound of the airplane is first heard. Assuming rhat, overall, the aircraft creates
a small disrurbance, estimalc the speed at u'hich the airplane is fl;ing. The
avcrage air lemp€rature between the ground and the altitude at $hjch the
airplane is ffying is I0"C. Explain thc assumptions you have made in arriving
at the answcr.

( l / ' 0 . {  I  i ) r  -
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In rhe absent of  electromagnet ic force and t t j th f r ict ion neg)igib1e. the only force act ing
on the control suriace are pressure force.,Assume that a pressurep-dp/2 acts on the side
su r face ofrhe control  rolume.

dp.
p.-1 + ( p + z)d,4 - ( p + dp)(A + dA) = QA V )( + d t/ - V ),

a

Simpli f f  ing I ields.
dp=p l 'dv  =0

The energl, equation s ith no extemal heat iransfer and no tr ork. for stady one-
d imensional f lo l '  beconre.

,  r )
l(h + ;)( nt/d'a) = 0 ---------------

J_- r
o r  d h + d _ = 0

l
An expression lor the second las'of  thermodl 'nanr ic is s iven :

.. Jp clp
Tds = dh - z :n,.i ,'or iseniiopic flou ds=0 .therefore dh = -:-

p p

Conrb in ing  these  equa t ion  te  ob la jn :

dt)  I" r  =  - d  -  -  c r  d p  -  p l  d l  =  0  r r  h i c h  i s  t h e  s a n t e  a s  l l t e  I r t o r t t e t r : u t n  e q J 3 1 i (  r t .
p J

3.3 Isentropic f lou'Tluou-eh a \/ar1 ing Area Charurel.
Combining rhe cont inui i l 'and momenium equat ion for isentropic f lou'resul t  in.

.  . .  t  dp.  d. t f
uu -1- pt I

I  p  A J
But

Y = at  fherefore. for isentrop:c f lorr '
ep

)^  / lJ  I l
dp -  pl ' t  ( -  

"P. -  l i t  = 0 rnd - i l  = -'  
p2: .1 

'  
a

dp(t- -\1'�)= pp'= + --------------------3.3
,1

Equat ion 3.3 demonstrates the inf luence of \4ach number on that f lorv.  For V< i  ,
subsonjc flou,. rhe terrn ./--1./ is positive. Therefore, an increase in area result in an
increase in pressure and from equat ion 3.2 a decrease in veloci ty.  Liker l ise.  a decrease in
area resul ts in decrease in pressure and an increase in veioci ty.  For supersonic f lou' ,  the
rerm I  -1t42 in equat ion 3.3 is negat i le,  and opposi te var iat ion occur.  The:-esul t  i l lustrate
in f ig har,e ramif icat ions. Subsonic f lo* 'cannot be accelerated to a veloci ty 'greater than
t l re veloci ty ofsound in a converging nozzle.  This is t rue i r respect ive of lhe pressure
difference imposed on rhe flon, through the nozzle. If it js desired to accelerate a strearr
fronr negl ig ib)e veloci t l , to supersonic le loci t l ' .  A convergenl-diversent channel nrust be
used as shou, in fi e.

3.2
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' 
.

'ffi-z'tz
;:,1. ' iF . Jt--= .;):.4 j ' , .- l . l- -;

.1.-1 Staenation e*d Propenies' \ lJ - - \.- ,--.
Stagnai ion propenies are useful  in t l rat  rhel 'def ine a referen'ce slaie i 'or  t  -

compressib- le i lorr .  Siasnat ion enihalpl  or total  enthalpl ' .  at  appoint  jn f lorr  is def ined ai

rhe enihaJpl  anained b) br inging rhe f lor i '  adiabat ical l l  to rest  ai  that po:nt .  For adiabat jc

Fig 3.2 Shorv rhe r .ar iat ion of
the pressures and r  eloci t f  in
different shape of area chanee
for subson ic and suPersonlc
florv.

process enerqJ eq u al  jon b.con]e

' 1

are: P -
P.

become.

S L J p E F S O H T C
o r t F u s E R-144aQrJar&

F l o t  -  D  i n c r . o t . r

-*la. +:,r- lr,-

, , , - - r=+ * ?=,, ' , " ! i  s i ,c*."  =JL

\ \ 'here f t ,  is the stagnat ion or toral  enthalpy per uni t  mass. Like* ' ise'  stasnat ion

ternperature or total temperatu re Tpr To can be defined as the temperature measured bv

br ir ig ing a f lo*,  adiabat i ia l ly to rei t  at  a point .  For a perfect gas * i th constant speci f ic

heats the enerqv equat ion becomes:
' t ,  | ;  ?

c,T"  + |  =  c ,T +;  s ince Vo-4. therefore
! !

-  . . . ' :  v
Therefore. *=tr- '* i-  I  uhereas a -- � . lyRf '  and tr4 =- The: 'efore'

'  
T  2 t R I  a

T  v - l  ^' r  
= ( l : - . \ 1 t )  - - - - - - - - - - - - - - -  - - - - - r J . 4  ,  ,  , - \  L - - - ' / c : - ' l

: .  
\ '  1  . /

For isenrropic 1 ' lo* ' rhe relat ion bet\ \ 'een pressure. iemperature and densi ty ofperfect gas

(2\ '  and 
'  = t '  l l  Therefore the pressure and densi ty relat ion' p , , '  T "  p "

l' = (1 t+M,)r -------- -------------3.s 
Alf!,

1 _ L
b =X + 

| 
t ' t :)/-r -------------------- '----3.6

4-\,lJJ >

19e,1., (i' 
( on,Lz

F r o r  P  I n I r : e r '

( x < l l  v  d . . r . o t c r( x < l l  v  6 . . r 1
""""rb_

s r rgsoN lc -  -  -
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3.5 Florv per Unit Area.
Ne\t  \ \e ui l l  der ive a useful  relat ion betueen the

temperature. pressure and \4ach number lor perlect gas.
con t i nu i t y  , . r e  make  the  fo l l o r r  i ng  a r ra r r ce rnen ls :

nt '  . .  D . .  p l '  t  ' /  iT,  l
- - - - . - r j - :

.1 RT .,7Rf \ ,t I I \j4
Subst i tute equat ion 3.4 for adiabat ic f lorv

r ;  "  - " r
_ : L  = . : : ,  _ L . \ 1 . : ' t _ , ' . \ l -  - _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 . ?

I  | R  l r  I  l'  " ' a ' a

To f ind a c.rnr ent ional  formula for the mass f los '  per uni l  area in terr ls of  \1.  u e
e l i n r i na te  p  i n  t he  equa t io r r  abo re  b1 'n reans  o f the  i sen t rop i c  l an ' re l : t i on  .  o r  su 'os t i t u te
eq  ua t  i on  3 .5 .

D l  t ' !  l )

r  l r  D"  ' -  \ ' "

j\l

florv per unit area. stag-nation
Staning u, i rh rhe equarion of

---------------3.8
r - l

, t  /  
- t  

l . / l \ : r ' - l )
' )

i .6 \4axi ; rrunr Flot '  per Unit  Area: To f ind the condit ion of  marinrunr lorr  per
u r : i t  a lea  r r  e  cou ld  d i f i e ren t i a te  equa t i on  -1 .S  t r  i t h  res lec t  t o  \ {  and  se t  t h i s  de r i r  a t i r  e
ec .ua l  i o  ze lo .  . l t  t h i s  cond i i i on .  ue  u  ou ld  l l nd  tha t  \ 1 -1 .  The re fb re  to  f i nd  t r r . i r , .  " -  \ \ e
need  on l l  se t  \ 1= l  i n  equa t i on  i . 8 .  t hus  r re  f i nd .

, ' ' '  , - ' ' ' - Er j*r# 
t= -----------------3.9| .  ,  . ) . . ,  = - . ; = r , _ ( - l  ,  . , =  -

. l  . +  \ K  7 + )  . , 1 o

For a given gas. therefore. the nraximu;:r  f lo*,per u;r i t  area depends only on the
rzt to p.AT".  For a gir  en value of the stagnat ion pressure and stagnat ion temperature and
for a passage r l i th minimum area. Equat ion 3.9 shou's tbat maximum f lo* 'uhich can be
passed is reJat ivel ,v )arge for gases ofhigh molecular weisht and relat iveJl 'srnal l  for  gases
of lou'  molecular * 'e ight.  Doubl ing the pressure level  doubles the marinum f lou' .
\ he reas  dcub ) ing  rhe  abso lu te  l en lpe ra tu re  i e re l  reduce  the  r ra r imum f l o$  b1 ,a  bou t  29
per  cen t .  Fo r  a l r  r r  i t h  ; ' =1 . - l  and  R=187  J  kg .Ko  rhe  tna r imum mass  f l o r r  pe r  un i t  a rea  i : :

= 0.0.10-12

The panicular value of  the temperature. pressure and densi ty rat ios at  the cr i t ical  state
( i .e at  the rr in imu;n area) are found by sef i ing M=l in equat ions ] .4.  3.5.  i .6,  We u, i l l
re i 'er  ro the cr i t ical  propert ies by superscr ipt  aster isk (*) .
T' ')
-  =  ( - l  l O r  a l I  =  U . d J - )
T"  " /  +1 '

t1 /
L = 1  -  

\ t - t  l n r  2 i r  = 0  i t S j- \  . )
p .  7 +  t

^ l

= (  ; ) ' - '  fo r  a i r  =0 .6339
y + r



t e { (

3.7 The area Rat io .
Just as \ \ 'e have found j r  convenient to uork rr i th rhe dimensionlessrat jo p/poelc '

i t i scon l ' en ien t to in t roducead imens ion ]essa rea ra t i o ' ob r ' i ous l l , t heapprop r ta te
; ; ;" ;"" ; t .^ is l ' .  and so \ \e compute fro:n equai ion i  8 and l  9 the formula'

l ' l
- "1:-::

z  - : -  I  -  - , . .  l - ' r - '- '  1 7 - r r  - - - - - - - - - - - - - - 3 . 1 0
r  - ' l

grater than uiritl'. and for an;' ,eiven lalue

V. one for subson ic flo*' and the oiher for

l ' [  "

r . o

o.5

. ;

*

o.oo5

1 t

5  u - ' b  c : ' t ' . 1 ( l

r )A  _ " r , 1  _ _ ,  l 1 - _ 1 1 1
r / l  . , , 1

A  l t l t . 1  : t 1  L  / /  -  |

The area rat ion is a)rrals

a)rr  avs correspond tu 'o r  alue of-

f lorr .

i .8 \\ iorking Charts and Tables
for isentroPic FIou'

Since the formulas rhus fae der ir  ed lead to

ted ious  numer i ca l  ca l cu la t i on  .  o f rhe  o fa

t  r ia l -e rro r  na: ural .  pracr ical  cont putal ion :re

great)1 '  faci l i tated b1 u oik ing chart  and

Chart for IsentroPic FIo*.
Fig. represent in graphical  form the

var ious dimensionless rat io foe isentropic

f lsu, '  l l  i th \ ' {  as independent I 'ar i lb le '  Since

changes of f lu id propenies in isentropic

tlorv-are brought a bout througb change in

cross-sect ional  aiea. the key cun'e on this

chad is rhat of  A/A'  .  The effects ofchange

in area on other propenies ma1'ea.qi ly be

found by tracin-s '  the cun e of  ' {  l '1 ' ,  keepi:e

in mind that.1 ' .  po -etc.  are al l  constant

referertce value for a given problem' For

exaniple.  an increase in area at subsonic

speed produces a decrease in veloci t l ' '  an

increase in p.  f ,  P.

of A'/A' lhere
superson ic

\-

0.5 r.o
M

is  avai lable.  l is ts the var ious
independent argumeni

1 0 0

o. l
to

l " = f t e , r .

{

l \

l L -
o.lo,00

\\rorking Tables.
For accurate or extensive calculat ion tables

isentropic funcrion for y= I .4 s ith \4ach number as

0.5
2.0

M p/P. TiTo p/po -4"4

0 813 0 .95238 0 .8893 1 .3398 1  1295

0. t  2i8 0.55s56 0-2300 1.6875 0'2I567

: T
\-i" t

T
jp \

4 .\ i
I
fJ
I

\ - -v-
-l 1

L +
ih z \

+
I

l
+

I
-|j.t

i , r\  r '
t l
I I

+ n
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3.9 Isentropic Flou'in Convergent Nozzle:
Coniider a fluid stored in a large resen,oir is to be discharge through a converging

nozzle to region u.here the back pressure Pa is control lable b1'  means of a valve. For a

constant resenoir pressure Po it is desired to study tire effecrs of the variations in back

pressure on the rat of mass florv through the nozzle. the pressure distribution along the

passage and on the exit-plane pressure P. . These effect are portral ed graphicallf in Fig,

anr b.  and c.  respect ivel) .

Vo=
P o '
To=

p
po

o i
c o n s t
cons t

F  t o w

Pe

E x h o u s t e r

(a)

PE

Yo

U Pa/Po

(c)

[*-R e gime u --J.- negime I-']

l-.-frp"

( v )  ( i v ) i
( i i  i )

( i i )

( t )

P B  / P o

(b)

Fig. operation ofconverging nozzle at various back pressure'

Ps
( v o r i o b l e )

vF

V o  l v e

R e  g i m e
I

R e g i m e
II

i )
( i  iL -

( i i i ) -

D i s l o n c e  A l o n g  N o  z z  l e

Regime tr

fi r: -,,

2 l



To begin u,ith. suppose thar Pb/Po= l, shou'n as condition (i) in fig.. The pressure
is then constant through the nozzle, and there is no floiv. If P6 is now reduced to a value
slightly less than Po as shorvn by condition (ii), there tvill be florv *'ith a constantly
decreasing pressure through rhe nozzle. Because the exit flow is subsonic, the exit-pJan
pressure Pe must be the same as rhe back pressure Pl, A funher reduction in Pt 1o
condit ion( i i i )  acts to increase the f low rate and to change the pressure djstr ibut ion ,  but
rhere is no qual i tat ive change in performance. Simi lar consjderat ion apply unt i l  condit ion
(v) is reach at u,hich poinr P b/Po equal the critical pressure ratio and the value of lvle
equal uni ty.  Further reduct jon ln PbiPo. sa1'  to condit ion (v).  cannot produce lunher
chanee in condit ion u i ih in the nozzle.  for the value of  Pe/Po cannot be made less than
the crr t jcal  pressure rat io unless there is a throal  upstream ofthe exi t  sect ion (  i t  is
assumed here that the strea:n f i1 ls the passage).  ConsequentJy at  condit ion(r ' ) .  the pressure
distr ibut ion n i th in rhe nozzle.  the v alue of  PetPo. and dre f lo\ \  rate are al l  ident ical  u l ih
ihe corresponding quant i l jes for condit ion ( iv) .  \ \ /hen the f lorv reach the condi i ion the
f lou' is cal led to be chocked.

To summarize the proceedir te discussion. the trvo di f ferent t l  pe of  f lorr  r .  i i l  l .c
denoted as regime I  and regi i re I I .  These reginres rray be compared as fol lor is.

Ree ime  I Res ime  I I

c)$'

PblPo > P*iPo

PelPo=Pb/Po

t\.{< 1

Pb/Po< P*iPo

PbiPo=P*/Po

... t;^u r \ l u  ,  ,- independ ent on Pb/Po
Ae-Po

t i l . , J l o ,  ,

Ae . f  o

3- i 0 Convergent-Divergent Nozzles:
Consider an experirnent similar to the one describe, except that a

converging -diverging nozzle is to be used. Fig. With Pb less than Po by a
small amount, the flow is similar to that through a venture passage. and it
may be treated approximately as incompressible. The corresponding
pressure distribution is shorvn by curve(i) and (ii) in fig. \\4ren Pb/Po is
reduced to ihe value corresponding to curve (i i i). The l\4ach Nunber at the
throat is unity, and no further reduction in Pt/Po are possible if the stream
fills the passage. We consider next the operation when the flow is entirely
supersonic, corresponding to curve(iv). The value of Pb/Po for curve(ir')
conesponds exactly to the alea ratio ofthe nozzle. Ae/Al, as given by
isentropic table( in this case At=A*, since Mt=1). This is often called the
desigrt pressure ralio of lhe nozz[e.
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tr-, o
1,."

P o =

r o  -

F  l o w

E x h o u s l e r
p s

. 'E

V o l v e

'Nof lowpa| temfu l f i l l ingthecondi t ionof isent rop icandone-d imensional
ho* "* u. found which-will correspond to values of Pb/Po bet*,een those

oi"u.,r., 1iiil and (iv) in fig. one merhod of finding solutions foe these

Uour]a^,y .o,"tairion is to sr-fipose that irreversible discontinuity involving

entroDv increase occur someu'here within the passage'

A
Y
i

I

%

o
D i s i o n c e  A l o n g  N o z z l e

Fig. Operation of convergine-diverging nozzle at various back pressure'

i-1 1 Some Application of Isentropic Flo*' '

Thrust of Rocket Molor. Rocket motor is generally consist of tlvo parts'

the combustion chamber u'hich is a container where the fuel is bum and the

thrust unit where the thrust is develop' The tbrust unit is almost a

convergent-divergent no777e. The combustion chamber is generate gasses

steadily at a stagnation pr.rru,t of Po and sta*snation temperature of To and

;;;,h'" **, i, J"puna.d isentopically in the thrust unit as show in fig'

Th*e conveiging-diverging nozzle bas a th-roat area of At and exit€r'ea

of Ae. The generaied gase, i,Jutg" to the atmosphere at pressure of Pa' 
'

Most rocket engine gases at about iOOOpu and operate in atmospheres with

pr"rr"* "f l0i3kP; or less, therefore, such a reduction in pressure is only

iossible by converging-diverging nazzle' The net thrust acting on the rocket

o i

;r;{ 
-l

z5
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.-----/)'

r+-*
r  >  fo l | c  -  p rassur6
lDts t . jbu t ioo

Prodr,.ces
Posilive ihrL'sl iP,ore whcre p.,po

'Produces

)

Fie isentopic f lon in rocket moror.

engure nleY non'be obtained b) 'appl l  ing ihe r. Ironrentum equation olr t l .re
free bociv diagrarls of ihe control lo jurtre.

3  =  n t l ' e  -  . r , e (Pe  -  Po ) - - - - - - - - - - - - - - - - - - - - - -  i .  i  I

u biclr is then put into dinrensionless for through division bt, poAt.
I  nr  , .  .4e Pc Po

€ .  _ _ ( _  _ _ _ _ _ -  1  t r
Po-lt Po..4t .1r 

' 
Po Po

rolll c

l l l

ed

'C
!
7

rO

l
I

C f l o

2 tl

o\

: )

quailon

l
D ^  , 4 a R ' 7 = l

and from the energv equalior) :

t ,  j ^ ^ , -  - - - = - . -  
-  .  k  , -  f  , ,  =

ve - ,J tLp( l  o - Ie ) .=  r :? .CpTo, ;1 - ;  =  , lZ .CpTor j )  -  (+ )  '
\ to \ Pc.,

Subsisting rhese into the thrust equation and reananurns,

Since the pressure rat io Pe/Po depends onl l ,on the area rat io equat ion i . l3 ,  indicates
thal_lhe trust lor a nozzle ofgiven size and geometry depends only, on po and rhe ratio
Pe, Po and is independent of the temperature fo.

Effect of Area Ration
\ \ , 'e no* '  ask, for ei 'en 'a lue of  At-  po and pa r i  hat e_xi t  area should be used in

order to obrain manimum rhrust?.  81, app) ing rhe carcurus to equarion 3.  r  3 i t  mav be
shor 'n af ter a labor ious carcurat ion that s is a maxinrum rr  hen the area rat io is c l rosen in
such a *ay to make the pressure in the exi t  prane exactJ 'equar to pa. Therfore equat ion
3 .13  become.

there re sults.

- -:tt1

S ur loc€

1 t



Perfonlance of Real Nozzle:
The performance of real nozzle differs slightly from that computed by isentropic

no* o":ing io the friction effect. Since depanure from-isentropic florv are usuaJly.sm.all'

tha usual iesigl procedure is based on rhe use of isentropic florv function u'hich rhen

, , , o O i l ; . a b y ' e m p i r i c a l l ; " d e t e r m i n e d c o e f f i c i e n t ' T h e s e c o e f f i c i e n t a r e t h e n o z z l e
e ffi ciencl' and the nozzl e di scharge coeffi cient

The nozzle efficiencl' T1\ ma}, defined as the rate of the erir kjnet;c energy to the

k i n e t i c e n e r g l , r r h i c h m a l b e o b i a i n e d b l . e r p a n d i n g t h e g a s i s e n i r o p i c a l l y ' t o t h e s a m e
final  pressure.

l ' -  
' )

' '  
1 '  2

------------------------ i. I 5

The nozzle discharge coef i lc ient Cd is def ined as

the rale of the actual  nlass l lo\ \  rale r)r  lo the r
iscnrroFic:rass f lorr  rale / / r , rc \ \h ich rrould be

obrained b1 erpanding the gas isentropical l f  io

the same f inal  Pressure
"' '3 16Ld = - -------

n1t , t

The figure at the right hand side sho\\'s the

isentropic and the real expansion Process through

ihe nozzle. \\rhen the first larv of thermodl'namic

app); . ' ing at  the expansion process for both isentropic and the real process.

2;e

___ Tc

T i

I t 7

- 7 .
J o ,

and h=cr .T  ,  there fore

and for isenrropic process 
t 

= , 
,,--r.t 

/ therefore ,

I  p  r ] l
r ' ; . , '  =2,0.r .1 l -( ; ) '  I  

-  --------------3.17
t  ' -  J

simi lar ly one rnighiconsider the imaginary isenrropic process between the actual  exi t

state and its slagnalion state oe.

v ?
h,," = h.-+ and h= cr.T , therefore

v"'  -- 2." , .r*1t 
- 

l l  
^ofor isentropic process 

* 
= ,hr: rherefore '

25



T ^ . ' -L l
v,' =zc-.r,-lt-rt,, 

l
- 3 . 1 8

The process u i rh in rhe nozzle is ad iabat ic rh is mean that To,= To" ,  subst i tute equat ion 3.  i  8
and  3 .17  i n to  equa t l on  3 .16  and  s imp l i f l , i ng .

p  I  P r l ;' '  = l l - n .  ( )  - { 9 - r ' 1  - - - - - - - - - - i . 1 9
P", L 

'P. '  
l

The mass per uni t  area for isentropic l los,can be evaiuated as a funct ion ofpressure rat io
instated of \Jach \umber.  j fone c:n subst j tute equat ion -1.5 jnro equat jon 3.7.

.  ' -  - ^  ;  ^  :  ^  r - r  
-

" ' ' ,  =  p  - !  t - t  l rL t ;  -  r l - t f  :  - - - - - - - - - - - - - j . :0
. - i  

' " \ R T  
\ . / - t l ' P , '  

' P , , '
' I

Simi lar lv the actual  mass i lur  nrar be obtain.

a .
' t  - ,  :  , t  ;  :  ) , r , , :

:  
- '  '  r  , ? r  i ,  . . - r ] ' t l' '  r " "  1 .  L  .

Subs t i t u t i ng  equ : t  i on  3 .1 l .  i . 2  0
t e r ; n  n f  n rpcc r ' r , .  r r r i ^

P ----: P :---
/ ' r , l  1 1  / _ . \ '
\ p  )  i ' - \ p  )

C d =  " '  : :  
' -  

,
p t:: tl p t1

( - - r )  '  l t  l - t - 1 )  /
f," I r",

Subst i ture equat ion 3. l9 into the above equat ion to f ind rhe discharee coeff ic ient in term
ofisotropic pressure ratio and nozzle efficienc;,.

----------------------i 2i

P R O B L E M S

.,3.1] .  -d i r  l lor rs  at  the rate of  I  kg, ls  through a convergent-  d  ivergent  nozzle-  The
entrance a-rea is 2 X 10-3 m2 ard the inlet temperature ard pressure a-re 438 K
ald 580 kPa.  I f  the ex i t  pressure is  l4O kPa and the expansion is  isentropic ,
fin cl:
(a)  The veloc i ty  at  entrance.

o n  J . I  o

, r , , ; i- l -:*.r I

i r i i o  equa l l

---------------i.: l

: o  f i nd  t5e  g i scha rse  coe f f i c i cn r  i n

l  p  r i
1 - r . I l - (  r ) '  I' ' |  p  i\ L l

2 0
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(b) The stagnation lemperature ar|d stagnation pressure-

(c) The throat a.nd exit areas'

.- -. (d) The exit velocity'

3 .2)  a .onu"rgent  nozzle has an ex i t  area 6 '5 X lO-a m?'  Ai r  enters the nozzle at
-tt 

oo : ito iPa, l"o : 370 K' If the flow is isentropic' determine the mass rate of

fltt*' fot back Pressure of:
(a) 359 kPa
(b) s4O kPa
(c) 2OO kPa.
A convergent-divergent sleam nozzle has a-.l exit area of 3'2X l0-a m2 and a:r

;il;il" "i ilo tp. The inlet concitions are I MPa and 590 K \r'ith

".gf ig iUf.  veloci ty.  Assume iCeal f lo*" i  e '  no )osses'  and

- :  u .  - \ . 4 )

'1j

Finci:
(a )  Tbe mass  ra te  o f  f loq  fo r  th is  nozz le

(b)  The th roa t  a rea .

(c) The sonic \ 'elocit.v al the throat

A i r  f lo \ . ' s  i sen t rop ica l l y  th rough a  corvergent -d ivergen l  passage w i th  in le i  a - rea  5  2

i l ! , ' - t " t -"-  " i "  ̂ - l  z.nf  ind exi t  a 'e" 3 87 cm2' At the in let  the air  veloci t f  is

;ob';;, pressute is 680 kP a' and temperature 345 K' Determ jne:

(a)  The mass rate of f low through the nozzle

iui rr,. N{ach number at the minimum-area section-

i . j  f f t "  re loc i ty  and the p. ressute at  the ex i t  sect ion '

Air is flo*ing in a convergent nozzie' At a Part'cY l-"I-1""*.t"," within the nozzle the

;;.r;" is Z-aO tpa, tbe steam temPerature is^3-45 l<'.and the veiocitv is I5O m/s'

I f the cross-sect ional  area at  th is  locat ion is  9 '29 X l0-3 m2'  f iDd:

i"i ir," Mach number at this tocatio:l '

iui rn" stagnation temp€rature and pressu;'e'

l;i i l; ur"-i pr"rtut"' ' "nd temPerature at the exit where M: I o'

ial rr'" mass rate sf flew for the nozzle-'

Ind icate any assumpt ions you ma-r-  rnale anO lhe source o l  data used in  the

sotution. f/) I

A i r  f lo* 's  isentroPical ly  at  the rate o i0 5 kg ls  through a suDersoDic convergent-

divergenr nozzle. At the inlet, the pr"ssure is 6-80 kPa".the temf",|i*J9i K'-^nci

irr"li". J e .s cmz' If the exit area is 13 cm2' calculate:

(a) The stag!ation Pressure and temperature'

(b)  The ex i t  Mach r , ru1q€r .  
,  - .1 .

(c) The exit pressure and tempeiature' y,) r^ a' I " 
,,. , -.-?

iai rr," area and the velocity a! rhi thr-o+'- 
------^-,,-^ --,, lu^.,

(e) What *'i l l be tn:e -"irn"t raie of'Gw and the corresponding exit Mach

number if the flow is completely subsonic in the no-zzle?

i l, 3,7. A stream of carbon dioxide is flowinc il;Ll*n I'D' pipe at a strean pressure or

) 680 kPa and a stream itrnp"'"t"t off$' A 7 5 cm X 5 cm venturi'neter
-  - )  

t ; i l ;  in- i r t i ,  p lp"  shows a Pressure dr l 'erenr ia l  reading of  1 '68 mm Hg

Assuming ideal  f low,  determp' \  . - r  ̂ L^ .  -L . - : -^ ,  i r ,ha
(a) The mass rate oinot" of 

-C-O'l 
Compare your alswer $ith that obtained if thr

' 
igit i. considered incomPressib!-

- } �
J . 5 . '

/5])
),1-:"/



(it
t " r ' i \

\  I R

-3,.19,t

(b) If the mass rate of flow of CO2 were to be doubled' what would be the oew

pressure differential reading for the lenturimeter? .. .
(c)  i f r i ,e  f lu id  were hydrogen instead ofCO2'  other  condi t ions being the sarne as
' 

given in the problem statement' \r'hat *'ould be the mass rate of flow?

(dl  i f  the temperature of  the CO2 were 440 K instead of  365 K'  o ther  condj t icns
' - ' l " i r r g , n " s " * " a s g i t e n i n r h e p r o b l e m s t a t e m e n t ' $ ' h a t \ r ' o u l d b e t h e m a s s r a t e

of flow for the CO2?

A 0.14 m3 tank of  compressed a i r  i ischa ' rges through a 2 2 cm diameter

"."i ".gj.g "ot.le located in the side ofthe tank' If the mass flow coefTicient ofrhe

".lt:"-Uri"a on isentropic flou' through it is 0 95 and thc gas v'ithin rhc lar:k

"*punat  isothermal)y  f : -on I  MPa to 350 kPa,  p lot  the pressure in  the tank versus

el ipsea t lne as rhe pressure dec:eases Assume tbe temperature of rhe tank is  295

K a.r td  t j re  surrounding p:essure is  l0 l '3  kPa'

Ai r  a t  sragnat jon condi t ions of  2  l r {Pa ard 750 K l lo$ s  isentropica i l l '  rhrough a

con. ergilldiu:ergra g nozr-l!. If the ma-ximurn flo\r' rate rs 5 4 kg/s' detemrne:

(b)  The at  the  nozz le  ex i t  i f  rLe  ex i t  a rea  is

3 . 1 0 . . ' F i n d  t h e  t h r o a t  a ' r d  e x i r  a r e a s  i n  m !  f o r  a  c r i t i c a l - l l o r v  n o z z l e  h a n d l l n g

lelocitl ' .
i imes  as

pressure ,  and t  emPera ture

le rge  as  the  th roa l  a rea .

a i r  a r  t h e
strealTt el

,r'.r:
,:..,

t '  ' ru" -  
" l i  l  kg ls  * 'hen rhe desi red exrr  le loc i t l  is  I  I  oO m' ls  \ r ' i th  the

p - :  ) i O  k P a  a n d  I :  - r l O  K  ' A s s u m e  i s e n t r o p i c  f l o r v  a n d ' l :  t  4 '

: . t t l )  a i r  f lous rev-ers ib ly  and adi4bat jca l ly  in  a nozzle.  At  sect ion I  o f  rhe nozzle the

, ' '  r 'e loc j t ] .  pressurer  , . -p l i ' iu t t ,  and zrea are 165 r  s '  -150 kPa'  460 K'  and

l t t  lO- i  m:-  At  sect ion 2 in  nozzle the a- 'e  a is  26x lO*1 m? Fin&

(a)  The mass i low rate i !  the nozzle '

(b)  V2,  M2,  Pa,  t2  and '7 '  |  ; " ' r

i,ltl". ' 1it,.t" are t*'o in*pendent arsu'ers for this condition' Calculete both

cases. If there is a 1fuoat' determine its area )
\  \  J  \ r '  o  

^ .  a 7 a  \ a  - - r - . "  "  - a - r ' p r o i r o -
f -12. ,Ai r  a t  a  pressure o i  680 kPa and a ternperature o i  833 K enters a converg ing

.-. 
- 
,.t dir,.rging nozz le through a line of 4-6 X lO-3.m2 area and expands to a delivery-

,*g io i  p i " r rur .  o f  33 kPa- Assuming isentropic  expansion and a mass rate o i  f low

of  I  kg/s ,  f inc
(a)  Tbe stagtat ion enlh a lPl '
(b)  The temPerature and enthalpy ar  d ischarge '

/  i4  Tne Mach number and veloc i ty  of  the a i r  s t ream at  d ischarge '

l / .  Ld l  The ma; i imum nass f lo*  rate per  unj t  ar€a

t  i ; ,  i "  f lo* 's  isentropica l ly  at  r l re  rate of  I  lg /s  through a duct-  At  one sect ion of  the 
/ \ , )- ' t '  

O r a a t ' l t "  c r o s s - s e c t j o r . a l  a r e a  i s - 9  1 Y  i 0 - 3  m 2 '  s t a t j c  p r e s s u r e  i s  2 O O  k P a '  a : l d  r ' \ n

- : - , - r * r , -n  temperarure is  5 iO K.  Derermine the 'e loc i ty  of  rhe st re-a-rn and lbe

mi, i imum area at  the ex i t  o f  rhe ducl  rhat  causes no reduci icn in  rhe mass rate c f

( i ;
,/>

flR*. >:
Air llows isentropically through A i6nverging nozzl-elAt the inlet of the nozzle the

pr" . r r r "pr : :ab tpa,  the tempirature I1  is  55-0 K,  the ve)oc i ty  Z1 is  200 m'us '
' . t  

d  ,h"  . ror=-r"c t ional  area,41 is  9.3 X l0-3 m2'  Consider  a i r  to  be an ideal  gas

\! ith y : I .4 and find:
(a)  The stagnat ion temperelure and pressure '

iUi  fh"  sonic  ve loc i ty  and the Mach numbet  at  the io leL

(c)  The area,  Pressure,  lemperature,  and !e)oc i ty  at the ex i t  i f  'L |  :  I  a t  ex i t '

o '  \ t
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J-6
(d) Draw graphs of G, M, 4 aad./ vcrsus prcssurc, indicating the values at the

inlet and exit of thc nozzlc.
3.15, Superheated stcam expards isentropically in a. convcrgcut{iverge_lrt- nozzle from

a-n initial state in which the pressurc is 2.O Mpa and thc superhcdt is 37g K to a
pre5sure.of 680 kPa The rate of flow is 0.5 kgls.
(a) Find the velocity ofthe steam and the crosesectiooa! aJea ofthe nozzlc at the

sections where thc pressures are 1.0 Mpa and 1.2 Mpa
(b) Determine the pressure, velocity, and crosssectional ares at the tbjoat.
(c) Determine the vclocity ard cross-sectional area at discharge.

Assume 4 : o.r r .
Po

3.16. A convergent nozzle receives stcam at a pressure of3.4 Mpa and a temperature of
640 K with negligible velocity. The nozzle dischargcs into a chamber ar which the
pressure is  mainta ined at  1.36 MPa.  I f the throat  area of the nozzle is  2.3 X l0-1
m2 and the discharge charnbcr a-rea is 0.056 nt', find
(a) The velocity at the throat.
(b) Thc mass rate of flow.

^',
Assumc a : 0.55 and the flo*, is isentrooic-

Po
3.1 7. Air flows isenrropically rkough rhe convergent-divcrgenr nozzle shown in Fig

3.24 The inlet pressure is 80 kPa, the inlcr temperature 295 K, and the back

4 .  1 . 0  c m  i ' "
l a "

FIGURE 3J1

pressure l.0l 3 kPa. What should be the exjt diameter of tie nozzle which
corresponds to the maximum obtainable value of Mach number at the exit? What
aJe the mass rate of flow, the exit Mach number, a:rd the exit temperature?

3.18. A rocket motor is fitted with a convertenr-divergent nozzle having a throat
diameter 2.5 cm, If the chamber prcssure is I MPa and thc chamber temperature
is 22OO K, determine:
(a) The mass flow rate through the nozzle.
(b) The Mach number at the exit (ps..1 : 101.3 kPa).
(c) The thrust developed at sea level.
Assume that the products of combustion bchave like a perfect gas (7:1.4,
.R: 540-J/kg K) and the expansion through tbe nozzle is isentropic.

3. I 9. Air is flowing through a section of a straiglt codvergent nozzle. At tlte entrance to
the nozzle section the area is 4 X lO-3 n?, the velocity is 100 m./s, the air
pressure is 680 kPa, and the air temperature is 365 K. At the exit of the section
the area is 2 X l0-3 r#. Assume reversible adiabatic flow. Calculate the
magnitude and direction of the force exened by the fluid upon the gjven nozzle
section.

i.',rl ; '
'.1, 't \

I t
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Chapter Four

Introduction:
Normal Shock Waves

The shock process represent an abrupt change in fluid properties, in which finite bAry
variation in pressure temperature and density occur over a shock thickness comparable to 

' "'

the mean frie path of the gas molecules. Ir has been established that supersonic flow ^.
adjust to the prissure ofa body.by mean ofsuch shock wave, *'hereas subsonic flow can \"''

adjust by gradual change in florv properries. Shockimay also occur in the flow through 
1^:)

nozzle or duct and have a decisive effect on these flqw.

How Shock Wave Take Place:
Consider a piston in a tube and its given a steadl velociry to the right of

magnitude dv. A sound wave travels a head ofthe piston throuSh the medium in the tube.

Sufpose the piston is now given a second incrernent ofvelocity dv, casing a second wave

to .ou. into the compressed gas behind the first rvave. The location of the wave and the

pressure distribution in the tube after a time t are sho*tt in figure. Each wave travel at the

velocity of sound with respect to the gas into which iS moving, since the second wave is

moving into a gas that is already moving to the righr with velociry' dv. The second wave is

moving into a compressed gas having a slightly elevated temperature, therefore the

,..ond *,uu" travel with a greater absolute velocity than the first wave and gradually over

take i r .  A ser ies of  th is induced *ave after i ts over take each other wi l l  produce a shock

\\ave or a sudden change in pressure and other prope(ies

a € l t T3>72>TI therefore a3> a2> a I

Fig shows one and two, three and the over take ofthe sound wave propagate

a head of the niston

$t

o

"tf
' t

/b/?tJ\
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Chapter Four
Normal Shock Waves

t;
a c c \ ! t T3>T2>TI therefore a3> a2> a l

tto"o?itlXt:"k 
process represent an abrupt change in nl'1.00':f;"*.;rt:;g;:$ilt::

variation in pressure temperature and density occur over a shc

*:r"#,'l:L::[$f''3*I'"iffi :tl$Ult'1"*it'T*"'ffi
i:):: :1 iJ:i :li..l1T; il"l';'. :"; ;;,r' ",. n o*

""* T"""",ToY?;,Il5"':':'t"uu. una it'. 'i*l "'.::1*nh'il#oll,"'1i ;:iili*ugnt,iJJule*i:11:i:::i1""'';:"XTi"'.:"'l::iT!If 
l*f;:TfiiJ;:XT*:?::J'J;;: iit'f i:iti+i{l tr'.ff :Tl *j j;:: ;:tt f U" i"r *".. i.". a ",,r, "

l':*:f iil";t*.:l,:":n'."^'ffi ffi qist1$::;*:;*":::*;ru1:
il"f i;;-"=;."::"..1t,i#J;:',.ffi ,''i:",ff ":",T"T#?Ji:'"'fi lirlJ
ffi:ii-l';;[i:"1,'liin'ioTi.o rvave after its over take *"i,'"ir'"' *ili priduce a.shock

wave or a sudden change ln pressure and other properties'

W

Fig shows one and tw<i, three and the over take ofthe sound wave propagate

a head of the Piston
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t"'t'l:?,#,H:[]::,I.fffi ughastationarvr:i,1t,1,"i,],lJi;,"."""i'ilii.,

rm*ll$**:*:t*:m::r,ii'"Ti+:liiilff*;;1:''*#*:il
""",.*",i"" of mass, momert:?,i:1:TtJ,f"l* i?liiili;;iv,"t,.,ipi "'" *a
We rvill refer to the ProPenles '

downstream bY "Y"'

2 i  =p ,V ,A ,=P :V iA l

The shock *'ave thickness is very small therefore l':'{' '

- r /  -  ^ L/ -------------- '

c ^ .  ^ a . € P . t  o 1 l \
r  v r  f i ! '  r ! - .  - - _

=l-r,^F^+ --"'-'4.7
in the flor'v direction are the pressure

4 . 1

Since the onl l ' force act ing on the control  volume

force, consenation of momentum ls'

P,A, -  P,-A! = m'(V, -V')

Combine of equation 4'1 into the above equation' rvhere m' = p'V'A- = P'V'A'

P, + P,V,2 = P, + PrVrt -------4'3

For perfect gas P= P R'-T

P ,+  p ,V ,2  =  P , (1+7M, ' )

P,+ p,V,2 = P,( l+lM, ' � )

P,(l + rM,'� ) = P "(1 + /vI t'� ) 
----'--'----4'4

The florv through the control volume is adiabatic and the energy equation become'

' ,r, *l -- ' ,r, *vi =co + r' For adiabatic flow the stagnation temperature does nit

.hung" ulros the shock wave this mean that To*=Tov '

r. (r + | v'=, = T,(t + * M,r' ----------------4'5
' ^/.

Substitute energy equation 4 5 and momentum equation 4'4 into the continuity equation

A . )

;Jfi;*;a^ io "uia"nt tr'uto; ';r*ion +'o is the trivial one' M'=M' This solution

;i;i;i;;;;il-c' in p'opttti"' in constant area flow conesoonding to isentroptc ltow

and that is not of interest '"' tn" i*"*t;Uf " tinotrnut shock' 
-Equation 

4'6 can be solve

Oisco.rli-

YRT,

to yield Mrin term of M''

3 l



l i ')
M " + -

Y - l
l{.' = -# -'-----------------4'7

'  z /  , r 2  1_ l v t r  - L

y - l

Norv to find the pressure ratio after and before the shock, substitute equation 4.7 into

equation 4.4 .

P 2 / .V - ' �  - 0 -D
__L
P  v  + l

alio to find the temperature ratio aller and before the shock, one may substitute equation

4.7 into equat ion 4.5

- v  
_

f, _Eryi_ o:t:y:!v) --------------4,9

and if *e substitute equation 4.7 into equation 4'l we can find the density and the

velocity ratio.
- .  '  " t t 2p,  y .  t r  +  L) tut  t  _  -___--____--____-- ,+.10-- - : -=:=-- - ' -=

p, Vy 2+(y-1)M,-

The ratio ofstagnation pressure is a measure ofthe irreversibility in the shock process. It

may be found bY observing that:
P P P P' o v  - y  

"

, = p  p P
1 y  . r . a x

Now f/e is given by Eq. 4.8, ind P"/Prand !/P."anay be found lrom Eq'3'5' Using Eq'

4.7 forihe val-ue of ,41, we get after algebraic simplification'

T, (y +1)M,' �

(y +t)M,'�
,L
f-l

-------------4.1 I
2+(y  + l )M, ' �

To evaluate the entropy change across the shock, we employ the perfect gas formula'

P  f  t .
|  t s l  r t .

P^ l r+t

s,-s, =c, nl-nnL
substitute Eq. 4.8 and 4.9 into Eq. 4' 12 then'

%-! = #"1h, ; - #). ̂^l#51 - " "

- --.1- r
f  - l  |  ' t l

/^l  L

4.12



Impossibility of a Rerefaction Shock

Carfut study of Eq'4 12 indicate that for gases rvith

l<t<1.67 the enrropy change is ahi  ays posi t ive when Mx is

nr*ut. .  thrn un;ty,  ina is aluays negat ive when iv l ' t  is . less

i t run uni ,V. The general  fom of Eq 4 12 is shorvn in F, ig '  I t

ir or*"".ig-""sly that for perfect gas only the shock from

,ui"*oni"  6 subsonic is possible Since the shock process

i, lAiuUuti. and according to second larv of thermodlnamic

the entropy change must be posi t ive

io*pur ing Eq. '1.12 for entropy change and Eq 4' l l

for stagnation pressure ration' one can conclude the

fol lowing correlat ion:
c  - e  P

R P.,

According to the second lalv of thermodl'namic the rate ofchange'itrO 
, u""a referring to Eq.4.l3 this mean that P'r' is less than P"

Theshock rvave takep lace in .o rde r tokeep the f l o rvcon l i nua t i on th i smean tha t the f l ow
i, ,t*dy and the mass flolv does not change across the shock'

m  t = n 1  . ,

we have seen lrom the previous chapter that the marimum mass fl-olv rate can be

,.ii.r"a at the chokediondition ani rhe mass flow rare in term of stagnation propertres

and the critical area is.

I

of entropY is Posir ive

Po,-< P* this mean that A'r'A',
Po, A* r :Po,  A ' ,  or

M, M) P/P, rr/r, P/P' P'r/P"' or A"/A'Y

"7s
r;i

.i, e*' l -

l l
i f'J,

: V
: l a

o i

P A - 'conslant  PorA,  constant

l f  t l
! j  o '  \ -  o Y

the florv through the shock is adiabatic therefore Io'=I',

S l l l \ . E

)

Normal Shock Table:
Tableisavai lablewhichl ist therat ioofthevar iousf lorvvar iablesuchaspressureJ

temperature , and density u"'o" th" no'tul shock wave and the downstream Mach

Number as a function of the upstream Mach Number'

-lJ



Convergent-Divergent Nozzle:

weretumnowtotheproblemoftheoperatingcharacteristicsofconverging-diverging
;;;;;;;;.;rru."'ru,io, discussed previouslv in chapter two' Frg' show the

;;;;;,;;il;;rfo.mun.. of converglnt divergent nozzle with various back pressure to

the supplY Pressure.
Four different regrmes are possible ' In regime I the flow is entirely subsonic' and

thepassagebehavel ikeaconvent ionalventuretube.Thef lowrateissensi t ivetochange
in back pressure. At condrtlon 2, which forms the dividing line between 1 and 1l the

inr.J NirtU", at the throat is unity' As regime 11is entered' a normal shock appears

a"",, ,t*", ofthe throat, and the process aft ofthe shock comprises subsonic

;;.d*;,i;;. As the back pressure is lowered' the shock move dorvn the nozzle until' at

"""ajii"i + it' appears in the exit plane ofthe nozzle' In regime 11' as in regime 1' the exit

;;;; ;t;r;" F; is virtuallv identical with the back pressure P6' on the other hand' the

florv rate in regime 11 is constani and is unaffected by the back pressure' This is in accord

I
Po{ConsL)
To(Const.)
v"'9

t o
ErhdJstet

eu/ro

(b)
!" / 'o

(c)

-.+**F
7  6  5 4 3

\.
l n 9 a o

z\
!\

gtfgo

(d)

with the fact that tfuoughout regime /1 all stream properties at the throat section

are constant' 
:ntire nozzle is supersonic'

In regime .11L As for condition 5, the flow within the t

"na tfr. pr.ti".. in the exit plane is lower-than the back pressure' The compression which

ililffiil;."" ""*fai, the fiozzle involve oblique shock wave which cannot be

treated on one-dimensional grounds' Condition 6 is termed the design condition P-t t"
.'#i" ,"i"r'r"p."""r" *niition, since the exi'plane pressure is then identical with the

;ffi'!..",;;;". i reduction in the back pressure below.ihat corresponding to condition 6

has no effect whatsoever on the flow patte-rn .wi-thin the nozzle ln regime I/ the

;##;; ,h. "*it-pl*" pressure to'the back p-rbssure occurs outside the nozzle in

{a) Curves of pressure versus djstsoce along nozzle axis'

iu) Edt-p)ene Pressure verstls bsck preseur€'
(c) Tbroat pressur€ versus b&cx pl€tl3ure'
iil frl"t" A,j* pBrsrDet€. versus ratio of back pr€deuro to supPly

0islonca Along Noz2l8

(a)

Po

Loctls of / -\.

Stotes Down9tr6om
of Normol Shock

34



the form of oblique expansion waves which also cannot be studied by one-dimensional

analysis.- 
- 

' 
In both regimes III and IV the florv pattem within the nozzle is independent of

bu"k pr"ssur", ani con"rponds to the flow panem for the design condition' Adjustment

to the back pressure are made outside the nozzle'

. For subsonic flow, there are an infinite number of possible pressure. distance

au.uar.port t . .up".roni" t"gionoff lorv,holvever, thepressure-distancecuryeisunique'
i" p", it differenily, in subsonic florv the pressure ratio does not depend solely on the

ur"u'rutio; in supersonic flow the pressure ratio does depend solely on the area ratio' . .
Only over a narrow range of back pressure ratio, namely' the range covered b'v

,.ni." 1, does the florv rate depend on the back pressure' For regime II' iil ' M' the floir

t"i. if i"a.o."a-nr-of th. back'pressure' since '11= i at the throat' may be computed form

choked florv equation'

Converging- Diverging Supersonic Diffuser'- 
; di"ffuser is a dlvice that cause the static pressure of a gas to rise while the gas is

a.".t.ruting. When deceleration is isentropic, the maximum pressure that can be attained

is the iseitropic stagnation pressure. Diffusers are ei!her subsonic or supersonlc:

i.p""ai"g "^ it," t,tuJn Number of the approaching stream. In a subsonic diffuser the

.ror.-r".iionul area increases in the directlon of flow, while in a supersonic diffuser the

cross sectional area first decrease and then increases'- "-- 
t sup"rronic diffuser is located at the inlet to such air-breathing engines as, the

superson ic tu rbo je tand the ramje t , .Theh ighve loc i t ya i r i sdece le ra tedby thed i f f use r
U.?o." it is compiessed in the axlal florv compressor of the turbojet or belore it under-eoes

combustion in tire ramjet. An ide'al supersonic diffuser consists of a convergent-divergent

;;;;;*", in which ih" flo* is shoik-free and isentropic. Deceleration of the flow to

ilfi;il,il."i ii ioiio*.d by a further deceleration to subsonic speed downstream of

,; ih.";. In real application, however, starting transients and off-design interfere _in
.ri"urirni"g the desir'i flow pattem. The maximum pressure that can be achieved in the

diffuser is ihe isentropic stagnation pressure. Any loss in available energy ( or stagration

o..rru,"l in the diffuser wiil have a harmful effect on the operation of the engine as a

;;il. i;; u sup"ooni" diftuser it would be highly desirable to provide shock free

isentropic flow.'--' --To. 
any configuration of the converging-diverging diffuser, there are two values

of Mach nu*b", in *Ihi.h th" flow is isentropically compressed, this wilt called subsonic

a"rif ft4u.f-, number( Mp*6 )and, supersonic design Mach number(M2*o)'The following

."r.i * r show how the flow is eitablished from the starting-up to the design flying

Mach number.' --- 
i_ wt.n the flying Mach Number is below Mp*6 value, this mean that the acrual

throat area is grater than the critical area, therefore the flow at the throat is

subsonic and thi flow is continue to compressed at the divergent part as show in

{ i c  r

,- Wil; the flying Mach number reach the MDeb value' this mean that the actual

throat area is equal to the critical area ofthe flying Mach number' rherefore the

flow at the throat is sonic M=l and the flow is continue to comPressed at the

divergent part and the exit Mach number will be subsoqic fig'b'
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-)- When the flying Mach number is grater than Mp*6 vdlue, this mean that the

actual throat area is less than the critical area this mean that the throat area is too

small to accommodate the flow. The pressure is iristantaneously increased at the

throat area and part of the incoming fld4v is divert or spill over rhe inlet cowl of

the diffuser as show in fig.c This mean that as the flying Mach number increase

the different between the throat area and the required area increase and hence

mass spill over is increase.

Wl-ren the flying Mach number is grater than one but is less than the Mo',, , in

this case the throat area is less than the critical area or the required area to

accommodate the florv. Therefore the instantaneously pressure built up at the

throat area. A curved or normal shock is appears in the front of the diffuser

inlet. The subsonic florv downstream ofthe shock is partially spilled over the

diffuser inlet, reducing the mass flow through the inlet, this rvill lower the

combustion pressure and a loss in thrust.

When the flying Mach number is equal to the Mp"uo value, in this case the

existing of the shock rvave will caused of stagnation pressure loss. The critical

area behind the existing shock is increased and this mean tiat the critical area

upstream of the shock is equal to the throat area but the area dou"n stream of the

shock is still grater than the throat area. Therefore the normal shock is still

existing and the flow spill over is continue as show in fig. d.
To over come the existing shock the engine have to speed over the design

supersonic Mach numbqr until the shock located at the diffuser inlet. At this

case the Mach number down stream of the shock wave is equal to the M2-6 so

that the mach number at the throat is equal to sonic. A little increase in speed
will make the shock wave to swallowed and stand at the divergent part of the

diffuser as show in fig. e.
To retum back to the design condition the engine have to slow down to the

desigr supersonic flying Mach number, in this case the shock wave is drawn

back toward the throat and it strength will reduce gradually until it vanished at

the throat when rhe flying Mach number is equal to the Mp* as show in fig.f

n
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P R O B i E M S

4.1. Air with initial stagnation conditions of ?0o kPa and 330 K passes through. a

convergent-diverge* ""J" ttii" t"" of t fgl"' At *t" exit area of the nozzle the

,t"gnrion pr"*uie is 550 kPa and the stream Pressure is 50O kPa- Tbe nozzle is

insulated and there is no irreversibility exc€pt fcir the "t:g:".n* of a shocL

(a) -What is the nozzle throat area? - - '. 
. 

. ' -- l'::--l :'"'

(b) 
'what 

is th" M";;;;;' i"i.* a"q4t $e s,|9-c5i:: '" :6
ic) Wfrat is rhe nozzle area at the point of shoek and at the exrtj

ia; Wt"t is the stream density tit the'exit?

,,-q.2. I'pealstcqs (r: t.+i "o*o " "onuersinq aivlJiilgnoSrre ltfr-a Macl:ybj'
of 0.5O and.local pressure and temPerature values of 28O kPa and 280 K'

iespectively. The nottl" rhio"t area is 6'5 X lO-a m2 and the nozzle exit area is

26x 10-a m2. The nozzle exit pressure is l?0 kPa'

(a) What ale the values of the Mach number and the stream temperature at the

exit?
(b) At what area does the shock occur?
iho* you, method of solution on a skeleton flow chart'

An air nozzle has an exit area I '6 times the throat area- If a normal shock occurs

;;;oi;;" where the area is i'2 times the throat area' find the pressure'

i"*p"Lt,r.", and Mach number at the exit' The stagnation temp€rature and

pr"rrur" before the shock are 310 K and 700 kPa'

Air €nters a suPersonic n627ls with inlet conditions 4 : 6'5 X l0-4 rrP'
'ii 

:'1-.e, pt : is kPa, and Tt : 260 K' A normal shock occurs in t}re nozzle

resulting in an increase tn entropy of As : I l3 J/kg K' If the Mach number at the

.. 4.3,.

.t4.4.

exit jl{z : 0.3, find:

(a) The area of the normal shock l" '

iti frt" Mach numbers before and ifter the shock M*' Mr'

(c) The pressure at the exitp2.
(d) The mass rate of flow Per unit area at exr!'

(e) Show the process on a schematic {low chart and a FanneRayleigh plot'

Assurne isentropic flow except for the normal shock'

4.5, An impact (stagnation) tube in an air stream reads 186 kPa' If the local

i"tnp"o,"t" L zbS r'-a the local Mach number is 0'8' determine

(a) The local Pressure.
(b) The mass rite of flow per unit.area'

4.6. A Pitot tube and a thermocouPle give the lollowing measuremeots pertaining to air

flow in a duct:

Po :  i80 kPa'  P -  l5 '1  kPa'  Io  :  1250 K



la  
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-\4oving Shock Wave:-Previous 
section have dealt rvith the fixed normal shock wave. However, many

physical situation arise in rvhich a normal shock is moving. when an explosive occurs, a
'ihock 

propagates though the atmosphere from the point of 
.the 

explosion. As a blunt

Uoay ..-"nt"is the atmo;phere from space, a shock travels a short distance a head of the

booy.rvnenavalveina-easl ineissuddenlyclosed;ashockpropagatesbackthroughthe
gas. To ireat thbse cases,-it is necessary to extend the procedures already develop for the

f iced normal shock wave.
. consider a normal shock moving at constant velocity into still air as show in fig.

Let Vs= absolute shock velocity and V5 velocity of the gases behind the wave' both

velocities are measured \Yith respect to a fixed observer' For a fixed observer' the florv is

n o t S t e a d y , s i n c e c o n d i t i o n a t a p o i n t a r e d e p e n d e n t o n w h e t h e r o r n o t t h e s h o c k h a s
passed over that Point.

Norv consider the same physical situation with an observer moving at the shock-

r.vave velocity. a situation, for instint, with the observer "sitting on the shock wave". The

shock is now fixed rvith respect to the obsen'er as shown in fig But this the same case

already covered in the normal shock section. Relation have been derived and result

tabulaied for the fixed normal shock. To apply these result to the moving shock'

consideration must be given to the effect of observer velocity on static and stagnation

DroDerties.

v;
V ' = Q

v; v, v , = V ) - v ' , v , - v ; -  v :

{s} l t lovirg,*are

Since static pioperties are independent of

transformation of the coordinate system has no effect

properties on the other hand depend on the observer

attectea Uy the choice of the coordinate system' Table

coordinate system and i a moving coordinate system'

{b} Statiorrary rvar e

the observer velocitY, the
on static prope(ies. Stagnation
velocity and consequentlY are
4.1 show properties in a fixed
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n o , - o " l t + - ; : u ] l
t t

, ,  - f  , -  l r

Mt." ^ 
=---.*

.t ,,

ri t', - vt
M i ' ; -  "

7"8,'r'

pb|= P;

Pdr - Pi

( ' r?* ' )
I  t - t  - \
l t '  ,  M i ' l

(  ,  , ' - ' . r ' ,  \ t " ' - "

\ '  z  " '  
J

I  t - l  - \ Y ' ( r r ,

l ' +  2  ,4 t ; ' /

' 1  l

\\hen a normal shoik wave travels in a closed-end. the gas between the shock wave and

the closed end remains at rcst' The gas behined the shock, however' moves at a velocity

vy' as shoo,n in fig. The incident shock is reflecled at the closed end ofthe tube and

piop"gut., back through the incoming gas. For an observer moving with the wave the

i,.iJ"liy upp"", us shoin in fig. Since the gas velocit-r' decres across the reflected wave,

the incide;t shock wave is reflected at tbe end of the rube as a shock rtave'

lDcjcrFnt

Eeilect.d

{.} Va}ecili6 rehriv! to
r firgd cooaciirste
tyl8!.rl

{bl Velocitils .dsiv!
tg r Syrttrr rngying
Itith th. rEr
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Chapter 9

7-1 T-17ranno r rcw

9. "1  INTRODUCTION

At the s tan of Ch3prer I lve mentioned rhat area changes, friction, and hear trans [er are
the most imponmt factors affecting the propenies in a flow system. Up to this point
we hal e considered oniy one of these factors, that of variations in area. However, we
have also discussed the various mechanisms by which a flow adjusts to meet imposed
boundary conditions ol either flow direction or pressure equalization. We now wish
to take a look a! the subject of friction losses.

To study onll the effects of fricrion, we analyze flow in a constant-area duct
without heat transfer This conesponds to many practical flow situadons that involve
reasonably shon ducs- We consider first the flow of ar arbitrary fluid and discover
that its behavior follows a defioite pattem which is dependent on whether the flow is in
the subsonic or supersonic regime. Working equations are developed for the case ofa
perfect gas, and rhe introduction of a reference point allows a lable to be constructed.
As before, the table pe mits rapid solutions to many problems of this type , which are
called Fanno flov.

9 .2 OBJECTIVES

After complering chis chapter successfully, you should be able to:

1. List the Nsumptions made io fte analysis of Fanno ffow.

2. (Optional) Simplify the geoeral equations ofcontinuity, energy, and momen-
tum to obtain basic relations valid for any Ruid in Fanno flow.

3. Sketch a Fanno line in the ft-u and the lr-s planes. Identify the sonic rroint
and regions of subsonic and sugrersonic flow.

4. Describe lhe variation ofstatic and stagnation pressure, slatic and stagnation
temperarure, satic density, and velociry as flow progresses along aFanno line.
Do for both subsonic and supersonic flow,



5. (Optionaly Slrrt ing with basic principtes of continuity' energ) and t: loiren-

tuor, deriue expressions for propeny ratios such as T: /Tr ' p:lpr' an'i so on

in rerms of lvlach number (rVl ) and specifi c hear ratio ( Z ) for Fanno ii"\\ N ith

a perfect gas.

6. Describe (incLude T-s diagram) horv lhe Fanno rabLe is developed 'rith the

use of a ' relerence locatton-

1 . Dei,ne friction facto r, equit'olent diante le r' absolu!e and re [cnit e nrir <'/ i/ieJ t '

absolute and kinematic uiscosi4, and R4nolcls nLunber' and kntl\ i ho$ to

determine each

8. Compare similari l ies and differences bet\reen Fanno tlorv andnomrli shccks'

Stetch an '-s diagram sho$ ing a t,v-pical Fanno line tDgether $ iLh : non]ral

shock fbr lhe same mass velocitl"

9. Explain what is meant by/rictiotr chokitg'

10. (Optionall Describe some possible consequences of adding duct in a;hoked

Fanno florv situation (for both subsonic and supersonic flo$ )'

11. Demonstrale the abiti ly to solve typical Fanno flo$ problems bl use oi the

appropriate tables and equations.

9 .3  ANALYSIS FOR A GENERAL FLUIO

\\t f irst consider fte general behavior of an arbitraq' Suid To isolate the efrects of

friction, we make the following assumptions:

Steady one-dimensional f low

Adiabatic -

No shafr work
Neglect potential
Constant area

\! 'e proceed by applying the basic concepts of continuity' enetgy' and momentum

Continuity
rn: p,-lV = consI

6 q = 0 , d s " = 0
6 u,', = I
d : : 0
d A : 0

but sif lce the flow area is conslant, this reduces to

pY :  cons l ( 9 . 1 )

\!'e assign a nerv symbol G to lhis constant (the quantity p V)' which is refered to as

the rnass valociry, and thus

p Y = C =  c o n s t i /O 7)

wha! are the typical units of C?



Energy

\\'e staft with

h,1 + y' = 7,' -' u

For adiabatic and no work, this becomes

h ' 1  = h , , =  h r  =  c o n j t

If rve neglect lhe potential term, this means that

V 7
/ 7 . = l t + 2 g c  =  c o n s t

Substitute for the velocity from equetion (9.2) and slror' rhat

/lr :, + --:- = const
P- zEc

(9.3)

(  9 .4 )

(9.5)

Now for any given flow, the constant l, and G are known. Thus equation (9.5)
esiablishes a unique relationship between ll and p. Fisure 9.1 is a plot of this equarion
in the .4-u plane for various values of G (but all for the same ,r). Each curve is called
a Fanno line and rcpresents 8ow at a panicular mass vlociqt Note carefully that this
is constant G and not constant zi. Ducts of various sizes could pass the same mass
flow rate bu! would have different mass velocities-

u =  U p

figure 9.1 Fanno lines in h-r'pla-ne.

mass velocity



Once the f lu ic l  is knorvn'  o""  t '1 : r l :o plot  l ines of  con\t i lnt  el l t rop) L)n the /r- t '

c l iacrunt.  Typicl l  curres of  ' ' '  ]  ct t l l t t 'nt  t re 'ht" '  n i is c l :Nhet l  l ines in the l igure'  I t

is nruch rrore instruct lve to p* i f t t t t  Fa'rnc'  l i t tes in the fanr i l iar  / r --r  p lene Suclr  a

r l i tgratn i -s showl l  in Figure ' ' t  i t  Ut ' t  point '  a s ignihcet l t  f ; rct  beconles qui te c lear '

Since rve have rssttmetl th:rt there i' no heet trlrttster tr/'s.' - 0)' the orrir' * it)' th"lt

entropy can be generatet l  ' t  int" t*n i r ret 'ersi t ' i l i t ies ( ls i ) '  Thus t l tc '  f l t t t t '  t 'un otrh '

/)/{).grr.tJ tt)\t(tr(l ittL r((tsi'"3 t:t'i"tt' t't t'"tny;r'l \Vh'r ? ClrLn !otl locate the points oI

l t t ; i i ; . ' ; " t  entropy fot  eact i  Fanno l ine in Figr-rre 9 ' l  l

Let us esrnt ine o"t  Et"no' i i 'n l  i "  -" t t t t i  t t t t t i t '  F i-strre 9 ' i  sho$'s a givetr  Firnno

line togethenvith typical G;;; ii '*t' lrr point\ t)n this line represent-s-:::::^"]:ft

tlie silttte ntuss flo$' ,"t" p"""'ir lrel (tnass \eiocit)) 'lnd' tlte sirtrte stl-qnlttlon en-

thrlpy. Dtte to the irrevers iibt" 
'*tu" 

ot the frictional ettects' rhe florv can onl) Pro-

.*.iio th. right' Thus the Fanntr line i: divided into t\r'o clistinct parLs' an upper and

n | : rver branch. rvhich are sepxrated L'r 'a l imit ing poir l t  of  t l lx i t r t t tn l  entropy'

What cloes intuititln tell u-s ubour aiiabatic florf in a constallt-arel ducr'l \Ve nor-

n ta l t y fee l tha t f r i c t i ona le t l ec t s \ \ ' i l l sho l r ' t l pasa l l i n l e rn l l sene r r t i o t l o f "heaC 'w i th
a correspondirrg recluctiott i'i""iti t' 'f the flLrict To prstihe snnte florv rate ($'ith

constantarea)'continuilv mt"lo't*t the Velo.'ily to increase'This tlt:::llll1"^tlt'

energy ruust caltse a decrease in enthalpv' since lhe.stagnation enthalpy remalns con-

stant. As can be seen i' Fi;;;;-i' tl"t agrees *'ith.fiow along the uppe'r hrunch of

the Fanno line. It is atso ctear inar in this c-ase both the static and stagnotion pressure

are decreasing' : * tr,r,o points on the lower
Btrt what about flow alPng the /t)r|er brunch'! Mtrl

branch ancl dra*'an "'oo i-' i'nAit"te proPer movement afonq^t!3-f1n1i":^,Yill

; ;;;;;;t d," tr.'. -' n tt'orpvi io the d ensitv l.�"-' ::l"l':J,[? :][ JilT# ffi:
i.* !q*,i* (9.2)ll From the fisure' rvhat is happentng

slagnation pressure'l rirr l^ i'iit!' L ttith irrcrenstl' decrease'or rentalns constult'

f lgure 9J Two bmnctL5 of a FrnrKr line



Trble 9.1 -\| lJl] 5ii ( ' f Fr]lt lo Flort f irr Fiqure 9 -3

Ptrr l t ' I11 Up1'ur  Br  i rnc I Ll])$ cr B[trie h

tntl.r pv
Dcr is iL l
\!'1,)cit)
P lcr \ur , i  {J t l l ! i ( }
Plcsslt lc (r lu.t  t t . t l i  'nr

Nor i :e  th l r t  t rn  l t . r :  l r ) rver  b | l r rch.  p lopenies iJo t t t : t  I  hr . r -  in  the ntanner  predi t - ted

h. \ . i t t i l t ; t i i t ] .  Th-r :  rh is  I lu \ l  he a f l t t r i ' reg inte i | i th  " r 'h ich wl  r re r r ( r l  ren f lnr i l i l r r '

Beibrc ,,r.e irrre.ti5.rte the Iirriitirr.l I 'oint that sePifiltei these t*'o flo'r'regiittes. let us

llote thet theie drri! i Co hll\e OIte thing io ct-rtttlttot. Recall the srxgnilhon presstlre

energv eqtlttion.

STAGI.IATION PRESSUFE-ENERGY EAUATION
ccnsider the t$.o selrio.r locatiotrs on the plil-sical sYstetn sh'trvn in Figrrt e. .It_
*i 1., ,r. disrence be t\'.ee1 thr.se :rrcatillni approa--h ze.'! ',. 11'c are dealing * itir an

ininitesimal c!rr)!ml !olult)e t  i th the t lrenlrodi 'namLc states dif ierential ly separated'

as sho*,:r in Fi_rLrre brlon. Also sh,:ll 'n ate the corre;po[dil)g stagnalioll slittes ibr these

tn r locirions.
\\ie rna-v .,rrite the follow.ing propert) ielation betrvien po'rnts I and 2:

Figure Inn nite rin:rl ly :e parited static slxte! \ l i lh associate'l s('1-cnatlon stntes-

T d s = t l h - v d p (.{ l)

T:

Note thar even tbouglt the strgnalioo states do not acttlnlly exist, they rePresent

legitimate themrody narniu- states, aDd rhrrs any valid property relation or equation

miy be applied to ihese points. Thus u'e mry also appLy equation (A'l) between

states l, and 2,:

I
I

I
I

t

,''

T, ds, : dh, - rt, dP, (A.2)



' l

Ho',r-c'r t'r.

i l l ) r l

r l s : t l q . * t / , c ,

|  . \ .1)

(.{  - l  )

r - \ . i  )

r  - { .6 l

r  . \ .7  )

{ . \ .  g)

: I lP,l and
stagntrtiort P rts su rc.-t lE rg)'

I  h i l \  \ t  l t t i l !  \ \ l l l d

f i  i ( / - s .  +  d5 '  j  :  d l t '  -  t ' <1 l t ,

Rr'c;r l I  th. '  .- l )r ' l  - ;)  ( 'qurt iol l  l"r ir t .r t  in th. ' Iorur

6 q : 3 n ' : * d l t r

B l  subs t . i tu t ing . ' r l i r r  [ ro r l r  ! -q t t i r t ion  ( -q .5 )  in to  1 ' {  6 ) '  *c  t 'b t ' r in

,,\r7 : 'J11', * Ir(r/.r. * dstl + Lt d!"

NLr\r f,lslr r(-c ll thal

3 q = T d s ,

Stbs nue equotion (.4'-8) ilrto (A-7) and note tiat t1

you shor.rld obtain the tbllor';ing equation. called the

eqrtttion:

For Fanno flos'. d.r" : d u', : 0.

. Thus any fri ctional effect must cause a clecreltse in the total orstagnltion pressure!

Figrrre 9.3 r'enlies this lbr ffow alon,s both the upper and lorver t'r:lches of the

Fanno l ine.

Limit ing Point

From the enerty equation we had developed.

i!-! y als jTl - T ) + Tr dsi * ,5 u, = 0
Pt

l ' /  '

h , : h + ; - :  c o n s t a n t

(.{.9)

(9.4)



Di f ' lerentiating, \\ 'e obtain

t ' d l /
t l h '  = d i t +  -  = 0

3'

From cont inu i t r  $e  h i id  tbund th r t

p l ' =  Q  :  c 0 n 5 1 x n 1

i , J \ ' + V l t = 0

" d D
d t  =  - y  -

p

Diiferenti i t ins this. ! \e Qbtain

q hich can be solred lbr

/ q  
- 7 1

/ O  l \

(9.6)

(9.8 )

(9. i0)

( 9 .  1  1 )

r r Q  l ? \

Introduce equatioo (9.8) into (9.6) and s/tor' thar

. .  v2 dp
dh = _______: (9.9)

8cp

Norv recall the property relation

which can be wntten as

T d s : d h - v d p

p

Substituting for dh from equation (9.9) yields

v1 do
gcp

dp

p

We hasren to point our that this exPression is valid for afr,! f luid and belween

two differenfially sepa.ated points anyp[ace along the Fanno line- Norv let's apply

equation (9.11) to two adjacent poinls that sunound the Iimiting point of ma.rimum

entropy. At this location s = const; thus ds = 0, and (9.I I ) becomes

V2 dp--: = dp at lrrrut pornt

ot



(#)",,,,.,,,",", : '' (H), =.""' (9 .  l  i )
v'r = g.

t__*

This should be a familiar expression [dp/dp= J ) &l 
,] 

and ue.recognize that fte

vetoci^. is soric at rtv l intit ing poini. i i{ upper branch t"" ":", ltJ*" 
:1.:: l i .!-

ff i ;;-";. t; i ,o"i '  u'o"i ' '  and the lower branch is seen to be the sttpersorttc

'-ull l  
" " begin to see a reason for rhe failure of our inruirion ro. predicr beha! ior

orr lhe lower branch of rhe Fanno ltne From our privous studies it sho\!s thll

f luid beharior in supersonic ttor" rr-ir.qu.nrty contrary to our e<pectations This

;;t;,r";;: ; i . i"., ,^tt"t *" l ive most of'our l ives 
"subsonicalLi""' and in facr' our

knovledge of f luid ptt"no*"n" tott '  *ainly from experiences with- inco mpress ible

fluids. It should be aPparenl that we ;;nnot use oLir intuit ion to guess at whrl miSht be

happening pafl icularly ln tne supersonic flow regime \\" must learn to 3et religious

and'put fairh in our crrcfully deri\ ed relrt ions'

Momentum

The foregoing aoalysis was maoe usiog only the conrinuitl',unO 1:t^:i'. l"t"ttont 
tnt

now proceed to appty torntntu* "o*ipi' o tht "ont'ol uolume sho*n in Figure 9 4

The ,t-comPonent or tne momenrum ei'u"tion for st"ady' one-dimensional flow is

l r ,  = i , . ,  r r �  \
- t v o u ' ,  -  ' ' n ! . /

From Figure 9.4 we see that he force suflxratuon ls

f r , :  t r A -  P 2 A -  F s

where F/ represents the total wall frictional force on the fluid between sections I and

z- Thus ihe momentum equation in the direction of flow becomes

Control voLume

(9. t 4)

v

t
t !

r,A 4J--------vt 
fr"'t

Figure 9.4 Momentum analysis for Fanno ffow



t i  oAV
\ t )  -  r : t f  F t  =  ( l :  l ' . t -  -  { l :  1 r )

g. 
- 

.{ .  
-

s , r L r r '  t ha t  cquJ t i on  '  L  L5  )  cJn  bc  r r  r r  t t en  r s

r I  P ' \ - -  D L v ' -

o 3 . c t

/  r r v r \  F ;  p : l , l
l p  + -  |  .  = i : + -
\ -!. ,/ ,.1 E.

( 9 . l 7 )

( 9 . 1 5 )

(9.  r6)

(e.3)

( 9 . 1 8 )

In this fonn the equation is not panicularly useful except to bring out one signil icant
facl. For the steady, one-dirne siondl, constcnt-area fote of an'" fuid, lhe value of
p + pV1/g, can ot be constant if fr ictional forces are present. This fact wil l be
recalled later in the chapter when Fanno flow is compared with normal shocks.

Before leaving this section on fluids in general, rve might say a ferv words about
Fanno florv at low ivlach numbers. A glance at Figure 9.3 shows that the upper branch
is asymrotically approaching $e horizontal l ine of constant toral enthalpy. Thus the
extreme left end of the Fanno line rvil l  be nearly horizontal. This indicates that Eow at
very low Nlach numbers wil l have almost constant velocity- This checks our previous
work, which indicated that we could treat gases as incornpressible fluids if the lvlach--
numbers * erc very small.

9 .4  WORKING EOUATIONS FOR PERFECTGASES

\\'e have discovered the general trend ofproperty variations that occur in Fanno flou
both in the subsonic and supersonic flow regime. Now we wish to develop some
specific working equations for the caseofa perfect gas. Recall that these are relations
betweefl propeaties at arbitral ]. sections of a florv sy5lgrn wrinen in terms of N1ach
numbers and the speci6c heal ratio.

Energy

\ l t start with the energy equation developed in Section 9-3 since his leads immedi-
ately to a lemPerature ratio:

*

But for a p€rfect gcs, enthalpy is a function of temperature only. Therefore,

l  t l  =  t t 2



No* for a perfect gas with constant specitic heats'

,  - ,  ( r -  r E p l ' \
' r  -  .  I  I  l/

Hence rhe energy equalion for-Eaano llo* can be wr !eqas

,  v - l  . \  I  : ' - 1 . , ' \
r ,  ( ' * ' . ' n ' , ' )  = r : ( r  + / I  " r r ' : )  ( e t e )

Tz
T1

l + [ ( r - l ) / 2 ] ' ! 1 , :
l + t ( y - l ) / 2 1 : v .

(9.20)

Continui tY

From Section 9.3 we have

p V : C =  c o n s t (9.2)

pg1 =  p1V2 
(9  21)  : i

If we introduce the perfecl gas equation o[ state

p = p R T

the definit ion of NIach number

V : irlo

and sonic velocity for a perfect gas

^ _ ,Tn:Fr
r r - \ ' q _

equalion (9.21) can be solved for

pz ut ( Tr\t/t (g.zz)

a: M1\T)

Can vou obtain this expression? Now introduce the Emperature ntio from (9 20) and

ii'irin i"t. ,n. followlng working relation for static Pressure:



p . -  l t l l  l l ' 1 ,  -  r l l l / , r 1 r ' :

p 1  
-  

r v z  \ t + [ , . ,  -  L t  2 ] u , )  /
a a  r l  r

can eas i l y  be  ob tar : : : : r . rn t  eqrLar ion  (9 .20) ,  (9 .11) .  and rheThe dens i t ;  re la t ion
perl 'ect gas la$':

l :  _ Nlt

pr lvlz

t i 1

:  -  l r  l l . ! / L
(  9 . 1 1  )

Entropy Cha ng e

\\? start u ith an expression for entropy ci.r-.ji rhar is valid between any t'\ o poin ri:

a r 1 - , : c o r r i - n r n 4
1 .  P l

( 1 . 5 i )

Equalion (4. l5) can be used to substitute rci c-. and rve nondimensionalize rhe equa-
tion to

. t .  - J l  v  T .  D 1
____: ln __: _ ln j_:

R  y - l  T 1  p l

If we now uti l ize the expressionsjust dereloped for rhe temperature ratio (9.20) and
the pressure ratio (9.23), the entropy chalr!r bicomes

s r - s r |  
=  

y  
h ( l  

- l t ' /  -  l ) / 2 ) M t ' � \

R  y - t  \ t - [ r  _ t ) / 2 ) . v r ! )

(e.25)

, -  M t  l 1 - [ , v -  l ) / 2 ] , 1 / r :  \  
|  r- "'n \t-rt:lttr,'trl

Slolr,that rhis entropy change benveen tro lsints in Fanno flo* can be written a:

. ' 2 * s r  ,  M 2  l I + [ \ /  -  l ) / 2 ] r v l r ? \ ( / + r r i ? ( r - r )

R  M t  \ l + [ , r ' -  ] t / 2 1 ' v , : /
(9.27)

Now recall that in Section 4.5 we integrdt.d d. stagnation pressure-€nergy equation
for adiabatic no-work flow of a perfect sa-i. \r ith the result

U = , -u a
Prt



9.5 REFERENCE STATE AI ' ]O FANNO TA3LE

and equalion l9.lLrr btionl.s

r t .y:_!C_ = f \ , \ t .y) (e.:r l)
T  

-  
T -  t ' r  -  l ) / l l t 1 r  "  '

\ \ ,e  see rha t  T  iT '  -  . i t . i l . y )  and \ \e  can eas i l l  cons t ruc t  a  lab le  g iv ing  \a lues  o i

t/ i i  u.rru, ,rt t ir : grrticular y. EclLt:tt ion (9 23 t can be lreated in a sirrl i lar fashion'

In  th is  case

p: =) p ,|1: = ,1 (an) vaLue)

t1 t  : :?  D '  . ! /1  .= :  I

and equation (9.11 ; 'e.ooles

i ,  _ t  (  0 + t t l l  . \ , , =  t , . , 1 . r ,  ( 9 . 1 2 )

f  
-  

J t  \ l  - l \ Y  -  t \ t l l \ l -  /

The densitl r l i :o . ln be obtained as a iunction ol N1ach number and )/ f 'om

eqJon i9.:ir. Thi: is particularly useful since iI also represents a relocity r3tio

whv?

p \ ' .  |  ( r - ! ,_ t t , l !_ \ '  =  r r , rz ,y t  (9 .43)
- : = - = - l -

F -  r  
- , n \  

t 7 + t ) 1 2  /

Apply thisame techriques !o equation (9 28) and s'toru thr't

f  , .  . .  | \ / , r r I r : \ r Y - l ' / : t / - l l"  , ,  =  t  ( t  + l { y  _  D / t t , v t -  
\  =  1 ru .y t  e .44J

a  
- v \  ( Y + t t l 2  l

\\t nolv perform the same type of transformarion on equation (9 40)i that is' let

. r l  + r  M : + M  ( a n y  v a l u e )

' 11  $  'Y  ' � v l ,  :+  L

with the following r.sutt:

i ' r - r ' )  / Y  l - l \  '  / l - l Y -  l ) ' : l t l r \
= | - I ln I ___--=:-:-- |

D ,  \ 2 Y  /  \  ( r + r ) / r  /

- L ( L - r ) - / . - l t n M t  ( e . 4 5 )
l ' \ M =  /  z Y

But a glance at rhe Ph\ sical diagram in Figure 9 5 shows that (r. - r) wilt always be

a negalive quanriq: dlus lt rs more conve;ient to change all signs in equation (9 45)

and simplify it rc
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/  - _ ,
I n  r -  I n ( t  - '  

a '  
n , , ) =  t n  c n n s r

and then difterentiitring, we obtain

(9.3 2 )

dr  ,  d ( t+ l {1 ' ,  t ) / 21 ,v2 )
7 - t - t r . / -  l t 2 l J l r  

= " (9 .3 i )

wh ich  car r  be  used to  subs t i tu te  fo rd l / f  in  (9 .30) .
The continuity relation [equation (9.2)] put in terms o[ a perfect gcs becomes

4: .onr,  {9.1: l )
r/T

B) '  losar i thmic  d i f fe ren t ia t ion  ( take  the  nr ru r l l  logar i thmon,J rhend i f te re  t ra te ) . r l lo l r
that

dp d.\l L dT_ _ _ _  +  _  o  r g t 5 r
p  t v t  2 T

l\t can int{oduce equation (9.33) to eliminate d7/ f, wirh the resulr rhar

dp  _  _d ,v  _  |  d ( t  +  [ (Y  -  D /2) tv2)  .q  ?6 \
p  t " I  2  l + l Q - t ) / 2 )  1 2

which can be used to substitute for dp / p in (9.301.
N'{ake the indicated substitutions for dp/ p and dT /T in fte momentum equcrion,

neglect the potential term, and srav that equarion (9.30) can be put into the following
form:

.dt d(l + lO - t) /2ltd1) div2 z dM
'  D,  |  +  l t y  -  l )12 l , r l :  l l J  y  i I I t

I  d ( t  +  l \ y  -  t ) / : l , u : )
\ 2  r ' l'  y ' t 4 1  |  - [ ( y  -  l ) / 2 ] , r / :

The last te|m can be simplified for integrarion b,v noring thar

r  d(r  + t (r  -  1)/4M2) (y -  t )  dtr2
, ,  M 2/  M2 |  + l (y  -  I ) /21M2 2y M2

(1, - r) d(t + tu - D/?ltvrz)(9.38)
2y r+ l (y  - r ) /7 ) tv2

The momentum equation can now be wriften as



tl.u l . + l d ( 1  +  [ ( ] , -  l ) i ' l i . t / r )

7y I  + [ ( ] ,  -  l i i  l l . t l :

1 c l i l  / + l d M ?- t M . -  
+  t l =

(9. l9  )

(9 . .10 l

Equation (9.i9) is restricted to st.ad) one-dinlensionaL flowof a perfect-gas' with no

heat o. wark tr nsfsr. const3nt area. anrl neqii-sible potential changes' \\ 'e can now

integrate this eqtration bet\! een t\\ o points in the i l!]!\ and oblain

, f  ( r :  - r r )  y * 1 , -

D, ?i,

L ; l r r - 1 r , l l J / , :
1 - - 1 1 7  -  t r ' : l i v l ' l

|  .  . ,  - : -  1 i t l , :
I  I  I  r  '  ,  '  ' j- t \ l t r  

i t  . : J  27  t v t , '

Note that in performing the inte-sration $e hare held the friction faclo( constalt

S o m e c o m m e n t s r v i l l b e m a d e o n t h i s i n a l r t e r s e c r i o n ' l f y o u h a v e f o r g o t r e n t h e
concepr of eqLtivalenl diameter, .vou ml,v \! ant ro rer iew the last pan of Seclion 3 8

and equat ion  (3 .61) .

9 .5  REFEFENCE STATE AND FANNOTABLE

The equations dereloped in Section 9.4 govide the means of computing the proper-

ties at one location in terms of tlose given lt some other locatio-n' The key to problem

solution is predicting the lvlach number af.lhe ne* location tkough the use of equa-

cion (9.40). The solution of this equation for 'he unlnown M: Presents a messy task'

u, no "^pii"i, relalion is possible. Thus we tum to a technique similar to thal used

with isentropic flow in ChaPter.
We introduce anorher' tefetence state, *hich is defined in the same manner as

before (i.e., 'that thermodynamic state which \'rould exist if the fluid reached a Mach

numbeiofunity bl a partictiar procesr") l"rr thiscase we imagine that we continue

by Fanno fow ii.e.,more duct is added) unril the velocity reaches N{ach l Figure9'5

shows a physical system togelher with its f-s diagram for a subsonic Fanno flow'

1& 'ekr rowthat i fwecont inuea longtheFanno l ine( remember tha twea lwaysmove
to the righ0, we wil l eventually reach the l imitins point where sonic velocity exists'

The dasied lines show a hypothetical duct of sufiicient length to enable the flo!\' to

traverse the remaining portion of the uPPer brarch and reach the limit point Thisis

the ' reference pointfor Fannofow.

The isentrojic * reference points have also been included oII the I-s diagram to

emphasize the fact that the Finno * reference is a totatly different thermodynamic

state. One other fact should be mentioned. Ifdrere is any entroPy difference between

two points (such as points 1 and 2), their isentropic' reference conditions are not

the same and we havi always talien great care ro label them separately as l' and 2''
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Howerer. proceedjng from either point I or point 2 by Fanno fow will ultimatelvread to rhe ssme prace uhcn i\Iach I is reached. Thus we do no,i"".,o,"tt oi-i l--2' but merel.v ' in the case of Fanno flow. Incidenrally. *t y _. ull ,t rJ" " ..f"."n""points sho*n on the same horizontal l ine in Figure l.:: iVou ","y na"o to reviewSection 4.6.)
lt'e. nolv rewriri the working equations in terms of the Fanno flow - r€lerencecondition- Consider firsr

T 2 + T

J

Figure 9.5 The' reference for Fanno frow.

T  I  + [ ( y  -  1 ) / 2 ] & ! , 2
: =  -  .
t r  l + t Q  -  D / z l V z l

L"., p:iA2 b€ an arbirrary point in the flow system and let its Fanno . condition bepoint l. Then

M2+ M (any value)

t u l t + l

(9.20)



and equltion (9.20) becomes

T ( y  +  I ) / 2

T -  l + l l r -  l ) / 2 ] / ! 1 1
=  f  (N r , y ) (9.-l I l

We see thaf T lT' = f( l.y) and \\ 'e can easily construct a table gi\ ing laiues Qf

;i i : r;r;;t i ' l  fo, o poni"ui", 7. Equation (9'23) can be treated in a simiLar lashion

In this case

p1 .-> p &1: '+ M (any value)

P t = +  P "  i / l  + l

and equation (9.?l) becomes

L  = '  (  ! ,  - ' , ' , / l ^ , , , , ) '  t = 7 , , " . r '

p .  
- , ! /  

\ l  + [ ( y  -  t \ / 2 ) . \ t :  /
(9.,l])

The density ratio can be obtained as a function of N{ach number and y from

.qu"tion {9.zil. This is panicularly useful since it also represents a velocitl ratio'

lVhv?

#=+: ie+;#Y)"' = ""'
Apply the same techniques to equation (9 28) and slzarv that

# = * (+t#ffi 
(Y+r)r2o'-r) = r @'v)

(9.43)

(9.4.+)

\!'e now perform the same type of transformadon on equation (9 40); that is' lel

.r2 =+ r M2 =+ /v/ (anY value)

1 1  : i ,  r '  M t + l

with the following resuit:

(9.45)

ry:(+),^1::#fifv:)
- iG- t ) - ' ; - ' , -M '

But a glance at the physical diagram in Figure 9 5 shows th,at (r' - x ) will always be

^ ""g;,i"" q*"ti,y; thus it is more convenient to change all signs in equation (9 45)

and simplify it to



/ r r ' - . { )  l v . t 1 , 1  l t y  -  t 1 / ) l \ t :  \
D ,  \ 2 v  / "  \ t r t r y  _  t ) t l l , t r :  J

(9 .15  i

The quan!it) (-! '  - .r) represents the amounr of duct that would hr\e to be added
to cause the flow to reach the Fanno * reference conclit ion. ft can alternlti lelr be
vierved as the ma\imum duct length that may be added without chan-qinS some lit),.r
condition. Thus the expression

"f ft' - r) 
ir .",.d 4:\

D" D"

and is f isted jn rable along wirh the other Fanno fl ow parameters: T / T.. p,, p-.
V / V' , and p, / p," . ln the next secrion w e shall see how this table -srearl\. simpliries
the solution oI Fanno florv problcm\. But f irst, some uords about ih: deierminlrion
of friction frcroo.

Dimensional analysis of the Ruid florv problem shows that the friction factor can
be expressed as

J :  f  (Re.€ /D)  (9 .17)

where Re is the Reynolds number,

. R.=# ; (e.{s)

t t  I  \* t f  , " ' - t ) = f \ l \ r ' Y )

and

tfD = relative roughness

Typicat values of e, the absolne roughness or average height of wall inegularities.
are shown in Table 9.2.

The relationship among /, Re, and s/D is determined experimenr3lly and ploued
on a chart similar ro Figure 9.6, rvhich ts called a fuIood.y diagram
If rhe flow rate is known together rvith the duct size and

Table 9.2 Absolute Roughness of Common r\Iaterials

Material € (ft)

Glass, brass, copper, Iead
Steel, wrought iron
Calvanized iron
Cast hon
Riveted steel

smooth < 0.0000 L
0.00015
0.0005
0.00035
0.03



TLlrbulent f low regjr. le +

Log Re

Figure 9.6 ivloody diagram for friction f:rctor in circular ducls'

material, the Reynolds number and relative roughness can easily be calculated and

ih" uulu" of theiriction factor is raken from the diagram The cune in the laminar

flow region can be rePresented bY

64
,  - R e

For noncircular cross sections lhe eqlri valent diameter as described in Section 3 8

can be used.
4 A

r

(9.49)

(3.61)

This equivalent diameter may b€ used in the determination of reladve roughness and

n"ynoiO, nr.U"r, und hence rhe friction factoc However' care must be taken !o work

*iii ,t " ot*f average velocity in all computations' Experience has shown lhat the

"ra oi un aq"i"^l"nc d'iameter works quite well in the turbulent zone',ln the laminar

i"*l"gl* ,f.rft *ncept is not sufficient and consideration must also be given to the

aspect ralio of the duct'In 
some problems the flow rate is not known and thus a rial-and-error solution

r"sults. As long as the duct size is given, the problem is not too diff icult; an excellent

^ppr*fi",i"*" the friclion factor can be made by taking the value conesponding

to wfrere ttre e/D curve begins to lelel ofl This converges rapidly to the final answer'

as most engineering problems are *elL into the turbulent range'

9.6 APPLICATIONS

The following steps are recommended to devetop good problem-solring technique:



i .  Skercb rhe ph_vsical siruarion (including rhe hyporherical 'reference poinr),
2. Label sectio ns w here conditions are kn.rLr n or desired_
L L i .L  a l l  g i . cn  in fo rmr t ion  * i rh  unr r . .

4. Compute the equivaient diameter. relxti!. roughness, and Reynolds number
5. Find the fricrion facror from rhe l i lood., dLesram.

6. Determine the unkno$ n Mach numbe:.

7. Calculate the additional propenies d;sired.

The procedLrre above may have ro be alrercd depending on rvhat type of infonna
tion is given, and occasionaliy, trial-and-enor solu:ions are required. you should have
no diff icult,v incorporating these features on!-i rhe basic straightforward solurion has
been mastered. In complicated flow sy5gs6115 rhrr inr.olve more than just Fanno fforr,..
a 7-s diagranr is frequent)y helpful in solr inu problems.

For the folloiving examples we are deaiing \,, irh the steady one-dimensional ffo*
of air (y : 1,4). lvhich can be Eeated as a pedect gas, Assume that O = 14 = 0 and
negligible potentiaI changes. The cross-secrional area of the duct remains consranr.
Figure E9. I is common to Examples 9.1 rhrough 9.3.

Figure E9.

Example 9,1 Giren M1 = l.80,pr =40psia-and.y: : 1.20. f indp2 and J Lx/ D.
Since both Ilach numbers are known, we can solvi immediately for

p ) p '  . ^  |  I  \
p: = - - pt = (0.80!r ( 93_ J 

f. lOr = 67.9 p"ia

Check Figure E9.I ro see thar

f 3.r _ JL|M _ !L-_,.
D  D  

- - - ' = 0 l J l g - 0 0 1 3 6 : 0 1 0 8

Example 9.2 Given tI: = 0.94, fl = 400 K. and l: : 350 K, find Mr and p./ pt.
To detemjne conditions at section I in Figure 89.1, we must establish th9 ratio

I

/;\

I



r  = \ r :  - i + o o ) , 1 . s 1 e 5 ; -  t t o ; :
T '  T : T '  \ 1 5 0 /

  
1 l -
| 

- r'om Fanno lable at rV1 = 0 9-l

IL Given

Look up ? ' / f '  = t . i65 ' i  in  the Fanno !3ble add d! ' te 'minr  thal  ' '1 l  :  0 ls i

I  h u i

p :  _  o :  p '  =  ( i  o7 . r . r r  ( . f )  - o  l s r
P  P '  P t  \ - :  d u r o /

Notice that these examples confirrn pre! iaus slalemenls concernlog sli l t lc pressure

.fl""g".. f" subsonic flor" lhe static p;essure decreases' whereas in supersonic flow

ih. ri", i" p..rrur. increases Comprrre the stagnation pressure ratio and sholv that the

friction losses cause pr:/pr t lo decrease ln each case

For ExamPle 9 l:

(p1 l p,1 = 0.1 t6)

(,1i-

P t l

Example 9-3 Air f lows in a 6-in -diameter, insulated' galvanized iron duct- lni t ialcondit ions

*" oi : ZO psia, T1 = 70'F and V1 = 406 ft'/sec Afrer 70 ft' deermine the final Mach

number. temp€rlture and pressure

Since the duct is circulaJ we do noi have to compute an equivalent diameter' From Table

9.2 the absoluie roughness e is 0.0O05 Thus the telative roughness

e 0 0005
D 0,5

\!'e compure the Reynolds number al section I (Figure E9 l) since this is lhe only location

\a here informJtion i l  known

- .  /  ) O \  f  l l j r

t . = # - - f f i = o r o r r b n v i c

/rr : 3.8 x t0-r ttf-secrti l  l  Air prop'rt ies table)

P t t

For Example 9.2:

Thus
o , V '  D r

RF, : :-:---i- =

l t r8 ,

From the lvloody diagram ar Re =

determine that the friction factor is /
need info.mation oo Mach numberg

( P ' : l P ' t = 0 6 1 l )

\ , ^ ' .  \ t ' l J

t)l : '+ i

(0 . t02) ( {06) (0 .5 )  =  1 .69  x  106
(1 .8  x  l0 -7 ) (32 .2)

1.69 x 106 and e/D = 00O1, we

tLn /yr ,  "

: 0.0198. To use the Fanno table (or equa[ons)' we

A  - "  ^
,< .  _  \  "5

..4t z ?.eX,'y'
+  ^  ) 1 , " ]

,-/ "
'' 

1 =z''4*2

-



at  =  Qg, .RTt ) t i .  =  t ( l . .1 ) (12 .2) (51 . t )153011r1r  =  t  123 gy , , " .

, v r r = \ = i ! 1  = n . , ^
c r  l l l S  

- " - "

Fion the Fanno t ible at rt l t  = 0.15,,re hnd,ra.

3= . r . 00 . ' ' :  I  = r . r os r  4===  r , r o ,P - 7 u

]1:_l?.j: 
""T0j.,,:g the problem is in esrablishin-s the }lach numbef at rhe ourje(. riJ rhirrs oone through thefriction len2th:

/  A , r  (0 .0193) (70)
T 

= -- ; --  =t t t '

Looking at rhe phl j icalskerch ir  is appaienr (srnce I and D a.e constaors) rhat

f ! 1  _ / 1 i " , , _  r J . c
D  D  

' - - = I l s O l  - 1 7 7 1  = 0 1 0 3

\ ! 'e ente. the Fanno rable wilh thiJ fr ict ion tength and f ind rhit

Thus

ang

-  T z T ' -  /  |  \, .  =  
VT,  '  =  ( r . t r36)  { . .Gr /  r r ro ,  =  ,or"*

In the example above, the friction factor was assumed constant. In tact, rh.is as_sumptron was made when equation (9.39) was inregrated to oiojn (S.OO), ana *i,nthe introduction of the * referencein the Fanno,"ur.. r, tr,i,...","""';i:";i:i;i::1....rff11?"f,;11,;lil:li,"i],li
Reynolds numbers, which in tum drchange quite,^prdiy ;;;;;;;;;r:nil# ffJ'I.ll:,i;:i'li. nl::,:"J..*.rl:9.3-and compare ir wirh that ar the inf.t f y, = iie fJ*. l* u, joOZ 

,r*. ,t
Bur don't despair. From conrinuiry we Low that *.;;J,;#;.is aJ*ays a

:"Tr-"::-11.:h^ 
the onty variable in Reynolds numbe r is ,fr" "i*rii,y E\rremelyrarge remperature variations are required,!o change the viscosity ofa gas irgnilicantly,and thus variations in the Reynoldi

1l::r"T"Thil;;;;;;#"ilil::ffi T*,T"ii'"i:T"T",H,T;hHwhere the friction factor is relatively inseositive to Reynolds numte.. .+ gleu,.a po-tential eror is involved in the estimation of the duci ;;G;;r;,;il nas a moresignificant effecr on the friction factor

H



Exatuple 9.1 A converging-diver-qing nozlh { i th rn alea 'at io o[ i  4] connects Io an u-l !-

long;onstanl-aiea rectangular duct (see Fi, :ui:  E9'J) The duct is 8 x 4 io in cro\s sr 'ct irn

anihcs a ir ict ion factor of /  = 0 01 \\ 'h:t  i r  lhe ninimum s(agnatioo pfessure feeding the

nozzle i t  the f lorv is supersonic throughoul l ie enti i i  duct and i !  exhausls ro l4-7 psia?

- ! r = 8 f t

- -+=*  i  i  j r , " .=  LaTpsia
I L I  I

i /--'l---'-.- | .,=oo, I
t /  - "

C 6  6  6
Figure E9..1

4 A  t : r  - j : l
=  i . J J +  l n ,

P 1 :
( 0 . 0 :  r  S r r l l l
-  =  u . J o

Tobe supefsonic with ArlA: =: 5.42' [ lt = 316' pil po = O'Olg5' hl P' = 0 1901' and

fLt^""/ D = 0.5582,

J r - 'n  

 

7 , -1 , . .  /  ! r  =  0 . j j3 t  _  0 .36  =  0 . l9S l
D : --ry- o

€
Thus

M r =  t 6 1 3  a n d  { = 0 5 1 + 3

a n o

t t , t l \
o . ,  -  t u t  p t t  p )  P  D .  = ( t ; { : - -  L o . r g o  

 

l -  l ( t 1 . 7 )  = ? 2 S p s i . r
, , '  -  

p , t  p ,  p .  p , , -  \ 0 . 0 1 3 5  / ' -  
-  

\ 0 . 5 t 1 J . /

Any pressure above 288 psia will mainnir the ffo$ system as specified but wilh expansion

waves outside the duct. (Recall an undere\Pn-aded 0ozzle ) Can you envision what would

happen if f ie inlet stagnltion pressur. fell belou 133 psia? (Recall the operation of ao over-

erpanded nozzle.)

9.7 COFFTELATION WITH SHOCKS

As you have progressed through this chapter you may have noticed some similarities

b" t*eenra, rno- f lowandnormalShocks.Lelussummar izesomepeninent in |or .
malion,

D



The points just bei.-rre and after a normal shock represent states q ith the same massllow per unir area. rhe same ll lue of p + p vrg". i l ;; ,;; ,*_"n",ion .n,t utpy.These facis are the resutr of appl.vin-q rire b"ri" ;"*;;;;;;;"i i"",r,-.".n..,"., *oener-qy to any arbirren Iiuid. This anal_vsis resulted in equarions fO.Zj, i i .:1, ana fg.Sl.A Fanno line represenrj states with the same mass n;!v per u;i;;J; anq rne samestagnation enrhalp_v. This is conErmed bI equations <s.) ;"di;.;;.;. moye atonoa Fanno line requires fricrion. At tbp"-*J ;;;;;; ; ; il .'* ?;ffi : ",j;f ""."',,,":,r;iJ::ilt:ry"f 
:'llr::i;

Tie variarion of rhe quanritv o +,pV2/g."along a Fanno line is quite interesting.Such a plot iy shoq n in i,gu,e'e. z. you *i i i  no,o"'t iut f* ";;;;"1;; ;" the super-sonic branch gi the Fanno line there s a coc.espondin-q point on the subsonic branch
L':,lJl::T" l"',. or p + p v!/ se .-thu, trl*" t*"-pj"',, ,"i,"rf "u ,r,r?. "o"0,,,o",ror the end points of s normal shock and could be coonected Uyir"i " ,n*f
. Now we can imaeine a supersonic Fanno flow leading inl i no.mal snocf f f rf,isis followed by additional duct, subsonic Fanno flow,,vould occur. Such a sltuation issholvn in Figure 9.So. Note that rhe shock merely causes tle noru.tluirp from ttresupersonic branch to rhe subsonic branch of the so.,a" nr""" f rn". fi"Jiigure 9.gb.l

P  + ;  i - :  g .

 > 1

Fisure 9.7 \ 'ar ixr ion ot p L pV: ig, in Fanno l lor,, .

Figure 9,8a Coobinarion of Fannq flow and normal shock (physical sysrem).

-11> I
Farno flow

, ' / < l
Fanno flow
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Figure 9.8, Combinrt ion oi Fanno f low and.no.mal shock.

Example 9.5 A large chambef contains air ar a tempefature of 100 K and r p.essure of g
bar abs (Figure E9.5). The air enrers a con!erging-diverging nozzle \r. i rh an area rat io of 2.4.
A constant,area duct is attached to the nozzle and a normal shock st lnds ai the exi!  plane.
Receiver prcssure is 3 bar abs. Assume the entire syJtem to be adiabatic and neglect ir ict ion in
Ihe nozzle. Compute the / A.(/D for the oucr.

Figure E9.5



Fof a shock !D occu. aj speci l ied, the duc! f lo!!  rnust be supersonic. Nhich mians rhrr
the nozzle is opcrating ar i l i  rhird crir icul point The inler condi( ionr and nozzle areu r lr i i r
f ix condit ions ar locrr ion J. \ \ t  can then f ind p. at rhe t ip of the Fanno l ine_ 

. lhen 
rhe . ir i ic

pj lp'  cnn be computed and rhe i \ ' {ach numbe. afrer lhe shock is found from tha Fanno txbla.
This solut ion probabll .would not ha\.e occured to uj had we not dia*.n the I_s uragram ano
reco-gnized that point 5 is on the ssme Funno l ine as J.4. and'_

For Al/At - 1..1, , l1r = I. l  and pj, /p,r = 0.063-10. \ \ t  proceed immediarelr to conrlure

i :  =  + r+4 -4  =  f : ) , ,  f  _ : , ) ( o  l r L r  =  r  ?o j op '  p  .  p : \  p i  p '  \  s . /  \ u . r b i l /

From the F:rnno trbl.  \re nnd ther rt l r  -  0 619. anLl rher from the shcck t3ble..f1r = l . lS9
Retuming to the Fanno lable, /Lra,!, /D = 0.-1099 anC /Zr,r*/D = 0.2_tSl. Thuj

=  0 . 1 0 9 9  -  0 l i s t  =  0 . 1 ; lD D

9.8  FRICTION CHOKING

In Chapter 5 rve discussed the operation of nozzles that were fed by consranr sragna-
tion inlet canditions (see Figures 5.6 and 5.8). \Ve found that as the receivcr pressure
was lowered, the flow through the nozzie increased. When the operating pressLtre
rcrio reached a certain yaLue, the section of minimum area developed a ivlach number
of unity. The nozzle was then said to be choked. Further reduction in the pressure
ratio did not increase the flow fate. This was an example of area choking.

t

Tl
pr

l/)

Figure 9.9 Co{erginB nozzle and consrlnt-arca duct combinarion.
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Figure 9.10 T-s diagram for nozzle-doc! combinal ion

The subsqnic Fanno flow situation is quite similar' Figure 9'9 shows a given length

of duct fed by a large tank and converging nozzle lf the receiver pressure is belo$

the tank pressure, flow rvill occur, producing a ?-s diagram shown as path l-2-3 in

fig"." 9iO. W*. Oat we have isentropic Row at $e entrance !othe duct and $eo \re

mive along a Fanno line. As the receiver pressure is lowered still more' tie flow rate

and exii lvl-ach number continue to increase while the system moves to Faffro lines of

higher mass velocities (shown as path 1-2'-3')' It is imponant to rccognize $at the

receiver pressure (or more Properly, the operaring pressure ralio) is controlling the

no* rnis is because in subionic floru the iressure at the ducr exit must equal that of

the receiver.
Eventually, when a certain pressure ratio is reached' the Mach numbe' at the duct

exit will be unity (shown as path l-2"-3") This is called/naion choking aj.d af.y

funher reduction in receiver pressure would not affect the flow conditions inside the

at.i"^. *tr" *""rd occur as the ffow lear es the ducr and enters a region oi reduced

pressure?
Letuscons ider lh is las tcaseo|chokedf lowwi th rheex i !p ressureequa l to the

,a".it"t ptatt"r". N ow suppose that the receiver pressure is maintoined at this vslue

but more duct is added to the system (l"lothing cin physically prevent us from doing

,ttrir.) W't u,t happens? We know that we cannot move aro''nd the Fanno line' yet

,o rn . t 'o *wemust re f lec t theaddedf r i c t ion losses .Th is isdonebymov ing toanew
Fannolineatar/ecreosedflowrate.TheT-sdiagramforthisisshownaspathl-2,',-
3"'- + in Figure 9.1 l. Note that pressure equilibrium is srill mainlained at the exit bul
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Original duct chok3d.,l/l = I

Supply air

I
I
I

, I .
r 4 t

p,e- held constent

, u = 0

Fanno line fo.
o. iginal duct - - iV  =  |

G , , ,  <  G "

Figure 9.11 Addition ofmore duct when choked.

the sysrem is no longer choked, although the florv l3te has Cecreased. Whet rvould
occur if the receiver pressure were norv lowered?

In summary, when a sulsoaic Fanno flo* has become/n-clioa choked. and more
duct is added ro rhe system. fre florv raie musr decrease. Just ho',v much it decreases
and whether or not the exit velocity remai ns sonic depends on how much duct is added
and the receiver pressure imposed on the system.

Now suppose rhat we are dealing with supersonic Fanno flow that is fiction
choked,ln this case the addition of more duct causes a normal shock to form inside
the duct. The resulting subsonic flow can accomrnodate the increased duct length at
the same flow rate. For example, Figure 9.12 shows a Mach 2.18 flow that has an
JL^ / D value of 0.356. If a normal shock were ro occur ar lhis point, the Mach
number after the shock would be-*iout 0.550, which cocresponds to an /|.*/D

I l  = constlr l

Pt = constant

l't - o

l ie w Fanno l ine at
-- '- t-  

lo,* e r f low rarc
_\*1,-



l - t+=o i i6 - -

,V  =  1 .0

N3r:nr lshock

L  _ . ,
. , - ; : = o r r 8

value of0-728. Thus, in this case, the appearance of the shock permils over twice the

duct length to the choke poinl. This difference becomes even greater as higher NIach

numbers are reached.
The shock location is determined by lhe amount of duct added As more duct is

added, the shock moves upstream and occurs at a higher Mach number Eventually'

the shock will move inlo that portion of the system thal precedes the constant-area

ducr. (lvlost likely, a converging-diverging nozzle was used to Produce the supersonic

flow.)lf sufficient friction length is added, the entire system will become subsonic and

then the flow late will decrease. Whether or not ihe exit velocity remains sonic wili

again depend on the receiver pressure.

9.9. WHEN y lS NOT EOUAL TO 1.4

As hdicared earlier, the Fanno flow table is for 7 : i 4 The behavior

of /L.al/D, the friction function' is given in Figure 9.13 for 7 = 1 13, l 4 and 1 67

forltfach numbers uPto M :5. Here we can see that the dependence on / ls rather

nodceable for rll : 1 4. Thus, below this Mach number the tabulation in fanno labl€

mal be used with Iittle error for any 7. This means that for subsonic flows' where most

Farno flow problems occur, there is little difference berween the various gases' The

desired accuracy of results will govern how far you want to carry this aPproximation

into the supersonic region

Suictly speaking, these curves are only represenlalive for cases where / vanatrons

Ne negligiite witiin the fow. However, they offer hinls as to what 44gnitude of

Figure 9.12 [nf luence oi shocl on r:1.] \ imum duct length



Uore duct added

_l_
\I l  = constanl

= cOnstant

Figure 9,11 Addit ion of more ducr when choked.

the system is no longer choked. although the flow rate has decreased. What w,ould
occur if the receiver pressure pere now lowered?

In summaw, when a sabsanic Fanno flow has become/noioa cloted and more
duct is added to the syslem, the ffow rate must decrease. Just how, much tt clecreases
and wheth€r or not the exit velocity remains sonic depends on how much duct is added
and the receiver pressure imposed on the system.

Now suppose that we are dealing with supersonic Fanno flow that is fiction
choked.In this case rhe addition of more duct causes a normal shock to form inside
the duct. The resulting subsonic flow can accommodate the increased duct lensth at
the same flow rate. For example, Figure 9.lZ shows a Mach 2.lg flow that hL an
fL,n",/D value of 0.356. If a normal shock were to occur at this point, the lvlach
number after the shock would be abott 0.550, which conesponds to an fLftax/ D

Fanno line fo.
original ducr



Listad belo\\ i rre the p.ecise in:L'- i ; : :  ?.ogrrm rhal yotl  t lse in lhe compuler

t  >  q  : =  - . . . :  I  : =  -  i : :

[ '  Y  : =  { ; r  -  \ J / 1 2 ' ;  - - : - ;  r i E  -  : } - \ \ ' 2 ) / 2 J / t l

|  ' e  -  : , ' x - 2 )  -  : ; '  : : ( ' 2 )  -  l ) r

L  !  =  j  r s D r r T i : . l

\ \e cun pro;c-ed lo f ind lh. \ : :- ' i  ) ienber at stal ion 2. The new value of y is 3 1801 -

2.772 = 0.103. \o!v \r 'e use th. !- : : .qul( ion (9 46) but solve fo. Ml as sho*f l  below' Note

(hrt since r!1 is i  pl ici l  in lh. ei: : l i : .  \ :  ar. going to ul i l ize -fsolve '  Let

-g = /.  a parlr i is: L_.t r : t io of specif ic heats)

.X = the depe;1J.l i  1i l :r ' r l .  ($'hich in thi i  case is rt l l )

l  = lhe ind.ler ' l . l :1: ixble ( lvhich in thiscase is /L."*/D)

Listed belorv are the precise inlr-s r: ,J irogram that you use in lhe compuler '

1 ) i  ( x 2 ^ 2 )  / 2 t  /  1 7  +

I L  X 2 ,  A .  . I )  i

The answer of Lll = 0.6?21 is .!1nsis!ent with thsl obtained ir Example 9 3 \\'e can now

proceed to calculate lhe requit.d irfi; ProPenies' but this will be left as an exercise for the

l >  9 2  : =  I . 4 :  Y 2  : =  l . i l !

f >  f s c l v e ( Y 2  =  l ( q 2  -  ' - '  
. 2 ' s 2 )  l ' 1 o g (  ( ( q 2  +

I  , n t  -  r \ "  l r i 2 ^ 2 J  / 2 t :  -  . ' - / q 2 ) ' � ( ( L / X 2 ^ 2 )  '

L cta97415
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9.11 SUMMARY

We have analyzed flow in a consr:.nr-area duct with friction but without heat transfer'

The fluid properties change in a predictable manner dependent on the flow regime as

sho*'n in Table 9.3. The ProPerr,! Eriations in subsonic Fanno flow follow an intuitive

pattern but r.r'e nore that the super:onic florv behavior is iomplerely different' The

Table 9.3 Ftuid Propen}- l-ariltion for Fanno Flow

Prope nt- Subsonic Supersonic

!tloLity
Nlach number
Entialpf
Si!gnation enftalp)'
Pre5suae
Density
Stagnation pressure

Increases
lncreases
Decreases
Constant
Decreas€s
Decreases
Decteases

Decreases
Decaeases
Incleases
Constant
Increases
Increases
Decreases

' Also temperaN.! ifl: i'rid iJ a p.rfec! 8as.



onll contnton occurrence is the decrease in stagnilt ion pressure, which is indicative
o f  the  ioss .

Perhaps rhe nlojt si,gnificant equations are those thar applr ro all f luids:

h ,

p l ' : C =  c o n s t a r t

= o * # i :  c o n s L a n L

(9.2)

(9.5 )

Alon-s !,, irh rltese equations you should keep in mind the appearance oI Fanno lines in
the l;-r and f,-r diagrams (see Figures 9.I and 9.2). Remember that each Fanno Iine
rep.esentj gfinrs r.irh the same mass velociry (6) and sra-snarjon enrhalpy (h.), anct
a no.m3l shock can connect t lvo points on opposite branches ofa Fanno line $hich
hare d13 5xfl16 value oi p + pV. /g". Fanil les ofFanno lines could represenr:

Diderenr velues of G for the samell, (such as rhose in Figure 9.10), or
The sanre G for different values of h, (see problem 10. I 7).

L

Deteiled rr orking equations *,ere developed for perfect gases, and the introduction
of a - reference poinr enabled the constcuction ol a Fanno table which simplif ies
problem solution. The * condicion for Fanno flow has no relation to the one used
previousl,v in isenrropic flow (except in general definii ion). All Fanno flows Droceed
toward a l imiring point of lv{ach l. Friction choking of a flow passage is poisible in

fanno flow just as area choUng occurs in Iarying-area isentropic flow. An ft_s (or
T-s) diagram is of grear help in the analysis of a complicated fl-orv system. Cer rn ro
rle habir of drawing rhese diagrams.

PROBLEMS

In !h9 problems thar fol low you may assume that al l  systems are completely adiabatic. AIso, al l
ducE a.9 of constant area unless other*ise indicated. you may neglect friction in the va.?ing-
area sections. You may also assume that the f.ictibn factor shor,,.n in chans applies
to noncircul3i cross sections when the equivalent dianeter concept is used and the f lo* is
turbl]lenr.

f  9.ycondit ions at the entrance to a duct are l t l1 = 3.g un6 pt = 8 x l0r N/m:. Af!e. a' .J cenain lengrh the ffow has.eached M: = 1.5. Determine p: and f A.r/  D i f  y :1.4.

{9.?7lA-flo" 
of nitrogen is discharged from a duc wirh t1: = 0.85-, I: = 500"R, and p: =

\J ?3 psia. The rempe.arure at the inlet is S6O"R_ Com-pm€ th-ipressure ar rhe inlet and
the-rnass velociry (G)

93. Air enrers a circular duct with a Mach number of 3.0_ The friction factor is 0.01.
(a) How long a duct (measured in diameters) is required to reduce the Mach numbe,

to 2.0?
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lb) what is the percentlge chanse in temperature, pressure and den i(t '  \ ,  C l , ' r ,  i  \  I  I  f ,

(c) Dete.mine the enl.opy inc€ase of lhe air

(d) Assume the same length of duct as computed in pan (a). but the rrrt i : l  \ l lch

number is 0.5. Compute the percentage change in remperatufe. pre!!ui:  denti t) '

and the enlropy increase forthis case Compare the changes in the rxme length duct

for subsonic and supersonic l low' 
!

9.4, Oxygeo eniers a 6-in.-diameter duct wi lh n. = 600"R' Pr = 50 psir.  rnJ l i  = 600 , , /
ftlsec. The tiiction facto. is / = 0.02.

(a) What is the maximum length of duct pen-oi l led thxt \ ! i l l  not chan!:e 3n! ol the

condit ions at the inlet?

-^. 
(b) Deiermine 7r, p2. and V2 for the merim um duc( length found in piril I I I

, /  9.s.) l ;r  Ro*s in an 8-cm-inside diameter pipe that is 4 m lo0g. The ai.  enteis * i th a }Isch

t-,-/ number of 0.45 and a temperature of 300 K

(-_ 9.6.

(a) What friction factot lvould cause sonic velocity a! lhe exit?

(b) If the pipe is made of cast iron, estimate the inlel pressu.e

At one section in a constant-area duc! lhe stagnation pressu.e is 66 8 pjia l]I1d the }lach

number is 0.80. At another section the pressure is 60 psia and the lemper:ture is l]0"F'

(a) Compute the temperature at the first seclion and the Mach numbcr 3( lhe second

section if the ffuid is air.

{b) which way is the air flowing?

(c) What is the friction length (/ A.r/D) of the duct?

= 3.0 and lea\es at Ml =

{a) Find the static and stagnation conditions at the enttance.

tb) whar is the friction ficto( of fte ducl? t

9.8. A duct of 2 fr x I ft cross section is made of riveted steel and is 500 ft long Air enters

with a velocity of 174 ftlsec, p| = 50 psia, and Ir = 100'F.

(a) Determine the temperature, Pressure, and velociry at |he exit.

(b) Compute the pressure drop assuming the flow to be incompressible. L;s' rhe en-

tering conditions and equation (3.29). Note that equation (3.61) cafl r3sily be inte-
gru(ed to evaluirte

|  -  '  . a r  V l

J ' ' " ' - " o , z c "

(c) How do the results of pans (a) and (b) compare? Did you expec! dis:

9.9. Air entecs a duct with a mass flow rate of35 lbrn/sec at Tr : 520'R and pr : 20 psia'

The duct is square and has an area of0 6t fi:. The outlet l{ach Nmber is uniry'

(a) Compure the temPe.ature alld pressu.e at the oul]et.

(b) Flnd the length of the duct if it is made of steel.

9.10. Coosider rhe flow of a pedect gas along a Fanno line. Show th.t the pressure a! lhe '

reference state is Siven by the relatioo
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9 , 11 ,  A  l 0  f r  duc r  l l  i n .  i n  d i amer
Nleasurenrcnrs ar rhe inlet nir: t  

tont" i l l t  o\ l : i 'n dolr ing ai lhe rate of s0 lbm/sec.

*u", i , 'o, ="tr 'or*.rr ' I l r  
erte pl = J0 Pri l  an' l  r l  = 800'R The pressure al the

(a) Calcularr , l / l ,  tVy 12. Ta, and pa.
(b) Determlne rhe f.iction frct

ref lal.  
or ano estrn:re th: ab\olute roughness of the duct m4_

49.12. / !  rhe outle( of a 2 j_cm-diamerer ducL air i j  t_r! i l ing 3t sonic velocitv $. irh a rempef_
\ -_,/ , /  a.ufe of l6.C and a p.essurc of lba... f let. .r i : .en--sm-o-o,n*ir, i i ," ,"^r.rn*"

irre ! lvo pojsible condit ionS Ihat
(a) Find rhe sraric and,,"*"",,"ffi.'.i.1,i'J, ;::il:J;l!1"llio"n"".ono,uon.(b) Assuming rhe sunounding air ro b" "r.t .,,", pr.srur", tr_.u.i i*."oorr., , l lnecessar).to get ambient a

losses in the work proiarr-r" 
tnto lh' duc{ for eaih case? (You may assume no

tt. 
lilf iffi..:,:111",:.1],1;] o,i" *.",:r!tri.ijenlropicariy into a r2-jn.-diamererduct.
r) 0.50. \eglecr 3ll fricrionsl efiicrs ercept r" ,:Jffi,*idi;

Afrer^l0O fr rhe ducr rransirions jnro rn g x 6 in
I t  U . )U.  - \eq lecr . l J  f r i . . i ^ " " '  -F , -^ ,  .  - . - -

!rhefe the i \  lach nurnbea

(a) Detcnri i i re the Mach number ar the duc! .n";; '  
- , r : 0 .0+ .

(b) lvhat are the temperatu.e and p.essure in de sqrjare sec|ion?
k) How much 8 x g in. square duct could be added be fore the tjow chokest 1,l,ssumethat / = 0.04 in this ducr also.) .

Ix,;n;:i,r; ;"1: ll,)1".:.1{1.=^ry K eoreN a fricionress convergrng_divergino n6721q having an area rat ios!.e,s,xg ruzre navlng an aJea ratio of 1.0. The nozzle discharges srrpenoni..uuylnto a constanl-area ducr that has a fdcttDn lenerh /. \r /n _
lemperatuae and pressure at the exit of the ducl

len_sth / A.(/O = 0.35S. Derermine ti l

?lilf:*t::"-::"X:focj are '{, = : 5. p,, = 67 psia, and 4r = 7006R. rhrsi s f o l l owedbya reng tho fFanno f fowa , rd  P 'o ' c r ru r r r= /uu 'K - l h i s

The are;r chrno" i .  " , ,  .r  
c:nreryrng nozzle as shown in Figu.e p9.15.

I-1.;T;:.n*t" 
,, such rhar rhe s)5rem i' .;;r.Jli""r,;ilil:"",iljiJjtl'#;']

1.1.7 psia.

l . r .7 pr ia

6 6""-,
tlr - 2.5

Irr = 700'R

* Figure p9.15
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(a) Dra\\ a f-J diagrlm fo. the system

(b) Fiod .!1r xnd,l1r.

(c) \\'hr! ij .l f.I i D ib. the duc(?

Tti i)  A .ont"rging-i l i \erging nozzle (Figure P9 l6) has an area rat io of 3 0 The stagnation
L---- l  concl i t ions oi lhe inlei air tu-e !50 pl ia and 550"R A conslani-aiea ducl wi lh a lcnglh

of l2 di3iretefs is al lached to lhe nozzle outlct.  The tr icl ion factor in the duct is 0 02-5'

,  l9. l  conrPu(e the r:Jel!er pre\ 'ur. lhl t  ! !oLr[ l  plr--c r shocL

( 
--- rir in rh. nozzre thro ,. & -_ !] " >

,  , t ' ,  r r  t he  n ! ' z z l e  e \ t r ;

( i i i )  al  rhe ducl e\! t .

I

C_)
(b) \ \ 'hr!  raiei!cr pressu.e would cause supersonic f lo* throLlghout the duc! with no

sho.ks * irhin the syrtem (or aftef the du.t exit)?

(c) i \ lake r s\etch similar to Figure 6.3 show ing the pressure dislr ibul ion fof the vanous

operrt in-r poinrj  oj 'pirns lo) an,i  (b).

)2  . !

.7Yr
l

- IQc/
1 urp

(

)

I

t
P

1t,.'1 
-; c--

. t';

\, ,"; f '^"(: : ' ' i,
.  , i , i .  . . t

\O\' 

" 
p, = r:o e,i"

/-. 7, = sffE

(a) Sketch a I-s diagram for the system.
(b) Determine the fliction factor of the duct.
-(c) What is the toral change in entropy fo. ihe system?

I large chamixr contains air at 65 bar pressure and 400 K. The air passes through a

con"eiging'only nozzle and theri irito a constaiit-area duct. The friction lengft of the

ducr is /  .(/D = 1.067 and the lvlach number at the duct €xit is 0,6'

(a) Dra* a I-s diagram iot the system.

(b) Detemine condit ions at the duc! enfance.

(c) What is tie pressuie in the receiver? (,ryintr How is lhis related to the duct exrt

-: PressuEl)
-rf@tt, ,tt" t.ns.h of the duc( is doubled and the chamber and receiver co'tditions remain

'9 
un.h-n"--d. *hat are tire new Macb numbeir ai the enttance ana exit of the-duct?

, _:- .
( 9,19. \rq, "onttant-arca duct is fed by a convergidg-only nozzle as shown in Figure P9' 19' The
"'--*---lnozzle 

receives oxygen from a laryejlS!99r-4J PL = 100 psia and G = 1000"R' The

duct has a friction length of 53 anit it is choked ar the eK;t' The receiver pressure ls

-. exactly the same as the Pressure at the duct exit.

O  - t

-( at <'

p g .

t L '  I  l L,/: ' '

/ ;
( A (. Figure P9.16
I  l -

(j.n)io, u nozzle-duct system similar lo that of Problem 9 16, the nozzle is designed to

^ l- ,---1 Dtoduce a l l lach numberolzJ with i '  =l.4 The inletcondirions are pr| = t0barand

'e ( ?".r = 370 K The dr-rct is d diahretec in length, but the duct friction factor is unkno'''n'

$ it. ,"".i';;;;.;;" is fixed at 3 bcurqd a-normal shock has formed at ttrelill eiii
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Pt  = 100 pr i t r
f .  = loo0"R

I
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M't. ') L--Figure P9.19

(a) $ hat is th.- pressu.e a! the end of lhe ductl

(b) Four-f i f iht of the ducr is removed. (The end of rhe duct is norv at 3.) The chamber
p.essure, receiver paessure. and ir ict ion factor renrin unchanged. Nolv * hat is the
pr:ssure ar the exit  of the ducr?

(c) Sketch both of the cases abole on the sitme I-J diagram.

9.20. (a) Plor a Fanno l ine to scale in the ?-s plane for air enrering a duct with a Nlach
number of 0-20, a stat ic pressure of 100 psir,  and o stat ic rempe.ature of 5-+0.R.
Indicate the Nlach number at vaaious points along lhe cua1e.

(b) On rhe same diagram, plo( another Fanno lioe for a flow with the same total
entltalpy, the same entering entropy, but double rhe mass velocity.

9.21. \rhich, i f  any, ol the rarios rabulaled in rhe Fanno rabte (I / I . ,  p/p.,  pt/p:. .rc.)
could also be listed in the lsentropic table lvith the same numedcal values?

9.22. A contrdctor is to coonect an air supply fao.n a comp.essor to test apparatus 2l ft away.
The exir diam€te. of the compresso. is 2 in. and the entrance to the test equipment
has a l-in--diameter pipe. The contracto. has the choice of putting a reducer a! the
compressor followed by l-in. tubing orusing 2-in. tubing and putting the reducer at rhe
eotl-ince to the test equipment. Since smaller tubing is cheaper and less obtrusive, the
conrractor is leaning toward the 6rst possib ility, butjusr tobe sure, he sends the problem
rc rhe eogineering personnel. The air coming out of Ihe compressor is at 520"R and rhe
prcssure is 40 psia. The flow rate is 0.7 lbnL/sec. Consider that each size oftubing has an
effective / = 0.02- \rtat would be the condilions a! the entrance to the test equipment
for each tubing size? (You may assume isentropic ffo*. everywhere but in the 2l fr of
tubing.)

9.2,3. (Optlonat) (a) Ioroduce the' reference condit ion into equation {9.27) and develop an
expfeision fo. (. t ' -  J), /  R.

(b) Wrile a computer program for the expression develop€d in part (a) and compure a
tabie of (J' - s)/R versus Nlach number. Also include other eotries of the Fanno
tat'le.

CHECK TEST

You should be able ro complete-4 s tesr without reference to mate.ial in the chapte.

L
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9.1. Sketch a Fanno t ine in the i-L planc. lnclude enough addit iontl  infocm:t ion as necessary

to locate the sonic poini and then identiry'  the regions of subsonic anJ iuPersonic f lo\! '

9.2. Fit l  in theblanks inTableCTg 2 toindicate whethe. the quanti l ics i : ' r ' : ;se decrease o(

re |{rin consta itr lb,e case of Fanno flow

Table CT9.2 Analysis oi Fanno Florv

P.operI) Subsonic Regime Supeii . .r l .  Reginie

\tlocity

Pressure
Thrust lunction

( p + p v 2 / g , . )

9.J, in the system shorvn in Figure CT9 I '  the fr ict ion len-qth of lhedui{r '  r  \r , /D-= 1110

and lhe luach number at the exit  is o S Aj = l  5 inl  rnd A1 = I0 in: \ \ t3t is the air

pr.ssure in the tank i f  the receive. is al l5 psia?

9.4, Over what range of receiver pressures will normal shocks occu' someplace within the

syst.m sho*'n in Figr.rre CT9.4? The atea ralio of the oozzle is "{3,r'{; = 1'l0l.tnd6e

d u c t f A r , / D = 0 . 3 0 .

= 15 psia
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9.5. There is no fr ict ion in the systeri  sho!!n in Fi juai CT9.5 except in the constant area ducts
from I to l  and t iom 6 to 7. Skerch the f- i  Jrrsarm for the entire svstem.
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Figure CT9.5

9.6. Star1ing \! i th the basic pnnciples ofconti iru:tr.  energt. and so on, de.ive an expre| jsion fbt
the pfoperty ret io p|/p1in iermj oftr lach:lr inbe.s and rhe specif ic heat rat io for Faitno
fforv with a pedect ges.

9.7. \ !brk Problem 9.1S.
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