UuoT

Mechanical Department / Aeronautical Branch

Gas Dynamics
Chapter One/Introduction to Compressible Flow

Chapter One/Introduction to Compressible Flow

1.1. Introduction
In general flow can be subdivided into:

i.  ldeal and real flow.

For ideal (inviscid) flow viscous effect is ignored. The momentum equations are
Euler’s equations that derived in 1755 by Euler.

For real (viscose) viscous effect is considered. The momentum equations are
Navier-Stokes equations.

ii.  Steady and unsteady flow.

For steady flow, flow properties are time independent and mass exits from the
system equals the mass enters the system.

For unsteady, flow properties are time dependent and mass exit s from the system
may or may not equals the mass enters the system and the difference causes system
mass change.

iii.  Compressible and incompressible flow

For compressible flow, density becomes an additional variable; furthermore,
significant variations in fluid temperature may occur as a result of density or pressure
changes. There are four possible unknowns, and four equations are required for the
solution of a problem in compressible gas dynamics: equations for the conservation of
mass, momentum, and energy, and a thermodynamic relations and equation of state for
the substance involved. The study of compressible flow necessarily involves an
interaction between thermodynamics and fluid mechanics.

For incompressible flow can be assumed with density is not a variable. For this
type of flow, two equations are generally sufficient to solve the problems encountered:
the continuity equation or conservation of mass and a form of the Bernoulli equation,
derivable from either momentum or energy considerations. Variables are generally
pressure and velocity.

iv.  One, two and three-Dimensional Flow
One-dimensional flow, by definition, did not consider velocity components in the y or z
directions, as in Figure (1.1a). In true one-dimensional flow, area changes are not allowed. For
inviscid flow the velocity profile is shown in section (a) and (c). However, the more gradual the
area change with x, the more exact becomes the one-dimensional approximation.
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For viscose flow the velocity profiles is shown in
Figure (1.1b). Actually, due to viscosity, the flow velocity at
the fixed wall must be zero as in sections (a) and (c).

Consider the flow in a varying area channel. The
velocity profile in a real fluid is shown in Figure (1.1b)
section (b).

A complete solution of a problem in a fluid mechanics
requires a three-dimensional analysis. However, even for
incompressible flow a complete solution in three
dimensions is possible only numerically with the aid of
computer programs. Fortunately, a great many compressible
flow problems can be solved with the use of a one-
dimensional analysis. One-dimensional flow implies that the
flow variables are functions of only one space coordinate.

fa)
Figure 1 Ak Real flow in varying area doct

1.2. Control volume approach
Figure (1.2) shows an arbitrary mass at time t and the same mass at time t + At, which
composes the same mass particles at all times. If At is small, there will be an overlap of the two
regions as shown, with the common region identified as region 2. At time t the given mass
particles occupy regions 1 and 2. At time t + At the same mass particles occupy regions 2 and 3.
Regions 1 & 2, which originally confines of the mass, are called the control volume.

Introducing of concept of material
derivative of any extensive property (a property
which is mass dependent such as mass, enthalpy,
internal energy ... etc ) transforms to a control
volume approach gives a valuable general relation
called Reynolds’s Transport Theorem that can be
used to find property change for many particular
situations. Let
X (pronounce chi) = the total amount of any
extensive property in a given mass.

x = the amount of X per unit mass. Thus

= [xin= [f o

Figure1.2: Flow into confrol velumea,
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We construct our material derivative from the mathematical definition

DX (final value of X)a: — (initial value of X),

dt At—>0 At
% (X2 + X3)erar — (X1 + X2 (1.1)
dt At—>0 At '
Now for the term

(X3)e4at

im ————

At—0 At

The numerator represents the amount of X in region 3 at time (¢t + At), and by definition region
3 is formed by the fluid moving out of the control volume. Then;

. (X3)t+At

lim ———— x p (V.7) dA =~ total amount of X inregion3 (1.2)

At—0 At
cs,out

This integral is called a flux or rate of X flow out of the control volume.
Now let us consider the term

llm (Xl)t
At—-0 At

Region 1 has been formed by the original mass particles moving into the control volume (during
time At). Thus

X _

m
At-0 At

jf xp (V.n) dA = total amount of X inregion 1 (1.3)

cs,in

This integral is called a flux or rate of X flow into the control volume.
Now look at the first and last terms of equation (1.1) which is:

X t+At — X t aXc.v. 0
lim [( 2) AAt (Z)lz = =afffxde (1.4)

At—0

Note that the partial derivative notation is used since the region of integration is fixed and
time is the only independent parameter allowed to vary. Also note that as At approaches zero,
region 2 approaches the original control volume. Then eq. (1.1) becomes

DX _ . [(X2 + X3)esne — (X1 + Xo), l
dt At—>0 At
=3¢ fffxde+ ﬂ- xp (V.7)dA — ﬂ-xp(Vn)dA (1.5)

As i = —11 then the last two terms become
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ffxp(V.ﬁ)dA— ffxp(V.ﬁ)dAzf xp (V.7)dA

cs,out cs,in cs

which is the net rate of X passes the control volume surface. The final transformation becomes:

B3 svov+ [ rowma

This relation, known as Reynolds’s Transport Theorem, which can be interpreted in words
as: The rate of change of X property for a fixed mass system of fluid particles as it is moving is
equal to the rate of change of X inside the control volume plus the net efflux of X from the
control volume (flow out minus flow in across control volume boundary).

Where
% : Material or total or substantial derivative
% : Partial derivative with respect to time

cv : control volume that containing the mass.
cs : control surface that surrounding the control volume.
: Mass-dependent (extensive) property; scalar or vector quantity.
. is the amount of the property per unit mass. For mass it equals one.
: Fluid density (kg/m®).
dY : Infinitesimal (very small) control volume.
dA : Infinitesimal control surface.
V : Velocity vector.
: Outward unit vector which is perpendicular to dA.
- Inward unit vector which is perpendicular to dA.
Examples of the application of this powerful transformation equation are conservation of
mass, energy and momentum equations which are presented in the next chapter.

References:
1.  James John & Thie Keith, Gas dynamics, 3td edition, Pearson prentice hall, Upper Saddle,
New Jersey, 2006.
2. Robert D. Zucker & Oscar Biblarz , Fundamental of Gas Dynamics, John Wily & Sons,
New York, 2002.
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Chapter Two/Basic Equation of Compressible Flow

2.1. Conservation of mass:

B)-3 ] rrove rnovms

Let X = mass so y = 1. For fixed amount of mass that moves through the control
volume:
<DM aSS)

Dt
And for steady flow:

2 vax=o 22

So the second term must equals to zero.

=0 (2.1)

U p(V.i)dA =0 (2.3)
CcS
Let us now evaluate the

- - . e e EEEEm _
remaining integral for the case of >y

4 g ) g| f ) Portion of i
one-dimensiona ow. Figure control surface \ 2

. . T Velocity profile

(2.1) shows fluid crossing a =t e
portion of the control surface. ====s==m==——™
Recall that for one-dimensional Figure 2.1: One-dimensional velocity profile,

flow any fluid property will be constant over an entire cross section. Thus both the
density and the velocity can be brought out from under the integral sign. If the
surface is always chosen perpendicular to V, the integral is very simple to evaluate:

jp (V.A) dA = pr dA=pV (4, —A4) (2.4)

But integral in eq. 2.3 must be evaluated over the entire control surface, which

yields:
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ﬂp(V.ﬁ)dA:ZpVA (2.5)

This summation is taken over all sections where fluid crosses the control
surface. It is positive where fluid leaves the control volume (since V.7 is positive
here) and negative where fluid enters the control volume.

For steady, one-dimensional flow, the continuity equation for a control
volume becomes:

YpVA=0 (2.6)
If there is only one section where fluid enters and one section where fluid leaves
the control volume, this becomes:

PV A)ou =V A (2.7)
m=pV A= const (2.8)

IV is the component of velocity perpendicular to the area A. If the density p is
in kg/m3, the area A is in m? and velocity V isinm/s, thenm isin kg/s.

Note that as a result of steady flow the mass flow rate into a control volume
Is equal to the mass flow rate out of the control volume. But if the mass flow rates
into and out of a control volume is the same it doesn’t ensure that the flow is

steady.

For steady one-dimensional flow, differentiating eq. 2.8 gives:
d(pVA) =0=VAd(p) +pVd(A)+pAd(V) (2.9)
Dividingby pV A
o dA &V _ 210
p A V

This expression can also be obtained by first taking the natural logarithm of
equation (2.8) and then differentiating the result. This is called logarithmic
differentiation.

This differential form of the continuity equation is useful in interpreting the
changes that must occur as fluid flows through a duct, channel, or stream-tube. It
Indicates that if mass is to be conserved, the changes in density, velocity, and cross

sectional area must compensate for one another. For example, if the area is
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constant (dA = 0), any increase in velocity must be accompanied by a
corresponding decrease in density. We shall also use this form of the continuity
equation in several future derivations.

2.2. Conservation of energy.

From first law of thermodynamics

Q=W +AE (2.11)

Where AE is the change in total energy of the system i.e. it is the change in

internal, Kkinetic and potential energies, A(U + K.E.+P.E.). Eq. 2.11 can be

written on a rate basis to yield an expression that is valid at any instant of time:

5Q O6W dE

at T ar
6Q/dt and W /dt represent instantaneous rates of heat and work transfer

between the system and the surrounding. They are rates of energy transfer across

the boundaries of the system. These terms are not material derivatives since heat

and work are not properties of a system. On the other hand, energy is a property of

the system and dE /dt is a material derivative, then:

(%)=%ﬂfepd¥+ﬂep(V.ﬁ)dA (2.13)

For one-dimensional, steady flow the last integral is simple to evaluate, as
e, p, and V are constant over any given cross section. Assuming that the velocity V
is perpendicular to the surface A, we have

ﬂep(V.ﬁ)dAzZ(pVA)ezme (2.14)

%jffepd\(:O (2.15)

(2.12)
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We must be careful to include “l/ it
all forms of work, whether done
by pressure forces or shear forces.
Figure (2.2) shows a simple
control volume. Note that the
control surface is chosen carefully :
so that there is no fluid motion at L.dﬁvf;;.,, Control srfsco—
the boundary, except: Figure 2.2: Identification of work quantitics.

(@) Fluid enters and leaves the system.
(b) A mechanical device crosses the boundaries of the system.

For fluid enters and leaves the system, the pressure forces do work to push fluid
into or out of the control volume. The shaded area at the inlet represents the fluid
that enters the control volume during time dt. The work done here is:

SW=F.dx=pAdx=pAVdt (2.16)
The rate of doing work, which called flow work, is

SW ,

prae pAV = mpv (2.17)

The rate at which work is transmitted out of the system by the mechanical device is

6W, /dt and

SW W, W W,

dt ~ de T dt dt
Thus for steady one-dimensional flow the energy equation for a control volume

becomes

6Q 6W

dt

The summatlon is taken over all sections where fluid crosses the control surface

and is positive where fluid leaves the control volume and negative where fluid
enters the control volume.

If there is only one section where fluid leaves and one section where fluid enters
the control volume, we have, (from continuity), for steady flow:

+ mpv (2.18)

(2.19)

Mip = My = M
4-15 ch.2
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Let us take:
0_2 [lqpars [[ap@aas=n 220
el || KX qp (V.7 = mq (2.20)
cv CcS
(SWS—aﬂ dY+ﬂ (V.R) dA = 1 2.21
dt _at WSp WSp -n _mWS ( . )
cv CcS
Substitute in egs (2.20) and (2.21) into eq (2.19) gives:
q=ws+ Z(e + pv) (2.22)
& V2
q=ws+<u+7+gz+pv> —<u+7+gz+pv> (2.23)
out in
V2 &
q=ws+<h+7+gz) —<h+7+gz> (2.24)
2 1

This is the form of the energy equation that may be used to solve many problems.
It is often referred as steady flow energy equation (SFEE).

For unsteady flow, since change of kinetic and potential energies within the
system is negligible, then (Unsteady F.E. E) becomes:

& &
{Q + lm <h + - + gz)l } — {Ws + lm (h + - + gz)l } = (mu), — (mw),; (2.25)
Moyr — Mip = My — My (2.26)
where u, and m, are internal energy and mass of the working fluid
inside the system after

_ il
change while u; and m, are :

internal energy and mass of Q c:u::: G
the working fluid inside the —_—
system before change.

Figura 2 3. Fnite control volums fof enerpy analyss
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2.3. Conservation of momentum.

If we observe the motion of a given quantity of mass, Newton’s second law tells
us that the linear momentum will be changed in direct proportion to the applied
forces. This is expressed by the following equation:

ZF - D(mmget"tum) =%ﬂpr dY+UVp(V.ﬁ) dA (2.27)

Here V besides it is a velocity vector it also represents the momentum per unit
mass. This equation is usually called the momentum or momentum flux equation.
> F represents the summation of all forces on the fluid within the control volume

which maybe forces due to pressure, viscosity, gravity, surface tension ... etc..
For steady flow the time rate of change of linear momentum stored inside the
control volume is

%ﬂprdY=O (2.28)

And momentum equation simplify to:

ZF=HVp(V.ﬁ) dA (2.29)

The x-component of this equation would appear as

ZFx=ffopdeA (2.30)

If there is only one section where fluid enters and one section where fluid
leaves the control volume, we know (from continuity) that:
m = Meye = Myp
And the momentum equation for a finite control volume becomes:

D E= ) 1 (Voue = Vi) (231)
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The summation is taken over all sections where fluid crosses the control
surface and is positive where fluid leaves the control volume and negative where
fluid enters the control volume.

2.4. 1st law of thermodynamics.
First law of thermodynamics takes the following form

ZQ - ZW (2.32)
Or

Q=W+ AE (2.33)
First law of thermodynamics is a conservation of energy and we dealt with in
2.2.

2.5. 2nd law of thermodynamics.

Two concepts that are important to a study of compressible fluid flow are
derivable from the second law of thermodynamics: the reversible process and the
property entropy. For a thermodynamic system, a reversible process is one after
which the system can be restored to its initial state and leave no change in either
system or surroundings. As a consequence of this definition, it can be shown that a
reversible process is quasi-static; changes occur infinitely slowly, with no energy
being dissipated

Since thermodynamics, is a study of equilibrium states, definite thermodynamic
equations for changes taking place during processes can be derived only for
reversible processes; irreversible processes can only be described
thermodynamically with the use of inequalities. Irreversible processes involve, for
example, the following: friction, heat transfer through a finite temperature
difference, sudden expansion, and magnetization with hysteresis, electrical
resistance heating, and mixing of different gases.

In general, any natural process is irreversible, so the assumption of
reversibility, while it may simplify the thermodynamic equations, necessarily
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yields an approximation. For many, cases, the assumption of reversibility leads to
very accurate results; yet it is well to keep in mind that the reversible process is
always an idealization.
The thermodynamic property derivable from the second law is entropy, which
is-defined for a system undergoing a reversible process by dS = (6Q/T)ey-
Entropy changes were defined in the usual manner in terms of reversible
processes:

)
AS = j Urev (2.34)
T
dS = dSexternai T ASinternai (2.35)

The term dS, represents that portion of entropy change caused by the actual
heat transfer between the system and its (external) surroundings. It can be
evaluated readily from:
— 6QR€U

T
One should note that dS, can be either positive or negative, depending on

ds,

(2.38)

the direction of heat transfer. If heat is removed from a system, §Q is negative and
thus dSe will be negative. It is obvious that dS, = 0 for an adiabatic process.

The term dS; represents that portion of entropy change caused by
irreversible effects. Moreover, dS; effects are internal in nature, such as
temperature and pressure gradients within the system as well as friction along the
internal boundaries of the system. Note that this term depends on the process path
and from observations we know that all irreversibilities generate entropy (i.e.,
cause the entropy of the system to increase). Thus we could say that
ds; = 0 (2.36)

Obviously, dS; = 0 only for a reversible process. An isentropic process is one
of constant entropy. This is also represented by dS = 0.
dS =0=dS, + dS; (2.37)

A reversible-adiabatic process is isentropic, but an isentropic process does

not have to be reversible and adiabatic we only know that dS = 0.
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2.6. Equation of State.

An equation of state for a pure substance is a relation between pressure,
.density, and temperature for that substance. Depending on the phase of the
substance and on the range of conditions to which it is subjected, one of a number
of different equations of state is applicable. However, for liquids or solids, these
equations become so cumbersome and have such a limited range of application
that it is generally more convenient to use tables of thermodynamic properties. For
gases, an equation exists that does have a reasonably wide range of application, the
perfect gas law; in its usual form, it is expressed as
p = pRT (2.38)

For the derivation of the perfect gas law from kinetic theory, the volume of
the gas molecules and the forces between the molecules are neglected. These
assumptions are satisfied by a real gas only at very low pressures. However, even
at reasonably high pressures, a real gas approximates a perfect gas as long as the
gas temperature is great enough

2.7. Thermodynamics Relations.
Also the following relations are very useful equations. Starting with the
thermodynamic property relation:

6q = du + 6w (2.39)
dv

Tds = du + pdv = ¢,dT + RT7 (2.40)
dp

Tds = dh — vdp = ¢,dT — RT? (2.41)

For perfect gas with constant specific heats

dT dv
As = ¢, ?+RJ7=cvlnT+Rlnv (2.42)
dT dp
As = ¢, T_R ?chlnT—Rlnp (2.43)
R=c,—cy and vy =c,/c,
9-15ch.2
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Example 2.1 Ten kilograms per second of air enters a tank

100 m3 in volume while 2 kg/s is discharged from the 10 kghs
tank (Figure 2.4). If the temperature of the air inside the EE—
tank remains constant at 300 K, and the air can be treated Figure 2.4 |;
as a perfect gas, find the rate of pressure rise inside the tank.

Solution:
Select a control volume as shown in the sketch. For this case the net rate of efflux of mass from
the control volume is

ff p (V.7A)dA=—-8kg/s

The volume is constant and also density is assumed constant inside the tank as temperature is
constant, but it is time dependent.

o= 2fff avs [ s as

f.f dY =Y =100 m3
cv

dp
0= IOOE -8
From equation of state for a perfect gas
p = pRT
dp dp
ar = Mar
dp
i = 287 * 300 = 100 = 6.888 kPa/s

Example 2.2 Two kilograms per second of liquid hydrogen and eight kg/s of liquid oxygen are

injected into a rocket combustion chamber in steady flow (Figure 2.5). The gaseous products of

combustion are expelled at high velocity Products of
through the exhaust nozzle. Assuming T combustion
uniform flow in the rocket nozzle exhaust —
plane, determine the exit velocity. The nozzle
exit diameter is 30 cm. and the density of the
gases at the exit plane is 0.18 kg /m3 Figure 2.5

10-15 ch.2
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Solution

s s
A= ZDZ = 2(0.30)2 = 0.07069 m?

Select a control volume as shown in the sketch. For this case of steady flow, Eq. (1.12) is
applicable

ﬂp(V.ﬁ)dAzOzZpVA

The rate of influx into the control volume is
2+8=10.0kg/s.
The rate of efflux is
PV Aexic = (pV A)in = 10.0kg/s
10
~ (0.18)(0.07069)

Example 2.3 An air stream at a velocity of 100 m/s and density of lf

1.2 kg /m3 strikes a stationary plate and is deflected by 90°. Determine —= icw
the force on the plate. Assume standard atmospheric pressure

|4

= 7859 m/s

surrounding the jet and an initial jet diameter of 2 cm. Figure 2.6a }'J
j on fluid
Select a control volume as shown in Figure (2.6a). Writing the x - F,

component of eq. (2.30) for steady flow to determine fluid force on the W
plate #

Figure 2.6b
ZFx _ ffvxp(v.ﬁ) dA
cS

T
Fy fruia = 100 * [1.2(100)1(0.02)2] =3.770 N

This force is opposite by Fy4¢.

Example 2.4 A rocket motor is fired in place on a test stand. The rocket exhausts 10 kg/s at an
exit velocity of 800 m/s. Assume uniform steady conditions at the exit plane with an exit plane
static pressure of 50 kPa. For an ambient pressure of 101 kPa, determine the rocket motor
thrust transmitted to the test stand as shown in Figure (2.7).

11-15ch.2
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Solution J—\—/ =0.

ZFx=ffop(V.ﬁ)dA | 4

—_—
e R Ty A i et r
§ E = Fipruse + Fpressure S -
| {F" e P a}ﬁ'-e
Ft——

ffl/,cp(v.ﬁ)dAwpw:mm
CcS

e
Fenrust — (pe - pa)Ae = m,Vy [ S — -

3 Thrust T
Finrust = (50 —101) x 10° *0.01 + 10 = 800 Figure 2.7
= —-510+ 8000 = 7490 N

Example 2.5 A rigid, well-insulated vessel is initially evacuated. A valve T
is opened in a pipeline connected to the vessel, which allows air at |

3 MPa and 300 K to flow into the vessel. The valve is closed when the [:
pressure in the vessel reaches 3 MPa. Determine the final equilibrium : o

temperature of the air in the vessel over the temperature range of interest, ===
Figure 2.8

Airin at
3 MPa, 300 K

Solution
Select a control volume as shown in Figure (1.9). With no heat transfer, no work, and negligible
AKE and ApE, the energy equation is

V2 V2
[Q+lm<h+7+gz>l l—lWS+Im<h+7+gz>l l=(1hu)2—(rhu)1

mout - min =m, — 1My
Thin = Thz =m
mout = ml =0
So eq. (1.32) is simplify to
(mh)i, =  (mu),
and
CpTin = T
Cp B 1.005

Tfinal =T, = aTin = m * 300 =421.1K
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Example 2.6 Steam enters an ejector

(Figure 2.9) at the rate of 0.0454 kg/sec S @ Mixture
team Alxin
with an enthalpy of 3023.8kJ/kg and — > Ew —

negligible velocity. Water enters at the

rate of 0.454 kg/sec with an enthalpy of 5 @
93 kJ/kg and negligible velocity. The
mixture leaves the ejector with an Figure 2.9 “’ﬂﬂT

enthalpy of 349 kJ/kg and a velocity of 27.432m/s. All potentials may be neglected.
Determine the magnitude and direction of the heat transfer.

m, = 0.0454 kg/sec, m, = 0.454 kg/ sec,

h, = 3023.8kJ/kg,  h, =93k]/kg, hs = 349 k] /kg
V; = 0.0m/s, V, = 0.0 m/s, V; =27.432m/s
ms = my + m, = 0.0454 + 0.454 = 0.4994 kg/sec

5 . V12 . VZZ . . V32
Q+m1 h1+7+gZ1 +m, h2+7+922 =[/[/s-|-m3 }13_'_7_'_923

. . V2
Q + iy hy + 1k, = W5+m3<h2 +73)

. 27.4322 %1073
Q + 0.0454 % 3023.8 + 0.454 * 93 = 0.4994 [ 349 +

2
0 + 137.281 + 42.222 = 550.1
0 = —5.0245 kW

Example 2.7 A horizontal duct of constant area contains CO2 flowing isothermally (Figure
2.10). At a section where the pressure is 14 bar absolute, the average velocity is know to be
50 m/s. Farther downstream the pressure has dropped to 7 bar abs. Find the heat transfer.

Solution E I
Ny i

p, =14 x 105 N/m? : 2 |

p; =7 x10° N/m? | (J?D

V; =50 m/s @

V, =2 m/s Figure 2.10

From state equation between 1 and 2, as T is constant:
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Py vy = pyv,

pr_p_ 14
p P2 7
From continuity equation

2

m=p Vi Ay =p, V2 4
v, = Vl*%=50*2=100 m/s
2

& V2
q=M@+GQ+QLPi+gQ>—Qh+kai+ga>
p2 2 2

Py
_ V22 - V12 _ (1002 - 502)
1=\72 )~ 2

= 3750 J/kg

Example 2.8 Hydrogen is expanded isentropically in a nozzle from an initial pressure of
500 kPa, with negligible velocity, to a final pressure of 100 kPa. The initial gas temperature is
500 K. Assume steady flow with the hydrogen behaving as a perfect gas with constant specific
heats, where ¢, = 14.5 kJ/kg.K and R = 4.124 kj/kg. K. Determine the final gas velocity
and the mass flow through the nozzle for an exit area of 500 m?2.

Solution
Cp Cp 14.5
Voo T —R 145—4.124
From isentropic relation
-1
T, =T, %y " 500 (%)
From energy equation

& &
q=ws+<h+7+gz) —<h+7+gz)
out in

= 1.397

1.397-1/1.397

=316.5K

h L p, 2
)

V, = J2(hy — hy) = /2cp(T; — T,) = /2 * 14.5 * 103(500 — 316.5) = 2306.84 m/s
From equation of state

D> 100

RT, 4124 +3165
From continuity equation
m = p,VoA4, = 0.0766 * 2306.84 * (500 * 10*) = 8.837 kg/s

Py = =0.0766 kg/m3

14-15 ch.2
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Example 2.9 There is a steady one- E y

. . . - Iy
dimensional flow of air through a 30.48 cm f‘%ﬁ‘%%“%}?ﬁsw R,
diameter horizontal duct (Figure 1.12). At a ’rl e *J« ? ,?” :
section where the velocity is 140.208 m/s, 'sc g‘&”ﬁ i

: Control volume}i s

the pressure is 344.379 kN/m?* and the iy —N§ Mﬁ'ﬁr§°?('§§£§g¥;f°fég§g: Py
temperature is 305.5 K. At a downstream ' :
section the velocity is 268.224 m/s and the d) Figure 2.11 @

pressure is 164.7847 kN /m?. Determine the total wall shearing force between these sections.
Solution

From eq.

D F =10 (Vour = Vi)

D, 344.379
RT,  0.287 * 305.5
=3.928 kg/m?3
m = p,V,A = 3.928 * 140.208 = 7 * 0.3048% /4 = 40.182 kg/s

Z F=(pA), — (pA), — Ff
Ff = (pA)l - (pA)Z + m(Vexit - Vin)

s
Fr = (344.379 — 164.7847) * 103 * ZO.30482 + 40.182 (268.224 — 140.379)

P1 =

= 13104.256 — 5137.067 = 7967.2 N
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Chapter Three/Wave Propagation

3.1. Introduction

The method by which a flow adjusts to the presence of a body can be shown
visually by a plot of the flow streamlines about the body. Figures (3.1) and (3.2)
show the streamline patterns obtained for uniform, steady, incompressible flow
over an airfoil and over a circular cylinder, respectively.

Note that the fluid particles are able to sense the presence of the body before
actually reaching it. At points 1 and 2, for

example, the fluid particles have been  _ ———vu. =
___/"’@,—___—\_

displaced vertically, yet 1 and 2 are points in A
the flow field well ahead of the body. This ﬂ

result, true in the general case of anybody F|gure3"|

inserted in an incompressible flow, suggests

that a signaling mechanism exists whereby a fluid particle can be forewarned of a
disturbance in the flow ahead of it. The velocity of signal waves sent from the
body, relative to the moving fluid, apparently is greater than the absolute fluid
velocity, since the flow is able to start to adjust to the presence of a body before

reaching it. /\
Thus, when a body is inserted into @/r/\\*_

- - - _+_--..‘
incompressible flow, a smooth, continuous — \ RERE -
streamlines result, which indicate gradual M
changes in fluid properties as the flow passes
. . Figure 3.2 Stream patterns for steady

over the body. If the fluid particles were to incompressible flow
move faster than the signal waves, the fluid would not be able to sense the body
before actually reaching it. and very abrupt changes in velocity vectors and other
properties would ensue.

In this chapter, the mechanism by which the signal waves are propagated
through incompressible and compressible flows will be studied. An expression for
the velocity of propagation of the waves will be derived.

1-7ch.3
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3.2. Wave formulation

To examine the means by which disturbances pass through an elastic medium. A
disturbance at a given point creates a region of compressed molecules that is
passed along to its neighboring molecules and in so doing creates a traveling wave.
Waves come in various strengths, which are measured by the amplitude of the
disturbance. The speed at which this disturbance is propagated through the medium
Is called the wave speed. This speed not only depends on the type of medium and
its thermodynamic state but is also a function of the strength of the wave. The
stronger the wave is, the faster it moves.

If we are dealing with waves of large amplitude, which involve relatively
large changes in pressure and density, we call these shock waves. These will be
studied later. If, on the other hand, we observe waves of very small amplitude,
their speed is characteristic only by the medium and its state. These waves are of
vital importance since sound waves fall into this category. Furthermore, the
presence of an object in a medium can only be felt by the object’s sending out or
reflecting infinitesimal waves which propagate at the sonic velocity.

Consider a long constant-area tube filled with fluid and having a piston at one
end, as shown in Figure (3.3). The fluid is initially at rest. At a certain instant the
piston is given an incremental velocity dV to the left. The fluid particles
immediately next to the piston are compressed a very small amount as they acquire
the velocity of the piston. As the piston (and these compressed particles) continue
to move, the next group of fluid particles

Is compressed and the wave front is
observed to propagate through the fluid at
sonic velocity of magnitude a. All particles

- dl

Wave | front

Tube

b+ —
p+dp g— Piston

between the wave front and the piston are
moving with velocity dV to the left and

have been compressed from p to p + dp P p +dp Pressure plot
and have increased their pressure from p
to p + dp.

2-7¢ch.3
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The flow is unsteady and Wave Y
the analysis is difficult. This B S 3
difficulty can easily be solved by ALENN 5' y=a—dv
superimposing on the entire flow o !I i p + dp X
field a constant velocity to the p L ________ T PTdr
right of magnitude a. PPN Suntrol volume

Figure 3.4 Steady-flow picture comresponding to Heure 3.3.
3.3. Sonic Velocity

Figure (3.4) shows the problem. Since the wave front is extremely thin, we
can use a control volume of infinitesimal thickness. For steady one-dimensional
flow, we have from continuity equation
m = pAV = const
But A = const; thus
pV = const (3.1)
Application of this to our problem yields
pa = (p + dp)(a — dV)
pa = pa — pdV + adp — dpdV
Neglecting the higher-order term and solving for dV, we have

adp

p

Since the control volume has infinitesimal thickness, we can neglect any
shear stresses along the walls. We shall write the x-component of the momentum
equation, taking forces and velocity as positive if to the right. For steady one-
dimensional flow we may write from momentum equation

z Fy = Z m (Voue — Vin)

pA — (p + dp)A = pAa[(a —dV) — a]

Adp = pAa dV

Canceling the area and solving for dV, we have

dv = (3.2)

v = — (3.3)

3-7¢ch.3
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Equations (3.2) and (3.3) may now be combined, the result is:
2, _ 9

dp
However, the derivative dp/dp is not unique. It depends entirely on the process.
For example

@), * ),

Thus it should really be written as a partial derivative with the appropriate
subscript.

Since we are analyzing an infinitesimal disturbance, we can assume
negligible losses and heat transfer as the wave passes through the fluid. Thus the
process is both reversible and adiabatic, which means that it is isentropic.
Equation (4.4) should properly be written as:

dp
a2 = (%) (3.4b)

For substances other than gases, sonic velocity can be expressed in an
alternative form by introducing the bulk or volume modulus of elasticity Ev.

a (3.4a)

ise

ap ap
r ()=o)
v av ise ,D ap s ( )
E
a2 = 2 3.6
p (3.6)

Equations (3.4) and (3.6) are equivalent general relations for sonic velocity
through any medium. The bulk modulus is normally used in connection with
liquids and solids. Table 4.1 gives some typical values of this modulus, the exact
value depending on the temperature and pressure of the medium. For solids it also
depends on the type of loading. The reciprocal of the bulk modulus is called the

compressibility. Table4.1 Bulk Modulus Vahes for Common Media

Equation (3.4) is normally used pizdium Bulk M odulus (pa)
for gases and this can be greatly oi 185 000-270,000
e Watz 300 000400 000
simplified for the case of a gas that yoo. wopran, 4000000
Stesl approf. 30000000
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Prepared by A.A. Hussaini 2013-2014



UuoT

Mechanical Department / Aeronautical Branch

Gas Dynamics
Chapter Three/Wave propagation

obeys the perfect gas law. For an isentropic process:
pvY =c or p=cp’

629) p
(— =cyp’t=yp"'— =yRT
ap ise pY

a = ,/yRT (3.7)

For perfect gases, sonic velocity is a function of the y,R and T only.

%4
Mach number, M = P (3.8)

It is important to realize that both V and a are computed locally for the same
point. For other point within the flow we must seek further information to
compute on the sonic velocity, which has probably changed.

Subsonic flow, M <, the velocity is less than the local speed of sound.

Supersonic flow, M > 1, the velocity is greater than the local speed of sound.

We shall soon see that the Mach number is the most important parameter in the
analysis of compressible lows.

3.4: Wave Propagation
Let us examine a point disturbance that is Waive saalesdat 150

at rest in a fluid. Infinitesimal pressure & : _
Vave emitted at ¢ = |
pulses are continually being emitted and
“ Wave emitted at 1= 2

thus they travel through the medium at

sonic velocity in the form of spherical @

wave fronts. To simplify matters we shall

keep track of only those pulses that are (FTcmn s Loy 1=9)
emitted every second. At the end of 3

seconds the picture will appear as shown in Figure 3.5 Wave frontsfrom a stationary disturbance.

Figure (3.5). Note that the wave fronts are concentric.

Now consider a similar problem in which the disturbance is moving at a speed
less than sonic velocity, say a/2. Figure (3.6) shows such a situation at the end of
3 seconds. Note that the wave fronts are no longer concentric.

5-7 ch.3
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Location of disturbance at r= 3
Wave emitted atr=10

Furthermore, the wave that was
emitted at t = 0 is always in
front of the disturbance itself,  Uisturbance

MevVIng

Therefore, any person, object, Eirf:l:::an
or fluid particle located *';-_.,;?
upstream will feel the wave
fronts pass by and know that
the disturbance is coming. PR

Next, let the disturbance
move at exactly sonic velocity.
Figure (3.7) shows this case and
you will note that all wave
fronts coalesce on the left side
and move along with the
disturbance. After a long period
of time this wave front would
approximate a plane indicated
by the dashed line. In this case,
no  region upstream IS
forewarned of the disturbance as
the disturbance arrives at the
same time as the wave front.

The only other case to
consider is that of a disturbance
moving at velocities greater than
the speed of sound. Figure (3.8) m
shows a point disturbance
moving at Mach number = 2
(twice sonic velocity). The wave

Wave emitted at 1= 1

Waveemitied at r = 2

{Picture shown fore =3}

Figure 3.6 Wave fronts fromn subsonic disturbancs,

Wave emitted at r =0

Wave emitted atr= 1

Wave emitted at = 2

(Picture shown for § = 3)

(Picture shown for § = 3)

Mach cone

Zone of silence

Wave emitted at r= |

Wave emitted at ¢ = 0

Figure 3.8 Wave fronts from supe rsonic disturbance,
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fronts have coalesced to form a cone with the disturbance at the apex. This is
called a Mach cone. The region inside the cone is called the zone of action since it
feels the presence of the waves. The outer region is called the zone of silence, as
this entire region is unaware of the disturbance. The surface of the Mach cone is
sometimes referred to as a Mach wave; the half-angle at the apex is called the

Mach angle and is given the symbol x. It should be easy to see that:
_ a 1
sinpy = v = i (3.9)

For subsonic flow, no such zone of silence exists. If the disturbance caused by a
projectile, the entire fluid is able to sense the projectile moving through it, since
the signal waves move faster than the projectile. No concentration of pressure
disturbances can occur for subsonic flow; Mach lines cannot be defined.

Let us now compare steady, uniform, subsonic and supersonic flow over a
finite wedge-shaped body. If the fluid velocity is less than the velocity of sound,
flow ahead of the body is able to sense its presence. As a result, gradual changes in
flow properties take place; with smooth, continuous streamlines (see Figure 3.9).

If the fluid velocity is greater than the velocity of sound, the approach flow,
being in the zone of silence, is unable to sense the presence of the body. The body
now presents a finite disturbance to the flow. The wave pattern obtained is a result
of the addition of individual Mach waves emitted from each point on the wedge.
This nonlinear addition yields a compression shock wave across which occur finite
changes in velocity, pressure, and other flow properties. A typical flow pattern
obtained for supersonic flow over the wedge is shown in Figure (3.10).

el
._'-l e
wiel! N
o,
L ._11'-
=
i
-

Figure 3.9 Subsonic wedge Flow Figure 3.10 Supersonic wedge flow
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Chapter Four/lIsentropic flow of a perfect gas in varying area duct

To study the compressible, isentropic flow through varying area channels such as
nozzles, diffusers and turbine blade passages, the following assumptions are
considered:
1. One dimensional, steady flow of a perfect gas.
Friction is zero.
No heat and work exchange.
Variation in properties is brought about by area change.
Changes in potential energy and gravitational forces are negligible.

o~ oD

4.1 Equations of motion.

e Continuity equation: ! bl LA
B e e e ]
: ip + dp
V.A) dA = z VA=0 (41 Al . contro
jf p(V.7) p (4.1) S=meeo. 1 “volume
€S R e i L 1A +dA

(4.2) Figure 4.1 Control volume for

m=pV A= const varying area flow

(p+dp)(V+dV)(A+dA) =pV A (4.3)
Simplifying and ignoring high order

pVA + pVdA + pAdV +VAdp =pV A (4.4)
Dividedby pV A

dp A 4V _ 45)
p A V

e Momentum equation:

ZF=ﬂVp(V.ﬁ)dA (4.6)

f f Vp (V.7) dA = pVA[(V + dV) = V] (4.7)

1-5ch.4
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If there is no electromagnetic force and friction force is negligible, the only
acting force is the pressure force. The side wall pressure force in flow direction can
be obtained with a mean pressure value:
wall pressure force = [(mean pressure)(wall area)] sin 0
but dA = (wall area) sin 6; and thus

d
wall pressure force = (p + 7p) dA (4.8)
dp
zF=pA+(p+7> dA — (p + dp)(A + dA) (4.9)
d
A + (p + 7’0) dA — (p + dp)(A + dA) = pVA[(V + dV) — V] (4.10)
Simplifying and ignoring high orders
dp + pVdV =0 (4.11)
e Energy equation
H ep(V.A)dA =0 (4.12)
CcS
ﬂ [6g —Oows +d(u+pv+k.e.+p.e)]p(V.N)dA =0 (4.13)
CcS

The specific energy e is stand for internal, flow, Kkinetic and potential
energies, since there is no heat and work transfer. Then from S.F.E.E.;

2 2
6q+<pv+u+v7+gz> = 5Ws+((p+dp)(v+dv)+(u+du)+w+g(z+dz))
2vdVv
0= (pdv + vdp + du + T) (4.14)
dv?
0=dh+— (4.15)

2
Substitute from thermodynamics relations

6q=dW;+du=pdv+du=dh—vdp =0
dh = vdp

2-5ch.4
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dp + pVdV =0 (4.16)
This is the energy equation which is similar to equation (4.11).

4.2 Stagnation concept and relations

If you had a thermometer and pressure gage, they would indicate the
temperature and pressure corresponding to the static state of the fluid, as you move
with flow velocity. Thus the static properties are those that would be measured if
you moved with the fluid.

Stagnation state defined as that thermodynamic state which would exist if the
fluid were brought to zero velocity and zero potential. To yield a consistent
reference state, we must qualify how this stagnation process should be
accomplished. The stagnation state must be reached
1. Without any energy exchange (Q = W = 0)

2. Without friction losses.

From (1), change of entropy due to energy exchange is zero, i.e. ds,,, = 0;and
from (2), change of entropy due to friction is zero, i.e. ds;,;; = 0. Thus the
stagnation process is isentropic!

Consider fluid that is flowing and
has the static properties shown as (a)
in Figure 4.3. At location (b) the fluid
has been brought to zero velocity and
zero potential under the foregoing
restrictions. If we apply the energy
equation to the control volume
indicated for steady one-dimensional

flow, we have.
2

Vi Vy
q+ h1+7+gzl =WS+ h2+7+gZ2

p1.Vi#0,2; 0

Stream tube as control volume

Figure 3.1 Stagnation Process

4

h
1‘|'2

+ ng == hz (4‘17)
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Since condition (2) represents the stagnation state corresponding to the static
state (1). Thus we call h, the stagnation or total enthalpy corresponding to state
(1) and designate it as h;,. Thus

V32
htO == h1 +7+g21
Or for any state, we have in general,
VZ
h, =h+ > + gz (4.18)

This is an important relation that is always valid. When dealing with gases,
potential energy changes are usually neglected, and we write.

VZ
h, =h+ - (4.19)
The one-dimension S.F.E.E. becomes:
ho1 + g = hyy + wg (4.20a)
h,y =h,, or dh,=0 (4.20Db)

Equation (4.20) shows that for any adiabatic, no-work, steady, one-dimensional
flow system, the stagnation enthalpy remains constant, irrespective of the losses.

One must realize that when the frame of reference is changed, stagnation
conditions change, although the static conditions remain the same. Consider still
air with Earth as a reference frame. In this case, since the velocity is zero the static
and stagnation conditions are the same. For gases we eliminate potential term

YR
Cp:]/——ll h=CpT
V2 M?yRT y—1
ho=h+—=h+— = h+ M? 5T
-1
h,=h (1 + M2 VT) (4.21)
-1
T, =T (1 + M2 VT) (4.22)
4-5ch.4
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The stagnation process is isentropic. Thus y is used as the exponent in the
relations between any two points on the same isentropic streamline. Let point 1
refers to the static conditions, and point 2, the stagnation conditions. Then,

Dy T, v/(r-1)
D1 B (Tl)

Do T, y/(y—1)
w3
b = (1 12 u>y/(y—1) (4.23)
(0] 2 .
y — 1 1/(y-1)
Po =P (1 + M? T) (4.24)

Example 4.1 Air flows with a velocity of 243.84 m/s and has a pressure of
206.843 kN /m? and temperature of 60.2 °C. Determine the stagnation pressure.
Solution

a = /YRT = /1.4 x 287 % (60.2 + 273) = 365.9m/s

v _a4384_
a 3659
_1.Y/(yr-1) 4. (14/14-1)
y 141
Dy =D (1 + M2 T) = 206.843 (1 +0.666—— )

= 278.506 kN /m?

Example 4.2 Hydrogen, yy, = 1.405, has a static temperature of 25°C and a
stagnation temperature of 250°C. What is the Mach number?

Solution
-1
T,=T (1 + M? VT)
1.405 -1
(250 + 273) = (25 + 273) (1 + M? T)

523 =293 (1 + 0.2025 M?) — M? =3.8765 > M = 1.969
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Chapter Five/Subsonic and Supersonic Flow through a Varying Area
Channels

5.1 Isentropic Flow in varying Area ducts

For isentropic flow, from continuity
dp dA dV

—+—+—=

p A |74

and from momentum equations

dp + pVdV =0 (4.11)

(4.5)

—Ft— =290 (5.1a)

dp — pV'? (7 + —) =0 (5.1b)

From definition of sonic velocity, eq.3.4

o (), )~ m
ap dp P= g

ise ise

- (5.2a)
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dp [ yM? \dA S oh

p \(1-M2)) A (5.2b)
Also from eq. 5.1. after substitute for dp = a?dp from definition of sonic velocity
dp a4 _ dp _

p A pVz o

dp dA 1 dp

p A M?p

dp M? dA

— = (—) (5.3)

p (A-M*)\A

Substitute eqg.5.3 into continuity eq.4.5. gives
M? dA dA dV 3

A-MH A a7

7= (=) (7 54

Let us consider what is happening to fluid properties as it flows through a
variable-area duct.

For subsonic flow, M < 1, then (1 — M?) is + ve.

When dA is negative (area is decreasing), then dp is negative (pressure
decreases) and dp is negative (density decreases) and dV is positive (velocity
increases) and vice versa.

For supersonic flow, M > 1, then (1 — M?) is — ve.

When dA is negative (area is decreasing), then dp is positive (pressure
increases) and dp is positive (density increases) and dV is negative (velocity
decreases) and vice versa.

We summarize the above by saying that Lo
as the pressure decreases, the following i
variations occur: ! Ared
|
Subsonic Supersonia : i _
(M=1) (M=1) {E;:Z’:fe)_
Ares 4 Decreases Inereases
Density fel Decreases Deereazas
Velocity V Increases Inereases o
Talble 5.1: Variation of area, density and velocity with 0 M<1 M=1.0 M=1
Much number as the pressure decreases Figure 5.1: Property variation with Mach number
2-7ch.5
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Combines equations (5.4) and (5.3) to eliminate the term dA/A with the

following result:
dp , (AV
ri M ( 7 ) (5.5)

From this equation we see that:

At low Mach numbers, density variations will be quite small. This means that
the density is nearly constant (dp = 0) in the low subsonic regime ( M < 0.3) and
the velocity changes compensate for area changes.

At a Mach number equal to unity, we reach a situation where density changes
and velocity changes compensate for one another and thus no change in area is
required (dA = 0).

At supersonic flow, the density decreases so rapidly that the accompanying
velocity change cannot accommodate the flow and thus the area must increase.

A nozzle is a device that
converts enthalpy (or pressure energy
for the case of an incompressible
fluid) into Kkinetic energy. From
Figure 5.1 we see that an increase in
velocity is accompanied by either an
increase or decrease in area,
depending on the Mach number.
Figure 5.2 shows what these devices (a) (b)
look like in the subsonic and
supersonic flow regimes.

M =1
_—

Velocity increasing

A diffuser is a device that
converts kinetic energy into enthalpy
(or pressure energy for the case of
incompressible fluids). Figure 5.3
shows what these devices look like in
the subsonic and supersonic regimes.
Thus we see that the same piece of

M ] M=1
_—

equipment can operate as either a (a) (b)
nozzle or a diffuser, depending on the Figure 5.3 Diffuser configirations,
flow regime.

Notice that a device is called a nozzle or a diffuser because of what it does,
not what it looks like.
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Further consideration of Figures 5.1 and 5.2 leads to some interesting
conclusions. If one attached a converging section (see Figure 5.2a) to a high-
pressure supply, one could never attain a flow greater than Mach 1, regardless of
the pressure difference available. On the other
hand, if we made a converging—diverging device | ' |

(combination of Figure 5.2a and b), we see a 2L mea M>5
]

means of accelerating the fluid into the supersonic m

regime, provided that the proper pressure _
difference exists between inlet and exit plane. Figure 5.4: Eg;;‘;'gem'dwergem

5.2 The (*) Reference Concept

Concept of a stagnation reference state was introduced which is an isentropic
process. It will be convenient to introduce another reference condition since the
stagnation state is not a feasible reference when dealing with area changes. (Why?)

The new reference state with a superscript (*) and define it as “that
thermodynamic state which would exist if the fluid reached a Mach number of
unity by some particular process”. There are many processes by which we could
reach Mach 1.0 from any given starting point, and they would each lead to a
different thermodynamic state.

For isentropic flow process, adiabatic frictionless, flow the stagnation properties
for all points are the same as well as the (*) properties are the same.

For actual flow process, each point in the flow has its own stagnation and (*)

properties.
Consider a steady, one-
. . T P i
dimensional flow of a perfect gas 1, N 2 M = 0 (stagnation)

with no heat or work transfer and |

negligible potential changes but i gn, ‘ctuel process in
. .. . 5 flow system

with friction. Figure 5.5 shows a ., |

T -s diagram indicating two /ry ol 93 N
points in such a flow system. -10

Above each point is shown its LMH,J

stagnation reference state, and

below its reference state (x). $
Figure 5.5 Ilsertropic * refereice states
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Note that the stagnation temperatures are the same and lie on a horizontal line,
but the stagnation pressures are different, and also () reference points will lie on
another horizontal line (since no heat is added).

Between (x) reference state and the stagnation reference state lie all points in the
subsonic regime. Below the (x) reference state lie all points in the supersonic
regime.

5.3 Isentropic Table

Mass flow rate at flow cross sectional area A can be expressed in terms of
stagnation pressure and temperature

m = pAV = const continuty equation

p = pRT state equation
YRT sonic speed

M=V/a Much number

For perfect gas with constant specific heat

m = —AM,/ = —AM\/_ (5.6)

Substitute forpand T from

-1
T, =T (1+sz2 ) (4.26)
y — y/(r=1)
Do =D (1 + M? T) (4.28)
Y- -(r+1)/2(r-1)
m = 1+M ) 5.7
- J_ 7R - (5.7)
m= , M 5.8
R\/— fr,M) (5.8)
Myy
fr. M) = y—1 r+1)/2(r-1) (5.9)
(1+m2=)

For isentropic flow where p, and T, are constant, cross section A can be related
directly to Mach number. Select flow cross section area where M =1 as a
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reference area A* . For steady flow, the mass flow rate 1
at area A is equal to the mass flow rate at area A*.
m=m"

P iy, my = 2 ) (5.10) ~
R\T, R\T,
A
E = g()/, M)
(y+1)
A _1/(1+[(-1/2]M? " (5.11)
A M (y+1)/2 '

The result of equation (5.11) is plotted

in figure (5.6) for y = 1.4. For each ,

value of A/A* there are two possible i

isentropic solution, one subsonic and '{ Area

the other supersonic. The minimum %

area or throat area occurs at M = 1. |

This agree well with the result of eq 5.6

that illustrated in figure 5.2. and 5.3. 10
A convergent-divergent nozzle is

x|

required to accelerate a slowly moving 0 V<1 Lo TR
. lociti Mach number
stream to SUPETSONIC VEIOCILIES. Figure 5.6 Area ratiovariation with Mach number

Example: 5.1

An airstream flows in a converging duct from cross section area A, of
50 cm?to a cross-sectional area 4, of 40 cm?. If T, = 300 K, p;, = 100 kPa and
V, =100 m/s. Find M,, p, and T, . Assume steady one-dimensional isentropic
flow.

Solution:
Over the temperature range, air behaves as perfect gas with y = 1.4.
4 4 100

M, =— = 0.288

a  JyRT 14+0.287+300
At M, = 0.288 from isentropic flow table with y = 1.4
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Ay

T =2.11

But

A, 40

A_l = % = 0.80

So that

A, Ay A

YT =E*A_1: 1.689

From isentropic flow table , M, = 0.372
For isentropic flow, (no shaft work, potential energy is neglected for a gas),
p: and T; are constant. At M = 0.288 from isentropic flow table :

P1

100
—=0.944 - D1 = = 105.9 kPa = D1

Dot 0.944

T pogaoT S99 _ 3049k

— = U. - = = .

T, 17 0.984

At M, = 0.372

P2 0909 - p, = 0.909 « 105.9 = 96.3 kPa

Po1

T

T—Z =0.973 > T, = 0.973 % 304.9 = 296.7 K
ol
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Chapter Six/Isentropic Flow in Converging Nozzles

6.1 performance of Converging Nozzle

Two types of nozzles are considered: a converging-only nozzle and a
converging—diverging nozzle. A assume a fluid stored in a large reservoir, at 6 bar
and 60 °C , is to be discharge through a converging nozzle into an extremely large
receiver where the back pressure can be regulated. We can neglect frictional

effects, as they are very small in a converging

section.

. . Large chamber
If the receiver (back) pressure is set at 6 bar,  of supply air

no flow results. Once the receiver pressure is Ty=60% ! Recei
. . I SCEIVET
lowered below 6 bar, air will flow from the py = 6bar | Prec = Py
. ! ariable
supply tank. Since the supply tank has a large V=0 @ e

cross section relative to the nozzle outlet area,

the velocities in the tank may be neglected.

Thus T, ~ T,, and PL A Doy (stagnation Figure 6.1: Cormerging-only nozzle,

properties). There is no shaft work and we assume no heat transfer and no friction
losses, i.e. the flow is isentropic.

We identify section 2 as the nozzle outlet. Then from energy equation
ho1 +6q = hyy + Swg
hor = hoy = CpTo1 = Ty

And for perfect gas where specific heats are assumed constant

Tor =To2

It is important to recognize that the receiver pressure is controlling the flow. The

velocity will increase and the pressure will decrease as we progress through the

1-6 ch.6
Prepared by A.A. Hussaini 2013-2014



UuoT

Mechanical Department / Aeronautical Branch
Gas Dynamics

Chapter Six//lsentropic Flow in Converging Nozzles

nozzle until the pressure at the nozzle outlet equals that of the receiver. This will
always be true as long as the nozzle outlet can “sense” the receiver pressure.
Example: Let us assume

For receiver p, = 4.812 bar

p, = pp = 4.812 bar

For reservoir p,; =p; = 6.0 bar and T, =T; = 60 °C

Po2 = Po1 = 6.0 bar and T,, = T,; = 60 °C for isentropic flow

4812
P2 _*O°2_ 1802
Po2 6.0

From isentropic table corresponding to p/p, = 0.802
M, =0.57 and T/T, = 0.939
~ T, =0939 % (273 4+ 60) = 312.687 K

a, = JYRT = V1.4 x 287 * 312.687 = 354.5 m/s
V, =M, *xa, = 0.57 x354.5 = 202 m/s

Figure 6.2 shows this process on a T -s

diagram as an isentropic expansion. If the
pressure in the receiver were lowered further,
the air would expand to this lower pressure and 7

the Mach number and velocity would increase.

Assume that the receiver pressure is lowered to
3.1692 bar. Show that

P2 3.16968 — 0528728 Figure 6.2 T-s diagram for converging-only nozzle
Po2 6.0 .
This gives:

M, =1.0 and T/T, = 0.8333
T, = 0.8333 = (273 + 60) = 277.4889 K
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a, = /YRT = V1.4 %287 x 277.4889 = 333.91 m/s
V, =M, *a, = 1.0 ¥ 333.91 = 333.91 m/s
T*=T,=277.4889 K and p* = p, = 3.1692 bar are critical properties

Notice that the air velocity coming out of the nozzle is exactly sonic. The
velocity of signal waves is equal to the velocity of sound relative to the fluid into
which the wave is propagating. If the fluid at cross section is moving at sonic
velocity, the absolute velocity of signal wave at this section is zero and it cannot
travel past this cross section.

If we now drop the receiver pressure below this critical pressure (3.1692 bar),

see figure (6.3), the nozzle has no way of adjusting to these conditions. That’s

P oA A

‘ ?ﬁ""lﬂ: 6 choked 5 4

2 d'pﬂ I

3

4

g

Pec =P

6 . / 1

b} back pressure influce a) opeation of converging nozzle at
variuos back pressures

Figure 6.3 -
because fluid velocity will become supersonic and signal waves (sonic velocity)

are unable to propagate from the back pressure region to the reservoir.

Assume that the nozzle outlet pressure could continue to drop along with the
receiver. This would mean that p, / p,, < 0.5283, which corresponds to a
supersonic velocity (point 4).We know that if the flow is to go supersonic, the area
must reach a minimum and then increase. Thus for a converging-only nozzle, the

flow is governed by the receiver pressure until sonic velocity is reached at the
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nozzle outlet and further reduction of the receiver pressure will have no effect on
the flow conditions inside the nozzle. Under these conditions, the nozzle is said to
be choked and the nozzle outlet pressure remains at the critical pressure.
Expansion to the receiver pressure takes place outside the nozzle (points 5 and 6).

The analysis above assumes that conditions within the supply tank remain
constant. One should realize that the choked flow rate can change if, for example,
the supply pressure or temperature is changed or the size of the throat (exit hole) is
changed.

The pressure ratio below which the nozzle is chocked can be calculated for

isentropic flow through the nozzle. For perfect gas with constant specific heats,

-1 y/(r-1)
Po _ (1 + —M2>
p 2
p y — y/(y-1)
pl = (1 + T(1)2) =0.5283 aty=14
b

Example 6.1Air is allowed to flow from a large reservoir through a convergent
nozzle with an exit area of 50 cm? . The reservoir is large enough so that
negligible changes in reservoir pressure and temperature occur as fluid is
exhausted through the nozzle. Assume isentropic, steady flow in the nozzle, with
Pres = 500 kPa and T, = 500 K. Assume also that air behaves as a perfect gas
with constant specific heats, y = 1.4. Determine the mass flow through the nozzle
for back pressures 125,250, and 375 kPa.

At M, =1 and y = 1.4 the critical pressure ratio is 0.5283; therefore for all back

pressures below;

Pexit = Pr * pﬁ = 500 % 0.5283 = 264.15 kPa

o
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The nozzle is choked. Under these conditions, the Mach number at the exit plane is

unit and the pressure at exit plane is 264.15 kPa and the temperature at exit plane

T
Texie = T * 7 = 500 + 0.8333 = 416.7 K
t

The nozzle is chocked for back pressures of 0,125 and 250 kPa and the mass

flow rate is;

= pAV = 2C AM[YRT, = 264(‘)1_25;2:116‘;4*1\/1.4 0287 * 416.7
=4.519kg/s

For back pressures of 370 kPa the nozzle is not choked 4519 3.991

and the exit plane pressure equals to back pressure; m

ﬂ _ & s (kzfs)

po 500

From isentropic table at , y = 1.4, M, = 0.654, and g ;,:iipfj "

T/T, =0.921 Figure 6.4

T,=T,*T/T, =500 %0.921 = 460.5 K

. 375%50x107%«
M= 70287+ 460.57
=3.991kg/s

Example 6.2 Nitrogen is stored in a tank 2 m3 in volume at a pressure of 3 MPa

1
V1.4 % 287 * 460.5 * 0.654

and a temperature of 300 K . The gas is discharge through a converging nozzle
with an exit area of 12 m? . For back pressure of 101 kPa, find the time for the
tank pressure to drop to 300 kPa. Assume isentropic nozzle flow with nitrogen
behaves as a perfect gas with y = 1.4 and R = 0.2968 kJ/kg . K. Assume quasi-
steady flow through the nozzle with the steady flow equation applicable at each

instant of time assume also that T is constant too
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Solution; As the reservoir pressure drops from 3 MPa to 300 kPa , the ratio
Py»/Po = 101/3000 = 0.03367 and p,/p, = 101/300 = 0.3367 remains below

critical pressure ratio (0.5263) and M,,;; = 1.

s 7
T, =T, *T/T, = 300 * 0.8333 = 250 K 7, = 300K \_
. Pe I P, = 4 M Pa t PR
= pAV = =2 AM,\[YRT, e e
e I :
. (0.5283pes) ¥ 12 X 107* % 1 ]
m= 796.8 = 250 V1.4 * 296.8 250 Figure 6.5

= 2.754p, X 10~ kg/s = where p, is in Pascals

From conservation of mass

%jﬂpd\[+jf p(V.i)dA=0

The mass inside the tank at any time is m;

Y.
ﬂj pdY = PresTres  ind ﬂ p (V.7)dA = 2.754 p,.c X 1076 kg /s
RTT'eS s

cv

The mass coming out of tank exit at any time

i (presYres
9t \ RT, s

Yres dpres
RT,,s dt

f _ 1 Y.res fdpres
dt = — *
2754 X 10_6 RTres pres

2 J300 dpres

) + 2.754 ppps X 1076 = 0

+2.754 D0 X 1076 = 0

At = Dres IS in kN /m?

0.2968 * 300 * 2.754 x 103
At = 8.156In10 = 18.78 seconds

3000 Pres
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Chapter Seven/lsentropic Flow in Converging-Diverging Nozzles

7.1 Converging-Diverging Nozzle

Let wus examine the
converging—diverging nozzle
(sometimes called a (DE
Laval nozzle), shown in
Figures (7.1).We identify the
throat (or section of
minimum area) as 2 and the
exit section as 3. The
distinguishing physical
characteristic of this type of
nozzle is the area ratio,
meaning the ratio of the exit
area to the throat area.

Fluid stored in a large
reservoir is to be discharge

through a  converging-

Roll control nozzle
using turbine exhaust

al actuator

Gimb.

Four leg
structural
support

turbepump

High pressure

oxygenline Oxygen tank .
pressurization  Turbine
heat exchanger

Oxidizer

Regenerative cocled
thrust chamber with
nozzle throat

Atlative lined bel<haped
nozzle extension

-~

Figure 7.1

Typical converging—diverging nozzle.

exhaust nozzle

diverging nozzle. It is desired to determine mass flow and pressure distribution in the nozzle over
a range of values of p,/p, .the reservoir pressure is maintain constant, with one-dimensional

isentropic flow in the nozzle.

Figure 7.2 shows the
pressure distribution in the
nozzle for different values of
back pressure p,,.

For p, equal to p, (curve 1)
there is no flow in the nozzle,
and pressure is constant with x
(nozzle length).

For p, slightly less than p,
(curve 2), flow induced
through the nozzle with

Prepared by A.A. Hussaini

1 Pe =pb:Mt= OsMe=O
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1
|
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g}pe=pb,M.<1,M¢<1

4 p.=pp,M=1,M<1

5 pezpbth= 15Me>1

Figure 7.2 Pressure Distributions for Isentropic Flow in a C-D Nozzle
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subsonic velocities in both converging and diverging sections 5 4
of the nozzle. Eq. (5.4), dp = pV?[1/(1 — M?)] dA/A, tells us
that for subsonic flow pressure decreases in the converging 3
section and increases in the diverging section. m
As the back pressure is decreased more and more flow is
induced in the nozzle (curve 3) until eventually sonic flow

occurs in the throat (curve 4). And the pressure ratio is called

Pb/pr

the first critical point. Nozzle is choked and mass flow rate Figure 7.3 Mass-Flow Rate versus

becomes a maximum.

With receiver (back) pressures above the first critical, the
nozzle operates as a venturi and we never reach sonic velocity in the throat. An example of this
mode of operation is shown as curve “3” in Figure 7.2b. The nozzle is no longer choked and the
flow rate is less than the maximum.

Further decrease in back pressure cannot be sensed upstream of the throat ; so for all back
pressures below that of curve 4 the reservoir continues to send out the same flow rate as curve 4,
and the pressure distribution nozzle up to the throat remains the same. For all back pressures
below that of curve 4 the converging-diverging nozzle is choked. Note that for the same reservoir
pressure, a converging-diverging nozzle is choked at a greater back pressure than a converging
nozzle.

There are two possible isentropic solutions for a given area ratio A/A*, one subsonic and the
other supersonic. For a throat Mach number of 1, isentropic flow can either decelerate to a
subsonic exit velocity or continue to accelerate to a supersonic exit velocity. Curve 4
corresponds to the case of subsonic flow at the nozzle exit plane; curve 5 corresponds to
supersonic flow at the exit plane. Thus, if the back pressure is lowered to that of curve 5,
pressure decreases in both converging and diverging portions of the nozzle, with supersonic flow
at the exit plane. And the pressure ratio is called the third critical point.

For back pressures between those of curves 4 and 5 i.e. between the first and third critical
points, the flow is not isentropic and one-dimensional isentropic solutions to the equations of
motion are not possible. These flows involve shock waves, which are irreversible processes,
which are compression waves that will occur in either the diverging portion of the nozzle or after
the exit

If the receiver (back) pressure is below the third critical point (curve 5) , the nozzle operates
internally as though it were at the design condition but expansion waves occur outside the
nozzle. These operating modes will be discussed in detail later.

in a C-D Nozzle

2-7 ch.7
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Figure (7.3) shows the variation of mass flow rate with back pressure p,, /p, for data of figure
(7.2).

The objective of making a converging—diverging nozzle is to obtain supersonic flow. Let us
first examine the design operating condition for this nozzle. For the nozzle is to operate as
desired, the flow will be subsonic from 1 to 2, sonic at 2, and supersonic from 2 to 3. To discover
the conditions that exist at the exit (under design operation), we seek the ratio A;/A5:

Since velocity is sonic at throat (M, = 1), then A5 = A, and from eq. (5.11) the relation
between any two sections for isentropic flow

A 1 (1+[(y - 1)/2]M2\V 20D ‘11
A M y+1)/2 (5.11)
Then
A; 3 1 (V + 1)/2 (V+1)/2()’—1) B 1 7 1
43 1\ +1)/2 - -0
So

3=4; =4 (7.2)
A; Ay A, Ay A

A, A, A AL A

Large chamber
of supply air

|
=]
=
]
]

I
Example 7.1 A converging—diverging nozzle with A /¢ T = i

temperature of 6 bar and 60 °C. Find back pressure. p, = 6 bar - p.”‘,:,‘ - ;’"
| Variable

1 Receiver

Vi=0 Pressure

Solution
Agld, = 2.494
1. From isentropic table at A;/A* = 2.494 in the

supersonic section of the isentropic table and see
that

M; = 2.44

p3/p, = 0.0643

T;/T, = 0.4565 , Thus

p3 = bs po = 0.0643 * 6.0 = 0.3858 bar

o

Figure 7.4: Converging—divergng nozzle,
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And to operate the nozzle at this design condition the receiver pressure must be at 0.3858 bar.
The pressure variation through the nozzle for this case is shown as curve “5” in Figure 7.3. From
the temperature ratio T /T, we can easily compute T5, a; and V.

2. Also we can find A/A* = 2.494 in the subsonic section of the isentropic table. (Recall that
these two answers come from the solution of a quadratic equation.) For this case

M; = 0.24

p3/Po = 0.9607

T5/T, = 0.9886, Thus

ps = B up, = 0.9607 * 6.0 = 5.7642 bar

o]
And to operate at this condition the receiver pressure must be at 5.7642 bar. With this

receiver pressure the flow is subsonic from 1 to 2, sonic at 2, and subsonic again from 2 to 3. The
converging-diverging is nowhere near its design condition and is really operating as a venturi
tube; that is, the converging section is operating as a nozzle and the diverging section is
operating as a diffuser. The pressure variation through the nozzle for this case is shown as curve
“4” in Figure (7.2)

8.2. Nozzle performance
The most important parameters in nozzle performance are 100

area ratio A, /A;,and Mach number M. The area ratio for an y=113
isentropic nozzle can be expressed in terms of Mach 1

numbers for any points x and y within the nozzle along its y=140
axis. Since pVA = C; then 10 y=167
Ay _ PV _PsMcfYRT, _ RT,  puMy Ty ~—~—_ ///

A Pyl RT, .PyMy\/VR_Ty JTx ‘pyM, ' ﬂ:_\-_l S

Ay _ M, J L+ [y = 1/2m5) D07 e e v o

A, M, {1 +10& - 1)/2]M,%} 7

(5.11)

A An, M G+1)/2

Relation of eq. (5.11) is plotted in Figure (7.5).

From Equation (4.16) the nozzle exit velocity V, can be found. From s.f.e.e without heat and

work exchanging and ignoring potential energy, we have:
2

dv
0=dh+ T (416)

A A 1 \](1 +[(y — 1)/2]M2)(Y+1)/(y—1)
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b+ p, 4 2
R
V2 = \/Z(hl - hz) + V12 (75)

This relation applies to ideal and non-ideal rocket units. For constant y this expression can be
rewritten while the subscripts 1 and 2 apply to nozzle inlet and exit conditions, respectively and
since the flow is assumed isentropic, then

VZ = \/ZCp(Tl - Tz) + V12 (76)
Vv, = 2y RT, |1 (pz)y_w + V2 7.7
2= y—1 1 "~ 1 (7.7)

This equation also holds for any two points within the nozzle. When the chamber cross section
is large compared to the nozzle section, the chamber velocity is comparatively small, and the
term V2 can be neglected. The chamber temperature T; is equal to the nozzle inlet temperature;
for an isentropic nozzle flow process it is also equal to the stagnation temperature

_ |2 p2\' Y
v, = \/)/TlRTO l1 - <E) l (7.8)

Example 7.2 A converging-diverging nozzle is designed to operate isentropically with an exit
Mach number of 1.5. The nozzle is supplied from an air reservoir in which The pressure is
500 kPa; the temperature is 500 K. The nozzle throat area is 5 cm?. Assume air to behave as a
perfect gas, withy = 1.4and R = 0.2870k//kg.K.

a) Determine the ratio of exit area to throat area.
b) Find the range of back pressure over which the nozzle is choked.
C) Determine the mass flow rate for a back pressure of 450kPa.

d) Determine the mass flow rate for a back pressure of 0 kPa.

Solution

a) To produce a supersonic Mach number of 1.5 at the nozzle exit, the Mach number at the
throat must be 1. Therefore, the throat area is equal to A* .From isentropic table for M = 1.5,
A/A* = 1.176 . So the ratio of exit area to throat area to produce Mach 1.5 is 1.176. or A, =
5.88 cm?.

b) For all back pressures below that corresponding to (curve 4) of Figure 7.2, the nozzle is
choked. For (curve 4), sonic flow is attained at the throat, followed by subsonic deceleration. The
subsonic solution for A/A* = 1.176 is found from isentropic table, M = 0.61. At this Mach
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number, p/p, = 0.778. Therefore, the greatest back pressure at which the nozzle is choked is
pp = 0.778(500 kPa) = 389 kPa . In other words, over the range 0 < p, < 389 kPa, the
nozzle is choked.

C) For a back pressure of 450 kPa, the nozzle is not choked; subsonic flow occurs
throughout the nozzle. For this condition, the exit-plane pressure is equal to the back pressure.
From isentropic, for p/p, = 090, M = 0.39 and T/T; = 0.971. Exit-plane pressure p, and
temperature T, are respectively, 450 kPa and 485.5 K.

m = peAcVe
N
m = R;,e AM,.[yRT,

4

50 ] 5.88 X 10™* * 0.39v1.4 = 287 * 485.5
_] Xk * * £
0.287 « 485.5] ' ' '

= |
= 3.230 * 5.88 X 107* * 0.39 * 441.7 = 0.327 kg/s

d) For back pressure of 0 kPa , the nozzle is choked, with the exit— 7y
plane pressure not equal to the back pressure . For this condition the  0.452 f————%

. . 0,327
Mach number at the throat is 1, with the throat pressure and temperature

equal respectively to 264.2 kpa and 416.7 K. kgs
m = pepAenVin
264.2
m=[—]*5.0><10‘4*1*\/1.4*287*416.7 ] 264.2, 38
0.287 = 416.7 Figure 7.6 P, (kPa) 450
= 0.452 kg/s

The results of this example is plotted in figure (7.6)

Example 7.3 A nozzle is to be designed for a supersonic helium wind tunnel. Test section
specifications are as flow: Diameter, 10 c¢m, Mach number 3.0, Static pressure 12.1 kPa at
15 km altitude and Static temperature, 216.7 K at this altitude. Determine the mass flow that
must be provided, the nozzle throat area and the reservoir temperature and pressure. Assume
isentropic flow in the nozzle at the design condition, and neglect boundary layer effects (Figure
7.7). Assume that helium behaves as a perfect gas, with y = 1.667 (constant) and R =
2.077 k] /kgK.

Solution:

Test section mass flow rate _j/——
Test Section

m — pVA Dmurmlr

. S
m= RT. (ZDZ) M¢/YRT,

Fgure 7.7
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; [ 121 2 0.01 %1 V1.667 %2077 » 216.7 = 0.5487 kg/
= |—] % — E3 E3 E3 * =
Mm=12077+216.71 "2 ' ' ' grs

From gas dynamics tables for isentropic flow, at M = 3.0;

Ag/A* = 3.0
VA

A* = throat _a e 7001 _ 0007854 _ 0.002.618 x 103 m?

= roat area = S.A*— 30 = 3 = U. . m
ps/pPo = 0.03125

Ds 12.1

=p; =ps + —=———=387.2 kN/m?
Pr=Pe=Ps "= 003125 387.2 kN/m
T./T, = 0.250
T.=T, =T, = TS—216'7—8668K
Toe ST 0250

Example 7.4 A converging—diverging nozzle with an area ratio of 3.0 exhausts into a receiver
where the pressure is 1 bar. The nozzle is supplied by air at 22°C from a large chamber. At what
pressure should the air in the chamber be for the nozzle to operate at its design condition ? What
will the outlet velocity be?

Solution
A A
22230
From isentropic table
T.

M; = 2.64, Ps = 0.0471, = =04177

Po To

D3
=P, =ps+—= =21.2b

T,
T, = T—3 xT, = 04177 * (22 + 273) = 123.2K

(o]

Vs = M3 * az = 2.64 x V1.4 % 287 x 123.2 = 587 m/s
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Chapter Eight /Thrust of Rocket Engine

Some say that the first recorded use of a rocket in battle was by
the Chinese in 1232 against the Mongol hordes. Rocket technology
first became known to Europeans following their use by
the Mongols, Genghis Khan and Ogedei Khan, when they
conquered parts of Russia, Eastern, and Central Europe. The
first iron-cased and metal-cylinder rocket artillery, made from iron
tubes, were developed by the weapon suppliers of Tipu Sultan, an
Indian ruler of the Kingdom of Mysore, and his father Hyder Ali,
in the 1780s.

In 1903, high school mathematics teacher Konstantin

Tsiolkovsky (1857-1935) published MccinenqoBanre MHPOBBIX IPOCTPAHCTB PEAKTHBHBIMH
npubopamu (The Exploration of Cosmic Space by Means of Reaction Devices), the first serious
scientific work on space travel.

In 1912, Robert Esnault-Pelterie published a lecture on rocket theory and interplanetary
travel. Robert Goddard began a serious analysis of rockets in 1912, concluding that conventional
solid-fuel rockets needed to be improved in three ways. In 1920, Goddard published these ideas
and experimental results in A Method of Reaching Extreme Altitudes. Modern rockets were born
when Goddard attached a supersonic (de Laval) nozzle to a liquid-fueled rocket engine's
combustion chamber.

Some of the first successful American rockets were the JATO (jet-assisted take-off) units used
during the war (solid in 1941 and liquid in 1942). Also famous was the V-2 rocket developed by
Wernher von Braun in Germany. This first flew in 1942 and had a liquid propulsion system that
developed 56,000 pounds of thrust. The first rocket-propelled aircraft was the German ME-163.

8.1 Thrust of rocket engine

Select a control volume as shown in figure 8.1. The Control surface~,

forces acted on this control volume are thrust and the [~~~ "TTTTTTTTTTT 1 %5
I
unbalance pressure force acting on the exit plane. | N i
: HH: T
(Other forces such gravity, friction ...etc. are ignored) E b B
Applying eq. 4.6 ,' / ‘.H_ fi
| i
L = E
Figure 8.1 &
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Atm%spheri{:
| I §
T
e e s o
i R Vi \'::' B
LB AN

e 0 T !
(L Mozzle throat Mozzle exit

Fig. 8.2. ' Pressure balance on chamber and nozzle wall: internal
gas pressure is highest inside chamber and decreases
steadily in nozzle, while external atmospheric pressure
is uniform

ZF:fpr(V.ﬁ) dA (4.6)

(Thrust = rate of change momentum)

Thrust = f[ V. p () dA (8.1)

This force is the thrust obtained for any true rocket propulsion engine. It assumes a uniform
exhaust velocity that does not vary across the area of the jet. The preceding equation shows that
the thrust is proportional to the propellant flow rate and the exhaust velocity. The surrounding
fluid (usually air) has an influence on the thrust.

Figure (8.2) shows schematically the external pressure acting uniformly on the outer surface
of a rocket chamber and the gas pressures on the inside of a typical rocket engine. The size of the
arrows indicates the relative magnitude of the pressure forces. The axial thrust can be determined
by integrating all the pressures acting on areas that can be projected on a plane normal to the
nozzle axis. The radially outward acting forces are appreciable but do not contribute to the axial
thrust, because the rocket is axially symmetrical.

By inspection it can be seen that at the exit area A, of the engine's gas exhaust there is an
unbalance of the external environmental or atmospheric pressure p,and the local pressure p, of
the hot gas jet at the exit plane of the nozzle. Thus, for a steadily operating rocket engine flying
in a homogeneous atmosphere (neglecting localized boundary layer effects), the thrust is equal to
F =mV, + (pe — Pa)Ae (8.2a)

F = p.A V¢ + (De — Pa)Ae (8.2b)

The thrust acting on the vehicle is composed of two terms. The first term, the momentum
thrust, is the product of the propellant mass flow rate, m, and the exhaust velocity relative to the
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vehicle, V, . The second term, the pressure thrust, consists of the product of the cross-sectional
area of the exhaust jet leaving the vehicle and the difference between the e xhaust pressure and
the fluid pressure. Equation (8.2) gives values of the thrust variations of rockets with altitude.

If the exhaust pressure is less than the surrounding fluid pressure, the pressure thrust is
negative. Because this condition gives a low thrust and is undesirable, the rocket exhaust nozzle
is usually so designed that the exhaust pressure is equal to or slightly higher than the fluid
pressure.

When the fluid pressure is equal to the exhaust pressure, the pressure thrust term is zero, and
the thrust is expressed as
F =mV, (8.3)

This condition gives a maximum thrust for a given propellant and chamber pressure. The
rocket nozzle design, which permits the expansion of the propellant products to the pressure that
is exactly equal to the pressure of the surrounding fluid, is referred to as the rocket nozzle with
optimum expansion ratio. When expanding into a vacuum, p, = 0, and the thrust is then simply
F = p.Ac V2 + poAe (8.4)

The supersonic convergent — divergent nozzle is used in rockets. The ratio between the inlet
and exit pressures in all rockets is sufficiently large to induce supersonic flow. Only if the
chamber pressure drops below approximately 2.17 atm then there is a danger of not producing
supersonic flow in the divergent portion of the nozzle when operating at sea level.

We know that the velocity of sound is equal to the velocity of propagation of a pressure wave
within the medium, sound being a pressure wave. If, therefore, sonic velocity is reached at any
one point within a steady flow system, it is impossible for a pressure disturbance to travel
upstream past the location of sonic or supersonic velocity. Therefore, any partial obstruction or
disturbance of the flow downstream of the nozzle throat section has no influence on the flow at
the throat section or upstream of the throat section, provided that this disturbance does not raise
the downstream pressure above its critical value.

It is not possible to increase the throat velocity or the flow rate in the nozzle by lowering the
exit pressure or evacuating the exhaust section.

The flow through the critical section of a supersonic nozzle is calculated from
bt

m = peAVy = ﬁAt YRT;
t

Po (yzi) YRT, Y 2 i
s ) e )
2

(8.5)
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The mass flow through a rocket nozzle is therefore proportional to the throat area A, and the
upstream pressure p,, inversely proportional to the square root of the absolute nozzle inlet
temperature T,, and a function of the gas properties.

For a supersonic nozzle the ratio between the throat area and any downstream area at which
the pressure p,. prevails can be expressed as a function of the pressure ratio and the specific heat
ratio as follows,

A pVe (y + 1>1/(V‘1) (px )1/)/ rH1f (px )(v—n/yl 6
Ay ptVen 2 Ptn y—1 Pth .
For an ideal rocket with y being constant throughout the expansion process, the exit velocity is;
2 y-1
, 14 DPe\ v
V,= (2¢,(T,—T,) = |——RT, 1—(—) 8.7
e Cp( o e) \/)/ —_1°° Do ] ( a)

Eqg. (8.2) is general and applies to all rockets. It can be written as;

292 ;2 v e
y ( )v-l (pe)T

F=A7p, |——(—)" |1-(=
oy =1\y+1 [ Po

+ (Pe — Pa)Ae (8.7b)

This equation shows that the thrust is proportional to the throat area A;,,q: and the nozzle
inlet pressure p, and is a function of the pressure ratio across the nozzle p./p,, the specific heat
ratio y,and the pressure thrust. It is called the ideal thrust equation.

An under-expanding nozzle discharges the fluid at a pressure greater than the external
pressure because the exit area is too small. The expansion of the fluid is therefore incomplete
within the nozzle and continues outside. The nozzle exit pressure is higher than the local
atmospheric pressure.

In an over-expanding nozzle the fluid is expanded to a lower pressure than the external
pressure; it has an exit area that is too large.

When a supersonic nozzle is operating in the under- or overexpanded regimes, with flow in
the nozzle independent of back pressure, the exit velocity is unaffected by back pressure. Thus,
over this range of back pressures, Eq. (8.2) shows that the greater thrusts are developed in the
underexpanded case, and the lesser in the overexpanded case.

For back pressures greater than the upper limit indicated, a normal shock appears in the
diverging portion of the nozzle, the exit velocity becoming subsonic, and this analysis no longer
applies.

For jet turbine engine, for simplicity we shall assume here that the mass flow m is constant (i.e.
that the fuel flow is negligible), the net thrust F due to the rate of change of momentum is
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F=m®{,-V,) (8.8a)
where 1, is speed of air that enters aircraft intakes which is equal to the aircraft speed for steady
level flight. mV, is called the gross momentum thrust and mV, the intake momentum drag. When
the exhaust gases are not expanded completely to P, in the propulsive duct (which is a duct
ends with a nozzle), the pressure p, in the plane of the exit will be greater than P, and there
will be an additional pressure thrust exerted over the jet exit area A- The net thrust is then the
sum of the momentum thrust and the pressure thrust, namely

F=m(V, = Vo) + (Pe — Pa)Ae (8.8b)

For design condition, i.e. maximum V,, the exhaust gases must expanded completely to P,

8.2 characteristics of rocket engine

Thrust coefficient, Cr. is defined as the thrust divided by the chamber pressure p, and the
throat area A,.

Cr

F 2y? ( 2 )% [1 B (E)Y%l] L (Pe—Pa) Ae (8.9)

S Ap, Y1\ +1 Do Po At
For any fixed pressure ratio (p./p,) the thrust coefficient Cr has a maximum value when

Pe = P4 This value is known as the optimum thrust coefficient. The use of the thrust coefficient

permits a simplification of Equation (8.2)

F = CrA: p, (8.10)

Thrust power output of the propulsive device is the actual rate of doing useful propulsion work

and is designated as pr

pr = F * Vrgeker (8.11)

Total impulse, I; is the thrust force F (which can vary with time) integrated over the burning

time.

t
I = J Fdt N.s (8.12)
0

For constant thrust and negligible start and stop transients this reduce to

I, = F.t N.s (8.13)
Specific impulse, I is the total impulse per unit weight of propellant consumption, w. The units
are sec

f, Fdt

I
T [t

s (814)
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For constant thrust and propellant flow
I, =— s (8.15)

Effective exhaust velocity, c: is the average equivalent velocity at which propellant ejects from
rocket nozzle, the units are m/s.

c=glg =— m/s (8.16)

Specific propellant consumption the required propellant weight to produce a unit thrust in an
equivalent rocket. The units are kg/N. sec
L . 1 _w_gm

specific propellant consumption = E =F=F 1/s (8.17)

For other engines the specific propellant consumption in common is based on the power
output with units kg/kW. hr.
Mass ratio, which is define as the ratio of final rocket mass to the initial rocket mass.
Mfinar Mginal

my B mfinal + mprop

m.r =

where m,,.,, is useful propellant weight.

Equation (8.2) shows that the thrust of a rocket = .

. . o . "] 213.700 I
unit is independent of flight velocity in opposite to P g e
jet turbine engine. Because changes in the fluid / #_,...--'13: - .
pressure (p, and p,) affect the pressure thrust as ]55,;.;.;.;-_/ l-
well as p,, a variation of the rocket thrust with
altitude is to be expected. As the atmospheric
pressure decreases with increasing altitudes, the {#¥s«
thrust and therefore also the specific impulse will © 20 40 BD B0 100 120 14D 160
. it th hicle | lled at a hiah Alstude, ft x 107
Increase 1T the vehicle is propelled at a higher Figure &.3 Allitudeper[urmanpcnlthe: H-1 liquid propellant
altitude. The change in pressure thrust due to rocket engne used in the Ther launch vehicle.
altitude changes can amount to 10 to 30% of the

overall thrust, as shown for a typical rocket engine in Figure (8.3).

Example 8.1: A rocket projectile has the following characteristics:

Initial mass 200 kg

Mass after rocket operation 130 kg

Payload, non propersive structure, etc. 110 kg

Rocket operating duration 3.0 sec

Average specific impulse of propellent 240 N.sec3/kg.m
6-11 ch.8
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Determine mass ratio, propellant mass fraction, propellant flow rate, thrust, thrust-to-weight
ratio, acceleration of vehicle, effective exhaust velocity, total impulse, and the impulse-to-weight
ratio.

Solution:
Mass ratio of vehicle
Mfinal 130
r=———=——=0.65
T T 200

mass ratio of rocket system

my=ry  BOZHO o0
m, 200 —110

Note that the empty and initial masses of the rocket are 20 and 90 kg respectively. Propellant

mass fraction

Propellant mass fraction = (m, —m;)/m, = (90 — 20)/90 = 0.778

The propellant mass is 200 — 130 = 70 kg.

Propellant mass flow rate ism = 70/3 = 23.3 kg/sec.

The thrust F = Igw = 240 * 23.3* 9.80 = 54,800 N

Thrust-to-weight ratio of vehicle,

Initial value F/w, = 54,800/(200 = 9.80) = 28

Final value F/w, = 54,800/(130 * 9.80) = 43
Maximum acceleration of vehicle is 43 * 9.80 = 421 m/sec?.

Effective exhaust velocity is c =glg =9.81 * 240 = 2352 m/sec.

Total impulse [, = [qw = 240 * 70 * 9.80 = 164,600 N. sec.
This result can also be obtained by multiplying the thrust by the duration.

The impulse-to-weight ratio I./w, = 54,870/[(200 — 110)9.80] = 187

Example 8.2: An ideal rocket chamber is to operate at sea level using propellants whose
combustion products have a specific heat ratio of 1.30. Determine the required chamber pressure
and nozzle area ratio between throat and exit if the nozzle exit Mach number is 2.40. The nozzle
inlet Mach number may be considered to be zero.

Solution:

For optimum expansion the exit pressure should be equal to the atmospheric pressure of
0.1013 Mpa. If the chamber velocity is small, the chamber pressure is equal to the total pressure
and is
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1 y/(y-1)
po=p[1+(y2 )le

(1.3-1)

2.4?

1.3/(1.3-1)
l = 1500 kPa

p, = 101.3 ll +

The area ratio
Aexit _ Ae

Athrot Ar

(YH)/Z(V—I)
A, 1 <1 +[(y — 1)/2]Me2>

A M\ G+1)/2

A* M,

(1.3+1)/(1.3_1)
A, 1 <1 +[(1.3 = 1)/2]2.42>

A 24 (13 +1)/2 = 2.6535

Or using isentropic table , at M, = 2.4 fory = 1.3 gives A, /A" = 2.654

Example 8.3 A rocket nozzle is designed to operate supersonically with a chamber pressure of
3 MPa and an ambient pressure of 101 kPa. Find the ratio between the thrust at sea level to the
thrust in space (0 kPa). Assume a constant chamber pressure, with a chamber temperature of
1600 K. Assume the rocket exhaust gases to behave as a perfect gas with r= 1.3 and R =

0.40 kJ/kg.K.

Solution
Apply the momentum equation.

Thrust = (pe - pa)Ae + peAeVe2

The exit plane pressure and exit velocity are the same in space as at sea level.

From isentropic table at p/p, = 101/3000 = 0.03367
M =281and T/T, = 0.4578
Then T, = T, * T/T, = 1600 * 0.4578 = 732.5 K

The exhaust velocity is then

V, =M, xa, = 2.81 V1.3 » 400 = 732.5 = 1734.2 m/s
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_ P 101 = 0.3447 kg/m3
Pe = RT, T 04+7325 g/m

Thrust at sea level = p,AV? = 0.3447 x A, * 1734.2*
Thrust at space = (p, — Pg)Ae + PeA V2
=101 x 103 x A, + 0.3447 * A, * 1734.22

Thrust at sea level 0.3447 * A, * 1734.22

= =0.911
Thrust at space 101 X 103 « A, + 0.3447 x A, * 1734.22

Example 8.4: Design a nozzle for an ideal rocket that has to operate at a 25 km altitude and give
a 5000 N thrust at a chamber pressure of 2.068 MPa and a chamber temperature of 2800 K.
Assuming y = 1.30 and R = 355.4 J/kg. K, determine

a) Exit velocity, temperature and area

b) Throat velocity, temperature and area

c) Arearatio

Solution.

At a 25 km altitude, the atmosphere pressure equals 25.49 KPa, and as p, = p,, then The
pressure ratio is,

a)

Lo _ [&](y_lw - [—0'02549 03626
T, Ip, 2.068 |

T, =T, 03626 = 10153 K

NS
I
< X
N
~<

y-1/y
——RT, [1 — (&) l
y—1 Po

2.6 0.02549%3/13
= * 355.4 % 2800 |1 — (—) = 2344.618 m/sec

0.3 2.068

F/V, = 5000/2344.618 = 2.133 kg/sec
RT, 355.4+1015.3
P, 0.2549 105
po = 1/v, = 1/14.156 = 0.0706 kg/m?

= 14.156 m3/kg

Ve =
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m 2.133

Ae = o = 5706 = 2344618 ~ 128859+ 107m?
b)
-1 1.3/0.3

Po - [1+QMt] v/ [23 ps_
Dt 2

2.068
Pe=1g3; = 1129 MPa
TO
T, [1 _Mt] [—] =115

2800
To =T o = 2434783 K

Ve = a; = /[yRT, = V1.3 x 355.4 x 2434.783 = 1060.622 m/sec
RT, 355.4 * 2434.783

v, = = 0.76645 m3/kg

pe  1.129x106
van _076645+2133 o,
= = = . k
t=Ty, 1060.622 m

e=A,/A; = 128.859/15.414 = 8.36
Try to use isentropic flow Table and resolve this example.

Example 8.5 A rocket operates at sea level (p, = 1 atm) with a chamber pressure of p; =

2.068 MN/m?, a chamber temperature of T; = 2222°K and a propellant consumption of

m = 1.0 kg/s. calculate the value of A,v,V, and M,in the nozzle at a section where p, =

1.379 MPa . Calculate also the ideal thrust and the ideal specific impulse. Take y = 1.30,
= 0.359 kcal/kg. K, and R = 345.7 ] /kg.K

Solution:

In an isentropic flow at a point (x). Initial specific volume
RT; 345.7 % 2222
p,  2.068 * 106
The specific volume is

B <p1>1/V — 03714 (2.068)
En ) T 1.379

v, = =0.3714 m3/kg

1/1.3

= 0.5072 m3/kg

The temperature is
0.

p\¥-D/Y 1.379\13
T, —Tl(p ) =2222(—) = 2023.6 K
X

w

2.068
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The velocity is

0.3

2y PV LY 213 1.379\15
V,= |[——RT,|1- <—) = «345.7 % 2222 [1 - (—)

y—1 1.3-1 2.068

|

= 770.921 m/s
The cross section area is
My = PV Ay
m,v, 1x0.5072
~ Ty T 770921
And the Mach number is then
Vs 770.921

M, = = = 0.808
JYRT, V1.3 %3457 2023.6

At optimum expansion the ideal exhaust velocity V. is equal to the effective exhaust velocity
and p, = pq

V. 2y RT, |1 (pe)y_w 26 345.7 x 2222 |1 (0'10136>0'3/13
= [/ —|— = |— % WA - —
e ly—-1"1 Do 0.3 2.068

= 1826.979 m/s

which is equal to effective exhaust velocity, and as p, = p,, then
F=ml,=1%1826.979 = 1826.979 N

As the effective exhaust velocity is = gl , the specific impulse is;
I =c/g =1826.979/9.81 = 186.236 sec

Ay

= 6.579 * 10™*m?

Note: If you chose different sections pressure, you can simply plot the variation of A,v,V,

and M.Figure (8.5) shows a plot of the variation of the velocity, the specific volume, the area,
and Mach number, and the pressure in this nozzle.

Asca, cmd

Pressure, mega pascal Pressure, mega pascal 5000 =T 30 T 5 T 1820 pr;
2.068 0 2.068 0 g 3 gl - | zl
25 T 2222 T ® ol € &l % al <l
\ 3 ) = - 2 = 5 2 § =
. g Biind % Bty g 2 ¢ i e =
| 3 [ ® ¢ Z ~I 2 2 2 i
| g | 2 10 o : =1 g I
H H | S : = 2 | ® I
[ 1
0 1100 : . ! £ ! ___,_.___,:/ 1 |
Figure 8.5, Typical variation of ?tlodty. area, specific volume, 300 200 100 0 300 200 100 0
and Mach number with pressure in a rocket nozle. Pressure. psia Pressure, psia

Example 8.6 For the rocket of example 8.5 , calculate Exit temperature and Mach number,
Throat area and area ratio and Gas velocity at throat.
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Chapter Nine/Stationary Normal Shock Waves; part 1
9.1 Introduction

The shock process represents an abrupt change in fluid properties, in which finite variations
in pressure, temperature, and density occur over a shock thickness comparable to the mean free
path of the gas molecules involved. It has been established that supersonic flow adjusts to the
presence of a body by means of such shock waves, whereas subsonic flow can adjust by gradual
changes in flow properties. Shocks may also occur in the flow of a compressible medium
through nozzles or ducts and thus may have a decisive effect on these flows. An understanding
of the shock process and its ramifications is essential to a study of compressible flow.

It was pointed out previously that a series of weak compression waves can coalesce to form
a finite compression shock wave. The mechanism by which this process occurs will be discussed
in detail. The thermodynamics of the shock process will be reviewed, and the one-dimensional
equations of continuity, momentum, and energy applied to the normal shock. Solutions of these
equations will be presented to enable the working of practical engineering problems.

7

9.2 Formation of a Normal Shock Wave Tube dV — E . V=0

pedp gl P
It was shown that, when a piston in a tube is given a = — " prav = r
steady velocity to the right of magnitude dV (Figure
9.1), a sound wave travels ahead of the piston through L
the medium in the tube. Suppose the piston is now given ‘
a second increment of velocity dV, causing a second  Fressure plot prdp P
wave to move into the compressed gas behind the first e — ——— N—
wave. The location of the waves and the pressure Figure 9.1 Initiation of infinitesimal
distribution in the tube, after a time t,, are shown in pressure pulse
Figure 9.2. Each wave travels at the velocity of sound
with respect to the gas into which it is moving. Since the o Tal A
second wave is moving into a gas that is already moving —2 2 ke

to the right with velocity dV/, and since it is moving into
a compressed gas having a slightly elevated
temperature, the second wave travels with a faster —_L_l__

absolute velocity than the first wave and gradually ?
overtakes it. After a time t, (t, greater than t,).

>

(]

=X

Figure9.2
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Now suppose the piston is accelerated from rest to a Aftertime t4

finite velocity increment of magnitude AV to the right. This _%——'AV
finite velocity increment can be thought to consist of a large
number of infinitesimal increments, each of magnitude dV. 4

Figure (9.3) shows the velocity of the piston versus time, with
the incremental velocities dV superimposed. The waves next to ‘_\
the piston tend to overtake those farther down the tube.

As time passes, the compression wave steepens. The (a)
tendency of the higher density parts of the wave to overtake the  ager time t2

lower density parts is finally counteracted by heat conduction 2_. Ay
and viscous effects taking place inside the wave. The resultant
constant-shape compression shock wave produced by the
addition of the weak compression waves then moves through the
undisturbed gas ahead of the piston. The slopes of temperature
and pressure versus distance in the wave itself are very large,
and so the shock can be approximated by a discontinuity (Figure i

9.4).

-—%’. * - Mt
I

k.1

After time ty
ap ﬁ—g e

»

| e

Figure 9.5

Prepared by A.A. Hussaini

»

A

(b)

A
r & After time t3

o

T ?—-’
AV
.

!‘
4
—" [

& = shock thickness
(=05 % 103 em)
Figure 9.4

L.
>

.-

If the piston in Figure 9.5 is ()
suddenly given an incremental Figure 9.3
velocity dV to the left, a weak expansion wave propagates to
the right at the velocity of sound. When the piston is given
a second increment of velocity, a second expansion wave
moves into the expanded gas behind the first wave.

Again, each wave travels at the velocity of sound with
respect to the gas into which it is moving. In this case, the
waves and gas are moving in opposite directions.
Furthermore, the second wave is traveling into a gas that
has already been expanded and cooled, which lowers the

2-6 ch.9
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sound velocity. Both effects reduce the absolute wave afertime t2

velocity, and cause the second wave to fall farther and —% [
farther behind the first. In this manner, expansion P

waves spread out; they are not able to reinforce one '

another (see Figure 9.6). The creation of a finite o

expansion shock wave is impossible.

B A

9.3 Equations of Motion for a Normal Shock Wave Figure 9.6

A shock involves finite, rapid changes in pressure and temperature. The processes taking
place inside the wave itself are extremely complex and cannot be studied on the basis of
equilibrium thermodynamics. Temperature and velocity gradients inside the shock provide heat
conduction and viscous, dissipation that make the shock process internally irreversible.

In a practical sense we don’t focus on the interior details of the shock wave, but on the
net changes in fluid properties taking place across the entire wave.

If one chooses a control volume encompassing the shock wave, the flow equations can be
written without regard to the complexities of the internal processes. For this purpose, it is
sufficient to note that the shock process is thermodynamically irreversible. Furthermore, with the
shock temperature gradient inside the control volume, there is no external heat transfer across the
control volume boundaries, so the shock process is adiabatic.

Figure 9.7 shows a standing normal shock in a section of varying area. We first establish
a control volume that includes the shock region and an infinitesimal amount of fluid on each side
of the shock. In this manner we deal only with the changes that occur across the shock. It is
important to recognize that since the shock wave is so thin (about 1076 m), a control volume
chosen in the manner described above is extremely thin in the x-direction.

This permits the following simplifications to be made without introducing error in the
analysis:

1. The area on both sides of the shock may be considered to be the same.

2. There is negligible surface in contact with the wall, and thus frictional effects may be

omitted.
Adiabatic 6g=0o0rds, =0
No shaft work dws = 0
Neglect potential dz = 0
Constant area A=A,

Neglect wall shear

3-6 ch.9
Prepared by A.A. Hussaini 2013-2014



UuoT

Mechanical Department / Aeronautical Branch

Gas Dynamics
Chapter Nine/Stationary Normal Shock Waves; part 1

Continuity . very

—
small

p1V1 = p2V (9.1
p=prRT  FEES L

V =Ma = M,/yRT
Then continuity equation becomes;

M M
b1y =P2 2 (9.2)
NCRN
Momentum
The x-component of the momentum equation for o

. . . Conirol
steady one-dimensional flow is; solirne

o
D Fe = t(Voug = Vins) = (Vs = V) ®

. . Figure 9.7 Control volurre for shock analysis.
With pressure force the only external forces acting on

the control volume, then

Z Fy = p1A; —p4; = (p1 —p2) A
Thus the momentum equation in the direction of flow becomes

(p1 —p)A=m(V, = V) = pVAV, — Vy)
Canceling the area and pV can be written as either p,V; or p,V,, then

p1+ piVE =p, + p V7 (9.3)
P1 P2
p1+ R—T1M12VRT1 =p, + R—TZMzZVRTz

p1(1+yM7) =p,(1 + yM3)

p, _ (1+yMP)

N cETTo) oY
Energy

ho1 +6q = hyy + 6wy

hys = h,y i.e. hy +V2/2=h, + V2/2 ,Then

Tor = Tpy (9.5)

T, =T (1 + yz;le) from stagnation properties at each point, then

-1 -1
(s ) = (1475 L)
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1, (1+557m) ©6

h (1 rgm)

Egs. (9.4), (9.5) and (9.6) are the principle equations for a standing normal shock, in addition to
the foregoing assumptions. They called the jump conditions and must be satisfied to preserve
conservation of mass, momentum and energy across the shock.

In the next chapter we seek a relationship between M; and M, to solve these equations.

There are seven variables involved in these equations: y, p;, T;, M1, p,, T, and M,. Once the
gas is identified, y is known, and a given state before the shock fixes p,,T; and M;. Thus
equations (9.2), (9.4), and (9.6) are sufficient to solve for the unknowns after the shock:
p,, T, and M,.

We proceed to combine these equations above and derive an expression for M, in terms of
the information given. First, we rewrite these equations

p1M, _ E (9.2)
p2M; T, '

p. _ (1+ yMj)

= 9.4
b, A+ M) G5
-1

2= —Z— (9:6)

2 1+~—M}
Substitue egs (10.2) and (10.3) into eq (10.1) gives;

Y — 1 5 1/2

14+ yM2)M 1+——M

( YyM3) M, _ 2 2 9.7)

(1+VM12) Mz_ 1+%1M12

At this point notice that M, is a function of only M; and by inspection, it is evident that one
solution to Eq. (9.7) is the trivial one, M; = M,. This solution, involving no change in properties
in a constant area flow, corresponds to isentropic flow and is not of interest for the irreversible
normal shock.. Squaring both sides, cross-multiply, and arrange the result as a quadratic in M2:
gives:

Mz (1 +uM12) RZ¢ +V—_1M22)

2 2
A1+yM»D?2 (14 yM3)?
AMZ)2+BMZ)+C =0 (9.8)
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mz (1+Y5 2 m2)

y—1 2
A= <—) —y? 9.9
2 )Y (1 +yM2)? (9.9a)
2 y—-1,.,
B=|1-2 ui (1 + P m) (9.9b)
T T A |
Mz (1+ %Mf)
C=- > (9.9¢)
(1+yM;)?
Solution of the quadratic equation (9.8) is lengthy and difficult. The solution is;
MZ +2 -1
[2v/(v - D)]ME -1
The result of Eq. (9.10) is plotted in Figure 9.8 for 2.0
y = 1.4. \
For M; > 1, M, is always less tha 1, and vice 1.5,
versa. But when M; < 1 it is not important since ™ _
there is no shock. 10 -
0.5 i S

O
Figure 9.8
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Chapter Ten/ Stationary Normal Shock Waves; part 2

10.1 Normal Shock Table

We have found that for any given fluid with a specific set of conditions entering a normal
shock there is one and only one set of conditions that can result after the shock. For the perfect
gas further simplifications can be made since equation (9.10) yields the exit Mach number M,
for any given inlet Mach number M; and we can now eliminate M, from all previous equations.

Pressure ratio;

P2 _ 1+ yM? 9.4)
p1 1+yM; .
substitute from eq. 9.10 gives

P2 _ 2Y y—1

222 gzl - 10.1
pp y+1 ' y+1 (10.1)
Temperature ratio;

T, _1+[(—1)/2IM7 ©6)
T, 1+[(—1D/2M; '
substitute from eq. 10.7 gives

T _ {1+ 1[G - 1/21M7} {[2y/ & — DIM?} (10.2)
T [(v + D?2/2(y — DIMF '
Density ratio

From state equatio

P2 _Th P2

pr Tz p1

and from egs. (10.1) and (10.2);

P2 _ (y + DM? (10.3)

pr (= DM?+2

Other interesting ratios can be developed, each as a function of only M,. For example, since
v/(y-1)

-1
p0=p(1+—2 MZ)

Poz2 _ &(1 + [(y — 1)/2]M22)V/(V—1)
Po1  P1\1+[(y —1)/2]M?

(10.4)

1-8 ch.10
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Eliminating of M, and substitute from eq. (10.4)

Pz _ P2 [r+1/2mz \"O7V [ 2y, ¥y 105)
Por P \1+[(y—1)/2]M7 '

Nl M
y+1 y+1

10.2 Area ratio

For isentropic flow, the area at which the Mach
number is equal to 1 was defined as A*, with this area
being used as a reference. A normal shock, however, is
not an isentropic process; so, for example, if a shock
occurs in a channel (Figure 10.2a), flow areas
downstream of the shock (2 to exit) have Aj; = A,
and for the flow areas upstream the shock (inlet to 1).
have A; = A]. But Aj; # A5, since flow upstream the
shock differs from that downstream the shock.

It is sometimes convenient to have a relationship
between A; and A, . From Figure (10.2b), apply the
continuity equation between A}, and A;,, assuming a (b)

Figure 10.2
perfect gas with constant specific heats. Since mass flow
at A;; equal mass flow at A;, . From Eq. (8-5),
y,M 5.8
= \/—f (v, M) (5.8)
pol i Po242¢
f (v, M*) = fr,M")

"~ RJT, R{T,,
ButM =1 at A, and Aj,. Also T,, = T,, and y is constant, then;
polA;1 = Po242¢ (10.6a)

A

Poz _ 21 (10.6b)
Po1 AZe

10.3 Entropy Change
Since flow through the shock is not isentropic, the there are a friction losses appear as
increase in entropy. From the following thermodynamic relation

6q = dh — vdp

dp
Tds = cpdT - —
p

2-8 ch.10
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ds ¢pdT dp
R RT p
As;; ¢y Ty b2

Subdtitute from eq.(10.4) for p,/p; and (9.4) for T, /T; , gives;
Asiy _Gp [1H10 = 1)/2]M12] > {poz (1 +[(y - 1)/2]1\/1%)”“”}

Po1

p
=—In
R R |1+[(y—-1)/2M; 1+ [(y — 1)/2IM;
o__V
R y-—-1
Asy; Po2 Po2
=—-In— or As,, = —Rln—= 10.7
R pol 12 pol ( )

As As > 0 then p,; = p,, for stationary (fixed) normal shock wave.

Values of Mach number M, from eq. (9.10) , and for pressure ratio p,/p; from eq. (10.1) and
for temperature ratio T, /T, from eq. (10.2), and for density ratio p,/p, from eq.(10.3) and for
stagnation pressure ratio p,,/p,1 from eq.(10.4), as well as the value of the ratio (p,/p,) are all
computed in terms of M, and have been tabulated in normal shock table.

For an adiabatic process, stagnation pressure represents a measure of available energy of the
flow in a given state. A decrease in stagnation pressure, or increase in entropy, denotes an energy
dissipation or loss of available energy.

The shock phenomenon is a one-way process (i.e., irreversible). It is always a compression
shock, and for a normal shock the flow is always supersonic before the shock and subsonic after
the shock. One can note from the table that as M; increases, the pressure, temperature, and
density ratios increase, indicating a stronger shock (or compression). One can also note that as
M, increases, p,,/p,1 decreases, which means that the entropy change increases. Thus as the
strength of the shock increases, the losses also increase.

Velocity Change
We can also develop a relation for the velocity change across a standing normal shock for use
later. Starting with the basic continuity equation;

p1V1 = pV,

p2 (v +1)M{

p1 (y—DM?+2

V, pi_ (y—DM+2
Vi pp (y+1DME
Subtract one from each side

(10.3)
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v, 1_(y—1)M12+2

Vi (v + M7
V,=Vi (y=DM{+2- @+ DM
7 (v + DM7

Vo=V, 2(1-M7)
Mia;  (y + 1)M?

VZ—V1:< 2 ) MZ -1 (10.4)
a, y+1 M, '

Example 10.1 An airstream with a velocity of 500 m/s, a static pressure of 50 kPa, and a static
temperature of 250 K undergoes a normal shock. Determine the air velocity and the static and
stagnation conditions after the wave.

Solution

The Mach number of the airstream, M,, is given by

4 500
JYRT, V1.4 %287 % 250

From table B
T2/T2 = 1373,p2/p1 = 2739, pZ/pl = 1995, ptZ/ptl = 0.9033 and
M, = 0.675
From continuity equation
a_p
Vi p2
= 5% s

2= ;1995 20em/s

p, = 50 * 2.739 = 137.0 kN /m?

T, =250 1373 =343.3K
14-1

-1
Ty, =T, (1 + TMZ) = 250 [1 + (1.578)2] = 3745K

y/(y-1) 1.4/(1.4-1)

14-1
2

-1
Po1 = P1 (1 + TMZ) =50 [1 + (1.578)2]

= 205.7 kN /m?

Or, for stationary (fixed) normal shock T,; = T,,, and from table A;

4-8 ch.10
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Ty Py
—1 =0.6670 and — = 0.2450 K
To1 Poy
T 20 soisk
oL T /T,y 0667 T
50
po1 = —Pb— = = 205.8 kN /m?

" p1/Po1 0.2450
Doz = Po1 * Poz/Po1 = 205.8 % 0.9033 = 185.9 kN /m?

Example 10.2 An airstream at Mach 2.0, with pressure of 100 kPa and temperature of 270 K,
enters a diverging channel, with a ratio of exit area to inlet area of 3.0 (see Figure 10.3).
Determine the back pressure necessary to produce a normal shock in the channel at an area equal
to twice the inlet area. Assume one-dimensional steady flow, with the air behaving as a perfect
gas with constant specific heats; assume isentropic flow except for the normal shock.

Solution

At M = 2.0, from table A with y = 1.4;

A _ 1688
An
Therefore,

A A 4

—=—x*x—=2.0=x1.688 =3.376

Then from table A at A/A* = 3.376 we have M; = 2.762.
With the shock Mach number determined, ratios of properties across the shock can be found
from normal shock table;

A
Poz — 0.4021 =1L
Po1 AZe
Ae Ae Ai A;1

= — % *
* * *
AZe Ai Ail AZe

= 3.0 1.688 * 0.4021 = 2.043

Flow after the shock is subsonic, so that, from table A, the

] A,

Mach number at exit, 2 Bers

i
M, = 0.299. We can now solve for exit, p,;

i e

1 —_— —

Pe _ Pe Pz Pl _ 9399 % 0.4021 * ——— = 2.957
Pi Pz P D 0.1278 S &
o Do = Py * 28 = 100 * 2.957 = 295.7 kPa = Pyack Ay =24, R

L

With subsonic flow at the channel exit, the channel back
pressure is equal to the exit plane pressure.

Figure10.3
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Example 10.3 Helium with y = 1.67 is flowing at a Mach number of 1.80 and enters a normal
shock. Determine the pressure ratio across the shock.

Solution

Since normal shock table does not include y = 1.67, we use equation (10.7) to find the Mach
number after the shock and (10.2) to obtain the pressure ratio.

MZ+2/(y—1)

2
M; [2]//((]/ — 1))]M12 —1 (10.7)
Mz = (1.8)%2 +2/(1.67 — 1) _ 0411
[21.67/((1.67 — 1))](1.8)2 - 1
M, = 0.641
p_(+ yM3) (10.7)
p,  (1+yM?)
p,  (1+ 167(18)%)
p, (14167 (0411)2) 380
Example 10.4 A rocket exhaust nozzle has a ) .
ratio of exit to throat areas of 4.0. The exhaust infet thn,uat e}f't
gases are generated in a combustion chamber ,
with stagnation pressure equal to 3.0 MPa. and 1500 K
stagnation temperature equal to 1500 K (see 3 MPa —
figure 10.4). Assume the exhaust-gas mixture
to behave as a perfect gas with y = 1.3 and
Figure10.4

molecular mass = 20.
Determine the rocket exhaust velocity for isentropic nozzle flow and for the case where a
normal shock is located just inside the nozzle exit plane.

Solution

For isentropic flow in the exhaust nozzle, with A./A* = 4.0, from isentropic Table (at y =
1.3). M, = 2.77, T,/T, = 0.4643
T,=T,*T,/T, = 1500 * 0.4643 = 696.5 K

R 83143

R=%~"20

V, = M,/yRT, = 2.77 * V1.3 * 415.7 x 696.5 = 699 m/s

Consider next the case of a normal shock at the nozzle exit plane. With isentropic flow up to the
shock wave, M; = 2.77and T,, =T,; = 1500 K.

= 415.7 J/kg.K

6-8 ch.10
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From normal shock table (y = 1.3), at M; = 2.77 gives; M, = 0.4680 .
From isentropic table (y = 1.3), at M, = 0.4680 gives; T,/T,, = 0.9681
T, =T, =T, *T,/T,, = 1500 * 0.9681 = 1452 K

V, =V, = My\/[YRT, = 04680 » V1.3 415.7 » 1452 = 414.6 m/s

Example 10.5 Fluid is air and can be treated as a perfect gas. If the conditions before the shock
are: M; = 2.0, p;, = 138 kPa,and T, = 278 K. Determine the conditions after the shock and
the entropy change across the shock.

solution
First we compute p,; with the aid of the isentropic table. From isentropic table at M; = 2.0 we
have p,/p,; = 0.1278.

1
Po1 = P1 * Po1/P1 = 01278 * 138 = 1079.812 kPa

Now from the normal-shock table, Table B, opposite M; = 2.0, we find

M, = 0.57735, p,/p; = 4.500, T,/T; = 1.6875, p,,/po1 = 0.72087

Thus

P2 = p1 *P2/p1 = 138 % 4.500 = 621 kPa

T, =T, * T,/T; = 278 * 1.6875 = 469.125 K

Doz = Po1 * Poz/Po1 = 1079.812 x 0.72087 = 778.404 kPa

Also p,, can be computed with the aid of the isentropic table M, = 0.57735 , p,/p,2 = 0.7978

Doz = P2 * P2/Po2 = 621 * 07978 = 778.4 kPa

To compute the entropy change, we use equation (8.19):

Po2
As;, = —RIn===
12 Po1
As,, = —287 1 7784 =0.087 J/kg.K
12 = "To7o812 -~ 2087 J/kg.

Example 10.6 Air has a temperature and pressure of 300 K and 2 bar abs., respectively. It is
flowing with a velocity of 868 m/s and enters a normal shock. Determine the density before and
after the shock.
Solution
P1 2 x 10°
RT, 287 * 300
a; = J[YRT; = V1.4 % 287 + 300 = 347 m/s
_Vy 868

=L1=—_——=250
a, 347

= 2.32 kg/m?

P11 =

1
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From shock Table B; at M; = 2.50, gives; p,/p, = 7.125,and T,/T, = 2.138
p2 P2 Ty

1
0. pi T 2138

Py = Py * % = 2.32x3.333 = 7.73 kg/m?

1

Example 10.7 Oxygen enters the converging section shown in the figure (10.5), and a normal
shock occurs at the exit. The entering Mach number is 2.8 and the
area ratio A;/A, = 1.7. Compute the overall static temperature at
exit if the inlet temperature is 300 K. Neglect all frictional losses.

Solution i
From isentropic flow isentropic table at M; = 2.8, :
P1/Por = 0.3685, Ty /T,, = 0.3894, A, /A* = 3.5 :
I
!

A4, A, A A} 1
2 2 T . — 435x1=206

oRE

AT A ATA T 1T

From same table at A,/A5 = 2.06 we get M, = 2.23 and T, /T,, = ® Figure 10.5
0.5014

From normal shock wave normal shock table at M, = 2.23

M; = 0.5431, T3/T, = 1.883

I3 T3 T, To Toy
T_1=T_2*E*E*T_1= 1.883*0.5014*1*0.3894
T3 =T, =T, *T3/T; =300% 243 =729K

=2.43
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Chapter Eleven/Normal shock in converging—diverging nozzles

We have discussed the isentropic operations of a converging—diverging nozzle. This type of
nozzle is physically distinguished by its area ratio, the ratio of the exit area to the throat area.
Furthermore, its flow conditions are determined by the operating pressure ratio, the ratio of the
receiver (back) pressure to the inlet stagnation (reservoir) pressure (py/Preservoir)- From figure

(11.1) we identified two significant critical pressure ratios.
With p, = p,., there is no flow in the nozzle (curve 1)
from figure (11.1a). As p,, is reduced below p,, subsonic
flow is induced through the nozzle, with pressure
decreasing to the throat, and then increasing in the
diverging portion of the nozzle (curve 2 and 3).. For any
pressure ratio above p, . /p,, for curve (a), the nozzle is not
choked and has subsonic flow throughout (typical venturi
operation). When the back pressure is lowered to that of
curve a, sonic flow occurs at the nozzle throat. Pressure
ratio pp,/p, is called the first critical point which
represents flow that is subsonic in both the convergent and
divergent sections but is choked with a Mach number of 1.0
in the throat. ((chocked means flow maximum and fixed))
When the back pressure is lowered to that of curve f,
subsonic flow exits in the converging section, and sonic

B S e

o
B

pressure

f— X - - etk - —
=

\

Q- e.ocrm\h—

1]

y

)

Distance along the C.D.N, x
Figure 11.1a

flow exits in the throat and it is choked where M = 1.0. A supersonic flow exists in the entire
diverging section. This is the third critical point which represents the design operation condition.
The first and third critical points are the only operating points that have;

(2) Isentropic flow throughout the nozzle, and
(2) A Mach number of 1 at the throat, and

(3) Exit pressure equal to receiver (surrounding) pressure.
Remember that with subsonic flow at the exit, p., = p;, and p,, is back or receiver pressure.
Imposing a pressure ratio slightly below that of the first critical point presents a problem in

that there is no way that isentropic flow can meet the boundary condition of pressure equilibrium
at the exit. However, there is nothing to prevent a non-isentropic flow adjustment from occurring
within the nozzle. This internal adjustment takes the form of a standing normal shock, which we

now know involves an entropy change (losses).
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As the pressure ratio is
lowered below the first critical
point, a normal shock forms
just downstream of the throat.

J'/’

|
I
I
! ]
1 |

—_— | i Phiysical nozzie
The remainder of the nozzle is ! 1 i
- . . - I
now acting as a diffuser since I e { !

. |~ I
after the shock the flow is r | \
. . |
subsonic and the area is lr |l ;
increasing. The shock will ! { !
1.0

Lo Venturi regime

locate itself in a position such
«—Y First critical

that the pressure changes that
occur ahead of the shock,
across the  shock, and
downstream of the shock will
produce a pressure that exactly
matches the outlet pressure. In

—+—— Shocks inside nozzle
{shown above)

Second critical
I {(shock at exit)
Owverexpansion
other words, the operating |
pressure ratio determines the “HH t

- 3, s L -
location and strength of the Entrance Throat Exit Underax pansion

_ Position in Nozzle
shock. An example of this Figure 11.1b

“'11
Hl“hl
|
|
\
\

Pressure Ratio

\

Third critical

e e e ——— e e ——— — -

mode of operation is shown in Figure 11.1b.

As the pressure ratio is lowered further, the shock —_‘—v&u Py

continues to move toward the exit. When the shock is or y
located at the exit plane (curve d), this condition is referred /_\-/
to as the second critical point. (a)

When the operating pressure ratio is between the
second and third critical points, a compression takes place \ﬂ
outside the nozzle. This is called over-expansion (i.e., the P —
flow has been expanded too far within the nozzle). As the ___/f—\""
back pressure is lowered below that of curve d, a shock (b}

wave inclined at an angle to the flow appears at the exit
plane of the nozzle (Figure 11.2a). This shock wave,
weaker than a normal shock, is called an oblique shock. —M "
Further reductions in back pressure cause the angle —_/\1&
between the shock and the flow to decrease, thus

Figure 11.2¢c
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decreasing the shock strength (Figure 11.2b), until eventually the isentropic case, curve f, is
reached

If the receiver pressure is below the third critical point, an expansion takes place outside the
nozzle. This condition is called under-expansion. A pressure decrease occurs outside the nozzle
in the form of expansion waves (Figure 11.2c). Oblique shock waves and expansion waves
represent flows that are not one dimensional flow and will be treated later.

Illustrative example:

For the present we proceed to investigate the operational regime between the first and second
critical points. For the nozzle and inlet conditions illustrated in figure (11.3), the nozzle has area
ratio to be A; /A, = 2.494 and is fed by air at 6.0 bar and 60 °C from a large tank.

Solution

The inlet conditions are essentially stagnation. For these fixed inlet conditions we find that a
receiver pressure of 5.7642 bar (for operating pressure ratio of 0.9607) identifies the first
critical point and a receiver pressure of 0.3858 bar (for operating pressure ratio of 0.06426)
identifies the third critical point.

What receiver pressure do we need to operate at the second critical point? Figure 11.4
shows such a condition and you should recognize that the entire nozzle up to the shock is
operating at its design or third critical condition.

From the isentropic table at A/A * = 2.494, prorwpren
M; =244 and ps3/p.; = 0.06426 T, = 60°C
From the normal-shock table for M5 = 2.44,

Ds

|

I

My = 05189 and == 67792 o !
3

and the operating pressure ratio will be
Prec _ Pa _Pa D3

|
I
i
p, = 6 bar —— : Pree = Po
I
i
i

Agld, = 2.494

variable

Do1 Dos P3 DPo3 Figure 11.3 : coverging diverging nozzle

= 6.7792 x 0.06426 = 0.436
P1 = Preservoir=Po1 = 6.0 bar |
Da = Dreceiver = 6.0 % 0.436 = 2.616 bar l
Thus for our converging—diverging nozzle with an area é)
ratio of 2.494, any operating pressure ratio between 0.9607
and 0.436 will cause a normal shock to be located »,=p, =6.0bar

someplace in the diverging portion of the nozzle starting Figure 11.4: C.D.N operates at
2nd critical point

@.---__-H______
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from the throat and ending at exit plane.

Suppose that we are given an operating pressure ratio
of 0.60. The logical question to ask is: Where is the
shock? This situation is shown in Figure 11.5. We must
take advantage of the only two available pieces of

e e B o A Ak s b

information and from these construct a solution. We know CD Shock _ !
hat . Ps =p,=3.6 bar
tha =p = ar Afd, =2,

P , PL™ o Figure 115 1372 72494
"2 -2494 and — =0.60

A, Po1

We assume that all losses occur across the shock and we know that M, = 1.0. Since there
are no losses up to the shock, the flow is isentropic and we know that
A, = A}
Thus
As Ps _4s Ps

Ay Por Al Dor
We know also across the normal shock p,s Az = pyq 47, 1.€.

Pos _ A1
pol AE
So

As ps _4s ps
A’i Po1 AE Pos
The following data is known, As/A, = 2.494, p</p,1 = 0.60 then;

A—f& = 2.494 « 0.60 = 1.4964

A5 Pos

And from isentropic table at A5 ps/Az pos = 1.4964

Mg = 0.38 and ps/p,s = 0.9052

To locate shock position, we seek the ratio p,4/pos.

We have p,s = p,a, isentropic after the shock, and p,; = p,1, isentropic before the shock. Then
Pos _Pos _Pos Ps _ 1 000 0664

Pos Por Ps DPor 0.902

Then from normal shock table at p,4/p,3 = 0.664

M, =2.12 and M, = 0.5583
And then from the isentropic table that this Mach number, M; = 2.12, will occur at an area
ratio of about A;/A* = A;/A, = 1.869..

4-6 ch.11
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We see that if we are given a physical
converging—diverging nozzle (area ratio is known)
and an operating pressure ratio between the first and i
second critical points, it is a simple matter to }
determine the position and strength of the normal i

. . : . i
shock in the diverging section. (b Shack
Example 11.1 A converging—diverging nozzle has an @
. . . . Figure 11.6
area ratio of 3.50. At off-design conditions, the exit
Mach number is observed to be 0.3. What operating pressure ratio would cause this situation?

Solution

We have the nozzle area ratio A5 /A, = 3.5.
Using the section numbering system of Figure 10.6, for M = 0.3, We have

A A
25 Ps _ 19119,  Z£5=203507

AE Pos AE
poSAE = polA;

A AL\ AT A 1
ﬁ=(p5 5>*<p05 5>*_1*—2= 19119 % 1 % 1 = 0.546

Po1 poSAE polA; AZ AS 3.50
Could you now find the shock location and Mach number?
Dos A’i A; AS 1 Doa

—2 = —=—%—=-—=x203507 = 0.58145 = —

Por As As Ay 3.5 Po3

From shock table at p,,/p,3 = 0.58145 gives M; =

From isentropic table at M5 = gives A3 /A5 = A3 /A, =

Example 11.2 Air enters a converging—diverging nozzle that has an overall area ratio of 1.76. A
normal shock occurs at a section where the area is 1.19 times that of the throat. Neglect all
friction losses and find the operating pressure ratio. Again, we use the numbering system shown
in Figure 11.6.

Solution

From the isentropic table at A; /A, = 1.19, > M3 = 1.52..

From the shock table at M; = 1.52, - M, = 0.6941 and p,4/p,3 = 0.9233.
From isentropic table at M, = 0.6941 gives A,/A, = 1.0988. Then

5-6 ch.11
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A As A, A 1 i i
5 _ s 2 Aa 9*1.0988=1.625 m!let throat E?:ut

Ay A, Ay A : ! i :
Since A4 = A3 and AE = AZ . \//1

Thus from isentropic Table at Ag/A% = 1.625 — 5 MPa
M, ~ 1.625.

Ds Ds  Poa

E = E * ﬁ = 0.9007 « 0.9233 = 0.8324 1 Figure 11.7a

Where pos = Posa aNd po3 = Po1
Example 11.3 A converging-diverging nozzle is designed to operate with an exit Mach number

of 1.75. The nozzle is supplied from an air reservoir at 5 MPa. Assuming one-dimensional flow,
calculate the following:

a) Maximum back pressure to choke the nozzle.
b) Range of back pressures over which a normal shock will appear in the nozzle.
c) Back pressure for the nozzle to be perfectly expanded to the design Mach number.

d) Range of back pressures for supersonic flow at the nozzle exit plane.

Solution

The nozzle is designed for M,,;; = 1.75. From Appendix A. at M,,;; = 1.75, Agyir/A* =
1.386 and p,y;: /P, = 0.1878

a) The nozzle is choked with M = 1 at the throat, followed by subsonic flow in the
diverging portion of the nozzle. From Appendix A. at A.,;;:/A* = 1.386. M,,;; = 0.477 and
Pexit/Po = 0.8558.

Dexit = Pexit/ Do * Do = 0.8558 * 5 = 4.279 MPa

Therefore the nozzle is chocked for all back pressures bellow 4.279 MPa.

b) Or a normal shock at the nozzle exit plane (Figure 11.7b). M; = 1.75 and
p; = 0.1878 * 5 = 0.939 MPa.

From normal shock, at M; = 1.75, p,/p; = 3.406.

For a normal shock at the nozzle exit, the back pressure is

pp = 3.406(0.939) = 3.198 MPa.

For a shock just downstream of the nozzle throat, the back pressure is p, = 4.279 MPa, i.e.
the flow downstream the throat in the divergent part is subsonic. So A normal shock will appear
in the nozzle over the range of back pressures from 3.198 to 4.279 MPa.

6-6 ch.11
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C) From isentropic table , at M,,;; = 1.75. peyit/P, = 0.1878. For a perfectly expanded,
supersonic nozzle. the hack pressure is 0.939 MPa

d) Referring again to Figure 11.7a supersonic flow will exist at the nozzle exit plane for all
back pressures less than 3.198 MPa.

Figure 11.7b
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Chapter Twelve/Converging—Diverging Supersonic Diffusers

12.1 Converging-Diverging Supersonic Diffuser

With the jet engine, the inlet (diffuser) takes the incoming air, traveling at high velocity with
respect to the engine, and slows it down and then delivers it to the axial compressor of the
turbojet or the combustion zone of the ramjet engine. The amount of static pressure rise achieved
during deceleration of the flow in the diffuser is very important to the operation of the jet engine,
since the pressure of the air entering the nozzle affects the nozzle exhaust velocity.

The maximum pressure that can be achieved in the diffuser is the isentropic stagnation
pressure. Any loss in available energy (or stagnation pressure) in the diffuser, or for that matter
in any other component of the engine, will have a harmful effect on the operation of the engine
as a whole. For a supersonic diffuser, it would be highly desirable to provide shock free
isentropic flow.

A first approach is to operate a converging-diverging nozzle in reverse (see Figure 12.1.) At
the design Mach number, My, for such a diffuser, there is no loss in stagnation pressure

(neglecting friction). However, off-design performance has to be W
Mp

considered, since the external flow must be accelerated to the =~ Mo Mel
design condition. For example, if a supersonic converging- m
diverging diffuser is to be designed for a flight M, = 2.0, the .
: . . A, Figure 12.1

ratio Ainiet/Aenroar 1S 1.688 (see isentropic flow table). niet

However, for a supersonic flight Mach number less than design Mach number, M < M, the
area ratio A/A* is less than 1.668, i.e. required throat area should be larger. This indicates that
the actual throat area is not large enough to handle this flow. Under these conditions, flow must
be bypassed around the diffuser. A normal shock stands in front

of the diffuser with subsonic flow after the shock able to sense the '::;‘;"
presence of the inlet and an appropriate amount of the flow "spills (
over" or bypasses the inlet (see Figure 12.2). _/-k

As the Might Mach number is increased, the normal shock Tf. ._.M
moves toward the inlet lip. When the design Mach number is ‘\;.:"'"'-__"‘\
reached during start-up, however, with a normal shock in front of

\ )
the diffuser, some of the flow must still be bypassed, since the Figure 12.2

throat area of less than A3 is still not able to handle the" entire subsonic flow after the shock.

1-7¢ch.12
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As the flight Mach number is increased above M, the shock moves eventually to the inlet
lip. A further increase in M causes the shock to reach a new equilibrium position in the diverging
portion of the diffuser, in other words, the shock is "swallowed." Once the shock has been
swallowed, a decrease in flight Mach number causes the shock to move back toward the throat,
where it reaches an equilibrium position for M equal to Mj,.

At this position, the shock is of vanishing strength, at M, = 1.0, so no loss in stagnation
pressure occurs at the design condition. In actual operation, it is desirable to operate with the
shock slightly past the throat; since operation at the design condition is unstable in that a slight
decrease in Mach number results in the shock's moving back out in front of the inlet. In this case,
the operation of over speeding to swallow the shock would have to be repeated (see Figure 12.3).

M<Mp M>Mp M+dM M=Mp
o= = =1 =
— —_—— —_— —
..-*'"_"'*-\
\v Shock swallowed Design
() (<) (d) (e}

Figure12.3

Another method for swallowing the shock is to use a variable throat area. With a shock in
front of the diffuser, the throat area should be increased, which would allow more flow to pass
through the inlet and consequently bring the shock closer to the inlet lip. To swallow the shock,
the throat area would have to be slightly larger than that required to accept the flow with a shock
at My at the inlet lip, that is, slightly larger than A% with a normal shock at the design Mach
number.

For M, = 2.0, A7/A5 = 0.7209, so an increase in area of greater than (1 — 0.7209)/
0.7209 = 39 percent is required to swallow the shock. Once the shock is swallowed, the throat
area must be decreased to reach the design condition.

Although the converging-diverging diffuser has favorable operating characteristics at the
design condition, it involves severe losses at off-design operation. Operation with a normal
shock in front of an inlet causes losses in the stagnation pressure.

To swallow this shock, the inlet must be accelerated beyond its design speed, or a variable
throat area must be provided. Except for very low supersonic Mach numbers, the amount of over
speeding required to swallow the shock during start-up becomes large enough to be totally
impractical.

2-7ch.12
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Furthermore; the incorporation of a variable throat area into a diffuser presents many
mechanical difficulties. For these reasons, the converging-diverging diffuser is not commonly
used; most engines utilize the oblique-shock type diffuser to be described later.

Example 12.1. A supersonic converging-diverging diffuser is designed to operate at a Mach
number of 1.7 with design back pressure. To what Mach number would the inlet have to be
accelerated in order to swallow the shock during stand-up?

Solution

From isentropic table at M;,;.; = 1.7,—= A/A* = 1.338

So the diffuser is designed with A;,i0t/Athroar = 1.338

The inlet must be accelerated to a Mach number slightly greater than that required to position the
shock at the inlet lip (see Figure 12.4).

Assume a normal shock stands at diffuser lips as shown. For M = 1.0 at the diffuser throat
and subsonic flow after a shock at the inlet lip, we have:
From isentropic table at A/A* = 1.338 = M, = 0.501.
From normal shock table at M, = 0.501 = M; = 2.63.

If the back pressure conditions imposed on the diffuser are such that Figure 12.4
a Mach number of 1.0 cannot be achieved at the throat, then M, will
be less than 0.501, and a value of M, greater than 2.63 will be required. However, with M =
1.0 at the diffuser throat, the diffuser must be accelerated to a Mach number slightly greater than
2.63 to swallow the initial shock during start-up.

Jﬂ-inn:-a.t

6.7 Supersonic Wind Tunnel

To provide a test section with supersonic flow requires a converging—diverging nozzle. To
operate economically, the nozzle-test-section combination must be followed by a diffusing
section which also must be converging—-diverging.

Starting up such a wind tunnel is another example of nozzle operation at pressure ratios above
the second critical point. Figure 12.5 shows a typical tunnel in its most unfavorable, off design,
operating condition, which occurs at startup.

3-7ch.12
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Q@

Figure 12.5, which shows the
shock located in the test section. The |
variation ~of  Mach  number
throughout the flow system is also
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shown for this case. This is called
the most unfavorable condition
because the shock occurs at the !
highest possible Mach number and '
thus the losses are greatest. We
might also point out that the diffuser
throat (section 5) must be sized
(adjusting area) for this condition.
As the exhauster fan is started,
this reduces the pressure p,u: = Pe
and produces flow through the : 3mntmainWiM;unuus
tunnel. At first the flow is subsonic Figure 12,5 Supersonic tunnel at startup
throughout, but at increased power {with associated Mach number variation).
settings the exhauster fan reduces
pressures still further and causes © o 6 (? ® ®
increased flow rates until the nozzle !
throat (section 2) becomes choked.
At this point the nozzle is operating

=
n

Maclh Mumber

0| . S

@ [ = fm ——

g —

at its first critical condition. As
power is increased further, i.e the
ratio poyu:/Pin 1S lowered further. a
normal shock is formed just
downstream of the throat, and if the

Test
section

iFfuser —-L~ Exbranster —-=|

tunnel  pressure is  decreased
continuously, the shock will move
down the diverging portion of the
nozzle and pass rapidly through the
test section and into the diffuser. If
the ratio p,,:/pin 1S lowered further

then the diffuser swallows the . _ . . -
) . Figure 12,6 Supersonic tunnel in running condition
normal shock to the diverging part (with associated pressure variation).
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of diffuser. Increasing this pressure ratio a little will move the normal shock upstream to the
diffuser throat, the position at which the shock strength is a minimum .Figure 12.6 shows this
general running condition, which is called the most favorable condition.

Across the shock of figure 12.5

Po24% = PosAs

At throat section 2 & 5 during start-up M = 1, then

Po242 = PosAs

Due to the shock losses (and other friction losses) p,s < p,, and then As > A,

For example if the test section Mach number is 2 then from normal shock table

Dos

=0.7209 = 4
poZ . AS

And 45 = 1/0.7209 A, = 1.3872 A,

Knowing the test-section-design Mach number fixes the shock strength in this unfavorable
condition and As is easily determined. Keep in mind that this represents a minimum area for the
diffuser throat. If it is made any smaller than this, the tunnel could never be started (i.e., we
could never get the shock into and through the test section). In fact, if Ag is made too small, the
flow will choke first in this throat and never get a chance to reach sonic conditions in section 2.

Once the shock has passed into the diffuser throat, knowing that A5 > A, we realize that the
tunnel can never run with sonic velocity at section 5. Thus, to operate as a diffuser, there must be
a shock at this point, as shown in Figure 12.6.We have also shown the pressure variation through
the tunnel for this running condition.

To keep the losses during running at a minimum, the shock in the diffuser should occur at the
lowest possible Mach number, which means a small throat. However, we have seen that it is
necessary to have a large diffuser throat in order to start the tunnel. A solution to this dilemma
would be to construct a diffuser with a variable area throat. After startup, A5 could be decreased,
with a corresponding
decrease in shock
strength and operating
power. However, the

Nozzle Diffuser

2 — ;
. Test Section f\—\\\

power required for any S Drier
installation must always
be computed on the basis KK
of the unfavorable startup \k
condition.

- Cooler
SRRy

e

Figure 12.7 Continuous Closed-Circuit Supersonic Wind Tunnel
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Example:

A continuous supersonic wind tunnel is
designed to operate at a test section Mach
number of 2.0, with static conditions duplicating
those at an altitude of 20 km where p = 5.5 kPa
and T =216.7K. Take y=14 and ¢, =
1.004 kJ/kg.K. The test section is to be
circular, 25c¢m in diameter, with a fixed
geometry and with a supersonic diffuser
downstream of the test section. Neglecting fric-
tion and boundary-layer effects, determine the
power requirements of the compressor during
startup and during steady-state operation, [See
Figure 12.8(a)]. Assume an isentropic
compressor, with a cooler located between

(¢) Worst Case during Startup

compressor and nozzle (after the compressor), so  rigure 12.8  Continuous Supersonic Wind Tunnel

the compressor inlet static temperature can be assumed equal to the test section stagnation
temperature.

solution
During startup, the worst possible case [see Figure 12.8(c)] is that of a shock in the test sec-
tion with M; = 2.0. For this situation, which fixes the ratio of the two throat areas, we have

4; A
Poz _ 07209 =2 =24
Po1 A;  Ap

To fix the size of the diffuser throat area, we first use the design Mach number to find
(A/A")test- From isentropic table, (A/A)test = 1.6875
D? 0.252

Atest = M= = 0.04909 m?
(T/To)test = 0.5556
T, 216.7

= 390.03 K

T = =
T (T/Ty)test  0.5556

The throat area is then;
Atest _ 0.04909

A=Ay = GA7AS = 1eg7s - 0.02909 m?
. AT 0.02909 ,
A=A, = TJE = 07200 - 0.04035 m
6-7ch.12
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During steady-state operation [see Figure 12.8(a)], the mass flow through the test section is
given by

. Ptest
m = pAV = = AMtest\/ YRTtest
RTiest

T 0.287 x216.7
For this fixed geometry (i.e., A;»/Ay = 1/0.7209 = 1.3872), the optimum condition for
steady- state operation is a normal shock at the diffuser throat. This means that the nozzle, test
section and the converging part of the diffuser act as a duct of variable area with isentropic flow,
where M,; = 1and A, = A* = 0.02909 m?.
From isentropic table at A, /A* = Ay, /A, = 1/0.7209 = 1.3872
1.38720 — 1.38649
1.39670 — 1.38649
From normal shock table at M; = 1.7507

Po2 _ (63457 + (0.83024 — 0.83457) (1.7507 —1.7500
o ' ' 1.7600 — 1.7500

Po1
The loss in stagnation pressure must be compensated for by the compressor. For isentropic

compressor, [see Figure 12.7(b)], the energy balance is

(0.04909)2V1.4 * 287 * 216.7 = 2.5619 kg/s

M; =175+ 0.01( ) = 1.7507

) = 0.8343

w = ho,exit - ho,inlet =0Cp (To,exit - To,inlet)

At design stage, i.e. steady state operation
-1 0.4

Y et
Toextt _ (@>T _ (_1 )1'4 = 1.0531
To,inlet Po2 0.8343 )

Ty exit — Tointet = Tomiee(1.0531 — 1) = 390.03 * 0.0531 = 20.72 K
w = 1.004(20.72) = 20.8029 kJ/kg
Power = aw = 2.5619 * 20.8029 = 53.2949 kW

At off-design stage, i.e. during startup
-1 0.4

Y et
Toexte _ (@)T _ (_1 )1'4 = 1.0980
To,inlet Po2 0.7209 )

Toexit — Tointet = To intet(1.0980 — 1) = 390.03 = 0.0980 = 38.223 K
w = 1.004(38.223) = 38.376 kJ/kg
Power = mw = 2.5619 x 38.376 = 98.3155 kW
A more power is needed during startup by
98.3155 — 53.2949
53.2949

=84.47 %
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Chapter Thirteen/Moving Normal Shock Waves

12.1 Moving Normal Shock Waves

Previous sections have dealt with the fixed normal shock wave. However, many physical
situations arise in which a normal shock is moving. When an explosion occurs, a shock wave
propagates through the atmosphere from the point of the explosion. As a blunt body reenters the
atmosphere from space, a shock travels a short distance ahead of the body. When a valve in a gas
line is suddenly closed, a shock propagates back through the gas. To treat these cases, it is
necessary to extend the procedures already developed for the fixed normal shock wave.

Consider a normal shock moving at constant velocity into still

air, T,,=T,, and p,q = pq, (Figure 13.1a). Let V= b a

absolute shock velocity and V, = velocity of gases behind the Vg Vs

wave; both velocities are measured with respect to a fixed observer. Still Air
V=0

For a fixed observer, the flow is not steady, since conditions at a point ;
are dependent on whether or not the shock has passed over that point. {8} Fixed coordinate
. . N . system
Now consider the same physical situation with an observer
moving at the shock-wave velocity, a situation, for instance, with the V-V v,
observer "sitting on the shock wave." The shock is now fixed with *
respect to the observer (Figure 13.1b). But this is the same case _ _
already covered in previously. Relations have been derived and (b) ]:::t]::f. coordinate
results tabulated for the fixed normal shock-To apply these results to Figure 13.1
the moving shock, consideration must be given to the effect of observer velocity on static and
stagnation properties.
Static properties are defined as those measured with an instrument moving at the absolute
flow velocity. Thus static properties are independent of the observer velocity, so
b2 _D»p I, Ty
—=—oand ==
P1 Pa I, T,
Stagnation properties are measured by bringing the flow to rest. Comparing the situations
shown in Figure 13.1, if T, = T, and p; = p,, itis evident that T,; > T, and p,; > p, since the

gas at state 1 has velocity Vg, and the gas at state a has zero velocity, T, = T,, and p,; = poq.
Thus stagnation properties are dependent on the observer velocity. To calculate the variation of
stagnation properties across a moving shock wave, static conditions and velocities must first be
determined.
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Transformation of a stationary coordinate system to a coordinate system that moves with the
shock makes analysis of the moving normal shock as of the steady-flow situation shown in

Figure 13.1(b). The relations for stationary normal shock is now prevail.

Vi=1V Vo=V -V
From continuity eq.:
p2(Vs = V) = p1Vs
P
P2 Vs Vs
From momentum eq.:

2
p2 + Pz(Vs - V;;) = p;1 + p. Vs
P2 _ 2y MZ y—1

pp v+1 ' y+1
From energy eq.:

2
(Vs = 7,) V2
hz +T—h1 +7
2
V.-V V2
T2+—(s ) =T, +—
2cp ZCp

T, _{1+I[(r—1/2IMF} {[2y/(y - DIM?}

T, [(v + D?2/2(y — DIMF

And from eg.10.3 for velocity ratio:

Vi_pe _Topz_ (DM

Vv, pr T pr (y—1DMP+2
Vs  (r+1)V?/yRTy

Vi—V,  (r—1)VZ/yRTy +2

< First Case:

..(13.1a)

..(13.1b)

..(13.2)

..(10.1)

.. (13.4a)

..(13.4b)

..(10.2)

..(10.3)

..(13.5)

Vy V=7

(a)

Moving Shock

2 11
V- A
— e —

(b)

Fixed Shock

Figure13.2

Either the shock velocity is known or the gas velocity behind the wave is known. When the
shock velocity is known the gas velocity and other properties behind the moving wave are
required. But when the velocity of the gas behind the shock is known, then shock velocity and

other properties are required.

Example 13.1 A normal shock moves at a constant velocity of 500m/s into still air
(100 kPa. 0°C). Determine the static and stagnation conditions present in the air after passage
of the wave, as well as the gas velocity behind the wave.
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Solution bja |

For a fixed observer, the physical situation is shown in Figure 13.3a. Vg . !*r‘““ ’”__f”
With respect to an observer moving with the wave, the situation t
transforms to that shown in Figure 13.3b.

A 500 (a)
= = = 1.510
JYRT, V1.4 %287 273 2 b
From normal shock table Vi=Vq Ve
T, T ) ‘
T = 1327 » T, =T, *F =273 %1327 =362.3K
1 1

P2 _ 2493 - p, =p; *22 = 100 * 2.493 = 2493 K “
p © P2=P1*o : : Figure 13.3

From continuity equation
p2 Vi
—=—=1.879
pr V2
Vi Vi
—=———=1.879
V; =2339 m/s

Since the velocity of the observer does not affect the static properties,
pp = 249.3 kPa
T, = 362.3K
The Mach number of the gas flow behind the wave is given by

v, 233.9
= = 0.613

JYRT, V14+287 3623
With the Mach number and static properties determined, the stagnation properties of the gas
stream can be found from isentropic table at M = 0.613,
T/T, =0.9301 and p/p, = 0.7759
After passage of the wave, the stagnation pressure is

po_ T 3623 oo
°> =T /T,, 09301
249.3
oy = —22 = = 321.3 kPa

~ pu/Pop 07759

Note that for a fixed observer the stagnation temperature after passage of the wave is greater
than that before passage of the wave. For an observer "sitting on the wave," however, there is no
change of stagnation temperature across the wave.
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Example 13.2 An explosion occurs which produces a normal shockwave that propagates at a
speed of 600 m/s into still air. The pressure and temperature of the motionless air in front of the
shock are 101.3 kPa and 20 °C, respectively. Determine the velocity, static pressure, and static
temperature of the air following the shock, i.e. (V,, p,, and T5).

Solution
/4 600

1\41 = =

JYRT, V1.4%287 %293
From isentropic table at M; = 1.749 gives
p1/Po1 = 0.1882, T, /T,, = 0.6205
And from normal table at M; = 1.749 gives
p,/p1 = 3.4009, T, /T; = 1.4936, p,,/po1 = 0.8351 and M, = 0.6284. So;

= 1.749

T . = L 298 —4722K =T
" /P 06205 T ”
Py 101.3

= 538.2572 kPa

Po1 =1, /T,) ~ 0.1882

Doz = (%) Po1 = 0.8351 * 538.2572 = 449.4986

ol

D2 = (%) p1 = 3.4009 * 101.3 = 344.5112 kPa
1
T
T, = (T_> T, = 1.4936 x 293 = 437.6248 K =T,
1
a

» = ap =+/YRT, = V1.4 287 x 437.6248 = 419.33 m/s
—V,) = a;M, = 419.33 % 0.6284 = 263.507 m/s
V, =V — (Vs —V,) = 600 — 263.507 = 336.493 m/s
V, 336.493
Mb = —_—=———
a, 419.33
From isentropic table at M;, = 0.8025, gives;
pb/pob = 0.6544 and Tb/TOb = 08859, then
Py 3445112
P/ Pob 0.6544
T,  437.6248
" T,/T,,  0.8859

N
(%

= 0.8025

DPop = = 526.4535 kPa

T,p = 493.9889 K

Example 13.3 The shock was given as moving at 548.64 m/s into air at 101.353 Pa and 289
K. Solve the problem represented in Figure 13.4.
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Solution . _ _ _ ¥, = 1800 f1fsec )
> We solve for fixed normal shock, i.e. moving coordinate Moving shock

) . p, =101.353 Pa py=?
system, (figure 13.4b). T, = 289 K r,=1
a, = \JyRT, = V1.4« 287 « 289 = ¥y =0 vy =2
9 -
= 340.76 m/s h
B E _ 548.64 s %{ﬂﬂ&hﬁwﬁﬁwwwmnm

ﬁ{;-\;il g .“{}TITI al Shock

Fixed coordinate

=—= = 1.61
17 a, T 340.76
From isentropic, at M; = 1.61,

[';}

Standing shock
pl/pol = 02318, then
1 101.353 p, = 101.353 Pa py =1
= = = 437.243 kPa J ' 2
Po1 pl/pol 0.2318 TI =289 K T,=1
From normal shock table, at M; = 1.61 V=¥, =548.64mis Vy=F =V,
— —_—
D2 T,
M, = 0.6655, — = 2.8575, T = 1.3949
P1 1 (b) Standing Normal Shock
Thus Moving coordinate
D, Figure 13.4
P2=pir - = 101.353 * 2.8575 = 289.616 kPa
1
T3
T, =Ty % =289 x 13949 = 403.13 K
1
a, = /YRT, = V1.4 x 287 * 403.76 = 402.78 m/s
V, = a,M, = 402.78 % 0.6655 = 268.1 m/s
And from isentropic table at M, = 0.6655, p,/p,, = 0.7430and T, /T,, = 0.9188, then
__ P2 289616 . o,
Poz = Ipe 07430 Do 0
T, =2 283 aeek
°27T,/T,, 09188
V; = Vs —V, =548.64 — 268.1 = 280.54 m/s
It is apparent that p,, < p,; as expected.
> Now we solve for moving shock, i.e. fixed coordinate system (figure 13.4a).

Remembering that pressure, temperature and sonic velocity values after the shock wave are not
changed due to shock wave movement.

p2, = 289.616 kPa

T, =403.13 K

a, = 402.78 m/s

Vy =280.54m/s
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_V; 28054 0.697
9 a; 40278
And from isentropic table, at My = 0.697, p,/p,, = 0.7220 and T, /T,, = 0.9095 , then;
_ P2 289016 01130kp
Poz = Ipes 07220 @
T, 403.13
T,, = 4432 K

~T,/T,, 09095

Therefore, after the shock passes (referring now to Figure 13.4a), the pressure and
temperature will be 289.616 kPa and 403.13 K, respectively, and the air will have acquired a
velocity of 280.54 m/s to the left. It will be interesting to compute and compare the stagnation
pressures in each case. Notice that they are completely different because of the change in
reference that has taken place.

X Second case

Developing an expressions for the case of a normal shock traveling at a
constant speed V; into a gas that is moving with a speed V. The shock induces VoV |v.—v
a speed Vj,; of the gas it passes over, as shown in Figure 13.6. here simply > >
replace each V; & V; inegs. 13.1t0 13.5by ; -V & V, - V.

. . . . Fi 13.6
Example 13.4 A piston in a tube is suddenly accelerated to a velocity of gure

50 m/s, which causes a normal shock to move into the air at rest in the tube. Several seconds
later, the piston is suddenly accelerated from 50 to 100 m/s, which, causes a second shock to
move down the tube. Calculate the velocities of the two shock waves for an initial air
temperature of 300 K.

Shock
1

. somfs 3V, Air at
—_—
Solution Z T, @ ®T, rest

Figure 13.7
The air next to the piston must move at the same velocity as the piston, since it can neither

move through the face of the piston nor move away from the piston and leave a vacuum behind.
Therefore, for a fixed observer, the air velocities are as shown in Figure (13.7).

a; = /YRT; = V1.4 » 287 300 = 347.2 m/s

From eqg. 13.5
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2
1.4+ 1)50 1.4+ 1)50
Vs = (T) + \/(%) + 347.22

Vi, =30+ 348.5 =378.5 m/s
Vs 3785
<1 =a—1=m= 1.090
From normal shock table, at M; = 1.090 - T,/T; = 1.059, so;

T, = 300 * 1.059 = 317.7 K

Shock Shock
For the second shock, the situation is shown in : !
Figure (13.8a). Figure (13.8b) shows an observer “sitting o j:{i_ somis Vs, ajrar
1
on the second wave”. Using eq. (10.5), we obtain LEALEK i
Vi G+ )M @
— = Shock
V, (r—-1DM{+2 2
Where v, —100 ¥y, —50
V, =V, — 50, V, = Vg, — 100 T @@ T, =377k
u2 = Vs, — 50)? (b)
te YRT; Figure 13.8
Substituting yields
Vs, — 50 Ve, — 50)2 Ve, — 50)2
S2 =124« (52 ) /0.4* (52 ) +2
Vs, — 100 1.4 x 287 * 317.7 1.4 x 287 * 317.7

2.4(Vy, — 50)2
T 0.4(V,, — 50)% + 2 * 127651.86
To solving this quadratic equation, Let x = (V,, — 50)
X 2.4x?
X —50 0.4x2 + 255303.72
0.4x3 + 255303.72x = 2.4x3 — 120x?
2x% — 120x — 255303.72 =0

—b+Vb%2 —4ac 120 + V1202 + 4 * 2 * 255303.72
- 2a - 2 % 2

120 + V1202 + 4 % 2 * 255303.72 120 + 1434.165
x= 252 = 4
V., — 50 = 388.543

X
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Vs, = 438.54 m/s

Thus, the second wave travels at a greater velocity than the first and eventually overtakes it. This
result is a demonstration of the principles formation of normal shock. Compression waves are
able to overtake and reinforce one another. In this example problem, the second wave travels at a
greater velocity because it is both moving into the compressed, higher-temperature gas behind
the first wave and also moving into a gas stream already traveling in the same direction with a
velocity of 50 m/s. A new set of gas properties now can be computed before and after the
second shock.

12.2 Reflected Waves. Incident Shock
Vg Vsi Gas at
rest
When a wave impinging on the end of a tube, two cases
should be studied, a closed tube and a tube open to the REHectad. Wage
atmosphere. The reflected wave in closed end tube is treated as a Vg Vv
. ] ——ps wr Gas at
reflected normal shock while for open end tube is treated as rest
reflected expansion waves.
To complete this study of moving normal shock waves,
consider the result of a wave impinging on the end of a tube. Wave Fixed
Two cases will be studied; a closed tube and a tube open to the  Va+Vwr 1882 Vur  gas at
— —
atmosphere. In both cases it is desired to determine whether the s

reflected wave is a compression shock wave or a series of weak Figiire 43:8: Iricidantand refiscted Wave
expansion waves. For reflected wave in closed tube, (see Figure In closed tube

13.9), the gas next to the fixed end of the tube must be at rest, with the gas behind the incident
shock moving to the right with velocity Vg. For an observer moving with the reflected wave, the
physical indicates that a decrease in velocity and a corresponding increase in static pressure

across the reflected wave, which is physically the situation for

a normal shock. Therefore, a normal shock reflects from a Incident Shock
closed tube as a normal shock. Ghs at rast

For reflected in open tube to atmosphere, the boundary P > Patm Patm
condition imposed on the system is the static pressure at the
end of the tube. Because the flow in front of the moving shock Reflected Shock
IS subsonic, the back pressure and the exit pressure must be Vi

] ) ) -— Gas at rest

the same, see figure 13.10. there will be a decrease in pressure P > Patm Werss

across the reflected wave and a normal shock reflects from an

open end of a tube as a series of expansion waves. Flgure~13.10: Incldent and.reflected wave

inopen tube to atmospher
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Example 13.4 A normal shock wave with pressure ratio of 4.5 Incident Wave
impinges on a plane wall (see Figure 13.11a). Determine the static v V.. Air
pressure ratio for the reflected normal shock wave. The air temperature L... e at
in front of the incident wave is 20°C. @ @ rest

Solution Reflected Wave

% Solution for incident wave: V Vi Air
To determine the velocity Vg of the gas behind the incident wave, —Zy at
utilize a reference system moving with the wave, as shown in Figure @ @ rest
Figure 13.11a

13.11b. Fixed coordinate
From normal shock table p,/p; = 4.5, gives:
M, = 2.0, p,/p, = 2.667 and T, /T, = 1.688 Incident Wave
Vi = My *JyRT; = 2.0 * V1.4 x 287 * 293 = 686.2 m/s < @ @
Vi Vi p2 2667 Vi — V_q Vi
Vii=Vy Vo py ' Figure 13.11b
Moving coordinate
(686.2 —V,) = 686.2 + 2.667
~V,=4289 m/s
T, =Ty =293 %1688 = 494.6 K
1
Reflected Wave
% Solution for reflected wave: @ @ )
i i H : 4289+ er er Air
To find the reflected shock velocity, fix the reflected shock by using | » at
(see Figure 13.11¢) rest
5 Figure 13.11¢c
& (Y + 1)M2 (8.16) Moving coordinate

V, (y— DMZ+2
For this case

V, = 428.9 + V,

Vs =V, =V, —428.9

T, = 494.6 K
2 — V22 _ VZZ _ V22
2= URT,  14+287 «4946 198730.28
24— V2 )
Y, _ _“*19873028 _ 2.4V
Vs 4 0.4VZ + 397460.56
0.4 19573028 T 2
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V, 2.4V
V, — 4289 0.4 VZ + 397460.56
0.4 V3 +397460.56 V, = 2.4 V3 — 1029.36V?2
2 V2 —1029.36 V, — 397460.56 = 0

—b + Vb? — 4ac _1029.36 + v1029.362 + 4 * 2 * 397460.56

X= 2a B 2x2
1029 — 2058.948
= 2 = —257.487 m/s ignored
1029 + 2058.948
= 0 = 771.987 m/s

Ve = 771.987 — 4289 = 343.1 m/s
For the fixed shock, back to fig. 13.10a
V, 4289 +V, 771.987
R A R
From normal shock table, at p;/p, = 2.250, gives
p3/p2 = 3.333 static pressure ratio for reflected normal shock.
P3 _P3 P2

=—x—=23333%x45= 15
Pr D2 D1

That means the in zone 3 after reflection becomes fifteen times the pressure in zone 1 before

incident.

Another type of moving shock is occurred when air is
flowing through a duct under known conditions and a

Valwve

u:iui cnly closed

valve is suddenly closed, as shown in fig. 13.12.. The f

fluid is compressed as it is quickly brought to rest. This

results in a shock wave propagating back through the
\,

T

duct. In this case the problem is not only to determine the

conditions that exist after passage of the shock but also to Figure 13.12
predict the speed of the shock wave. This can also be viewed as the reflection of a shock wave,
similar to what happens at the end of a shock tube. We transfer the fixed coordinate into a
moving coordinate system by riding the shock wave and superimpose the reflected wave velocity
V- on the entire flow field. With this new frame of reference we have the standing normal-shock

problem shown in Figure 13.12.
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Example 13.5 Air of speed of 240 m/s is flowing through a duct where its pressure and
temperature are 2 bar and 300 k respectivilly. Then a valve exists in the duct is suddenly closed.
Find fluid properties nest to the valve after it closed and shock velocity, as show in figure 13.13.

Answer “n".'tfw.{sugidcnly clased
V, =V, — 240 o
¢ = Zhar dbs Fsr
Vi  (y+ DM T, =300 K
Vz B (y - I)M% +2 P, =240 s
v, 2.4V2 /120540 “

p— F' )
V, —240  0.4V2/120540 + 2 igure 13.12a

0.4V3 + 2 x 120540V, = 2.4V3 — 576V7

Walve suddenly closed

2VZ — 576V, — 241080 = 0 . @ @ >
— 2
X= b + vb? — 4ac Vi=240+ Vi ¥y =V,
2a P, = 2 bar
1
576 + V5762 — 4 x 2 * 241080 \J T2 = 300K
v, = >3 = 519.867 m/s

Figure 13.12h
V, = 519.867 — 240 = 279.867 m/s

a; = \JYRT; = V1.4 % 287 * 300 = 347.189 m/s
M; =V;/a, = 519.867 /347.2 = 1.497

From normal shock table at M; = 1.5 gives

M, = 0.7011, p,/p; = 2.458 and T, /T, = 1.320
p, = 2.458 * 2 = 4.916 bar

T, =1.320%300 =396 K

12.3 Shock Tube

The shock tube is a device in which normal shockwaves are generated by the rupture of a
diaphragm separating a high-pressure gas from a gas at low pressure. As such, the shock tube is a
useful research tool for investigating not only shock phenomena, but also the behavior of
materials and objects when subjected to the extreme conditions of pressure and temperature
prevalent in the gas flow behind the wave. Thus, the kinetics of a chemical reaction taking place
at high temperature can be studied, as well as the performance, for example, of a body during

reentry from space back into the earth’s atmosphere.
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Chapter Fourteen/Oblique Shock Waves

14.1 Introduction.

An oblique shock wave, a compression shock wave that is inclined at an angle to the flow,
either straight or curved, can occur in such varied examples as supersonic flow over a thin airfoil

or in supersonic flow through an over-expanded nozzle.

The oblique shock wave is a two-dimension problem. The method
of handling the oblique shock is alike that of handling the normal
shock. Even though inclined to the flow direction, the oblique shock
still represents a sudden, almost discontinuous change in fluid
properties, with the shock process itself being adiabatic. Attention will
be focused on the two-dimensional straight oblique shock wave, a type
that might occur during the presence of a wedge in a supersonic stream
(Figure 14.1a) or during a supersonic compression in a corner (Figure
14.1b). As with the normal shock wave, the equations of continuity,
momentum, and energy will first be derived. An additional variable is
introduced because of the change in flow direction across the wave.
However, momentum is a vector quantity, so two momentum equations
are derivable for this two-dimensional flow.

With the additional variable and equation, the analysis of two-
dimensional shock flow is somewhat more complex than that for
normal shock flow. However, as with the normal shock wave, solutions
to the equations of motion will be presented in a form suitable for the
working of practical engineering problems.

14.2 Equations of Motion for a Straight Oblique Shock Wave

(b) A Concave Corner

Figure14.1 Oblique Shocks

When a uniform supersonic stream is forced to undergo a finite change in direction due to the
presence of a body in the flow, the stream cannot adjust gradually to the presence of the body;
rather, a shock wave or sudden change in flow properties must occur. A simple case is that of
supersonic flow about a two-dimensional wedge with axis aligned parallel to the flow direction.

For small wedge angles, the flow adjusts by means of an oblique shock wave, attached to the
apex of the wedge. Flow after the shock is uniform, parallel to the wedge surface (as shown in
Figure 14.2), with the entire flow having been turned through the wedge half-angle é.
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The equations of continuity, momentum, and
energy will now be written for uniform, supersonic
flow over a fixed wedge. If one selects the control
volume indicated in Figure 14.2. The continuity " Yl
equation for steady flow is

L
.
n = o) [upstream
_fj p(V.A)dA =0 l ﬂfw:ngte}
cs

For the case under steady, it simplifies to

p1Vin A = p2Von A %
P1Vin = P2Van (14.1) Figure 14.2

Where V,,and V,,, are the velocity components Notation and Control Volume for an Oblique Shock
normal to the wave. A is the control volume surface
and it is the same for both sides. The momentum Fin
equation for steady flow is; 8

ZFzﬂVp(V.ﬁ)dAzO j

Momentum is a vector quantity, so momentum
balance equations can be written both in the
direction normal to the wave and in the direction
tangential to the wave. The normal momentum equation yields;

P1A1 — P24z = p2AVin — p1A Vi,
The shock is very thin so as we assume that A, = A;. Thus;
P1— P2 = P2Vin — piVin (14.2)

In the tangential direction there is no change in pressure so;

0= fthp (V.A)dA =0
CcSs

(p1Vin A Vi = (02VanA2) Vs

Cancelling, we obtain;
Vlt = V2t (143)

where V;; & V,; are the velocity components tangential to the wave. The energy equation for
adiabatic, no work steady flow simplifies to;

172

Vi V3
h1+7+gZ1 = h2+7+g22

# = Shock angle

& =Deflection angle

Figure 14.3 Oblique shock with angle definitions.

172
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Expanding this equation and ignoring potation term for gas and remembering that a velocity is a
vector (V =V, + V,), we get;

Vlzn Vlzt V22n V22t
("1+7+7 =\leto oy

Since V;; = V,, then;

(m+22) = (o +2) - (14.40)
2 2

To1 = To2 ... (14.4b)

M, = M;sin6 ...(14.5a)

M;; = M, cos 0 ...(14.5Db)

M,,, = M, sin (68 — 6) .. (14.60a)

My, = M, cos (6 —6) ...(14.6b)

From the geometry of the oblique wave;

It can be seen that egs. (14.1), (14.2).and (14.4) contain only the normal velocity
components, and as such are the same as egs. (9.1), (9.2) and (9.4) for the normal shock wave. In
other words, an oblique shock acts as a normal shock for the component normal to the wave,
while the tangential velocity component remains unchanged. The pressure ratio, temperature
ratio, and so on, across an oblique shock can be determined by first calculating the component of
M,,, normal to the wave and then referring this value to the normal shock tables.

Note that the Mach number after an oblique shock wave can be greater than 1 without
violating the second law of thermodynamics. The normal component of M, however, must still
be less than 1. In most cases, the shock wave angle 6 is not known, but rather incoming Mach
number M; and deflection angle § appear as the independent variables. Therefore, it is more
convenient to express the wave angle 8 and M, in terms of M; and §, From eq. 14.1

P1Vin = p2Van

p2 Vin  Vytan  tan@ s

p1 Van Votan(6 —8)  tan(f — &) ..(14.7)
A cross the normal shock

P _ v+ 1M, o)

p1 (y—1ME +2 .. (10.
tand (v + 1)M2, .

tan( — &) (y — 1)M?, + 2 ..(14.8a
tan @ +1 Mzsin29

- o ...(14.8b)

tan(0 — 6) - (y — 1)M?sin2 6 + 2
Eq. 14.8 relates deflection angle § incoming Mach number M; and shock wave angle 6.
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Now 6 can be plotted versus § for a given value of M;. Also M,
can be plotted versus § for given M;. For M; = 2.0, the results appear
as shown in Figures 14.4a and 14.4b.

Detailed oblique shock charts are provided in charts C1 and C2 for
y = 1.4. But chart C2 is not accurate and it will not recommended.
Several characteristics of the solution to the oblique shock equations
can be seen from these charts. For a given M; and &, either two
solutions are possible or none at all. For supersonic flow in varying area
channels, it is the pressure boundary conditions imposed on the channel
that determines the type of solution.

If a solution exists, there may be
1. A weak oblique shock, with M, either supersonic or slightly less

than 1.
2. A strong oblique shock, with M, subsonic.

Both oblique shocks have different characteristics, see figure 14.5,
such as;

a. For the strong oblique shock:
The wave makes a large angle 6 (close to 90°) with the approach
flow.

It accompanied by a relatively large pressure ratio

b. For the weak oblique shock,

- The wave makes a much less angle 6 with the approach flow.

- It accompanied by a relatively small pressure ratio

c. The supersonic flow is turned through the same angle in both cases.

A strong oblique shock with (6 = 0), gives a normal shock. A weak
oblique shock with (§ = 0) gives an isentropic flow (no shock). Therefore, the
normal wave can be generalized to the oblique shock. The strong oblique
shock occurs when a large back pressure is imposed on a supersonic flow, as

might possibly take place during flow through a duct or intake.

a0

0

13

0.5

------------
-
—

My=210
T-I.‘
See Chart C1

iy B

My=20
yald

See Chart C2

When a wedge or airfoil travels through the atmosphere at supersonic velocities with an
oblique shock attached to the body only a weak shock solution is found to occur, since, with a
uniform pressure after the shock, large pressure differences cannot be exist. This is identical to
determine whether isentropic flow or a normal shock will occur in a supersonic flow for flow
through converging-diverging nozzles, we know that for low enough back pressures, isentropic
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flow occurs in the nozzle; for higher back pressures, a normal shock takes place in the diverging
section of the nozzle.

14.3 Detached shock Wave

Another characteristic of the oblique shock equations is that, for a great enough turning angle
& > Omax, NO solution is possible. Under these conditions it is observed that the shock is no
longer attached to the wedge, but stands detached, in front of the body (see Figure 14.6).

The detached shock is curved, as shown, with the shock strength
decreasing progressively from that of a normal shock at the apex of the
wedge to that of a Mach wave far from the body. Thus, with a detached
shock, the entire range of oblique shock solutions is obtained for the
given Mach number M.

The shape of the wave and the shock-detachment distance are
dependent on the Mach number and the body shape. Flow over the &
body is subsonic in the vicinity of the wedge apex, where the strong
oblique shocks occur, and it is supersonic farther back along the
wedge, where the weak oblique shocks are present.

A detached oblique shock can also occur with supersonic flow in a
concave corner. Again, if the turning angle is too great, a solution Figure 14.6
cannot be found in Charts Cl and C2, so a detached shock forms ahead
of the corner (see Figure 14.7). The characteristics of this shock are
exactly the same as those of the upper half of the detached shock
shown in Figure 14.6. Thus flow after the shock is subsonic near the My
wall and supersonic farther out in the flow and it is treated as a
stationary normal shock near the wall.

M=1

M=1

Figure 14.7
Example 14.1 A uniform supersonic airflow traveling at Mach 2.0

passes over a wedge (Figure 14.4). An oblique shock, making an angle of 40° with the flow
direction, is attached to the wedge under these flow conditions. If the static pressure and
temperature in the uniform flow are, respectively, 20 kPa and —10 °C, determine the static
pressure and temperature behind the wave, the Mach number of the flow passing over the wedge,
and the wedge half-angle.

Solution

5-15ch.14
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From Figure 14.4,

P e = 20 kP
My, = M, sin 40° = 2.0sin40° = 1.286. iy ,-;;":,,-:
M;; = M; cos40° = 2.0cos40° = 1.532 My=20 T 6
Therefore, from normal shock table at M,,, = 1.286 " Ly
T.
M,, = 0.794, 22 =1763, T—Z = 1.182
b1 1 Figure 14.7

P2 = D1 *% = 20 * 1.763 = 35.26 kPa
1

T.
T, =T, * T—2 =263 1.1814 = 310.7 K
1
For the adiabatic shock process, T,; = T,,. From isentropic table at M; = 2.0,
Tl/Tol = 05556 y Then
T, 263

= = 4734 K
T,/T,, _ 0.5556

Tor =Toz =

Now

T,/T,, = 310.7/473.4 = 0.6563

From isentropic table A at T, /T,, = 0.6563; > M, = 1.617
_ Von Myna,, 0.794

sin(@ —96) = 72 = M,a, =117 = 0.491

a,, = a, scaler

6 —6=294

5 =40 — 29.4 = 10.6" end of the solution.

Solving graphically;
From Chart Clat M; = 2.0 & 8 = 40° gives § = 10.6°
From Chart C2at M; = 2.0 & 6 = 10.6° gives M, = 1.62

Solving by the exact equations;
M?sin?9 — 1

tan§ = (cot0)
MZ — (M?sin2 6 — 1)

y+1
2

tand = (cot40)

2.0%sin?40 — 1
yziMf — (2.02sin240 — 1)
0.6527

= (1.19175) (4.8 —0.6527

) = 0.1756

6-15 ch.14
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6 =tan"10.1756 = 10.6°

y—-1
y 1+—Mf M? cos? 6
2 = . y—-1 y-1 .
yMfsin? —— 1+-—M{sin?6
14-1
1+— 22 22 cos2 40
M, = a1t 14-1

22sinZ% 40

1.4 %2%2sin240——— 1+
2 2

o - 1.8 +2'3473—1617
27 (21138 ' 1.3305

Example 14.2 Uniform flow at M = 2.0 passes over a wedge of 10° half-angle., find M,, p,/p1.
T,/T; and p,2/Ppo1, and also the half-angle above which the shock will become detached.

Solution

From Chart Cl at M = 2.0 and = 10° , the weak solution yields 6 = 39.3°

M, = M;sin@ = 2.0sin39.3 = 1.267

M;; = M, cos@ = 2.0cos39.3 = 1.548

From the normal shock tables at M,,, = 1.27

p,/p1 = 1.71505 ; T,/T; =1.17195 ; pys/Por = 0.98422 and M,, = 0.80164
From Chart Cl it can be seen that &,,,,, for M = 2.0 is 23°.

Example 14.3 A supersonic two-dimensional inlet is to be designed to M, "
operate at M = 3.0. Two possibilities will be considered, as shown in - ‘.
Figure 14.8. In one, the compression and slowing down of the flow take
place through one normal shock; in the other, a wedge-shaped diffuser,
the deceleration occurs through two weak oblique shocks, followed by a
normal shock. The wedge turning angles are each 8°. Compare the loss
in stagnation pressure for the two cases shown.

Solution

For the normal shock diffuser, the ratio p,,/p1, can be found from
normal shock table at M; = 3.0: so

Poz2/Po1 = 0.328. {b) Wedge shaped diffuser

For the wedge-shaped diffuser, M, and M, as well as the wave angles, Figure 14.8
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can be found from Charts Cl and C2.Thus

M, = 2.60 and M5 = 2.255.

The wave angles are, respectively, 25.6° and 29.0°.

M, = M;sin6; = 3.0sin 25.6 = 1.3

From normal shock table at M;,, = 1.30, py2/pPo1 = 0.979

M,, = M, sin8, = 2.60sin29.0 = 1.26

From normal shock table at M,,, = 1.26, py3/po2 = 0.986.

From normal shock table at M5 = 2.255, p,4/p,3 = 0.603, so that;
Pos _Pos Pos  Poz

— = 0.603 % 0.986 * 0.979 = 0.582
Po1 Po3 Doz DPo1

Note; Solve the same example without using chart C2.

Therefore, the overall stagnation pressure ratio is 0.582. The advantage of diffusing through
several oblique shocks rather than one normal shock can be seen. The greater the number of
oblique shocks, the less the overall loss in stagnation pressure. Theoretically, if the flow is
allowed to pass through an extremely large number of oblique shocks, each turning the flow
through a very small angle, the inlet flow should approach that of an isentropic compression. The
oblique shock diffuser will be discussed in detail in later.

14.4 Oblique Shock Reflections

When a weak, two-dimensional oblique shock impinges on a plane wall, the presence of a
reflected wave is required to straighten the flow, since there
can be no flow across the wall surface (see Figure 14.11).

Flow after the incident wave is deflected toward the
wall. Hence, a reflected oblique shock wave must be present
to deflect the flow back through the same angle and restore
the flow direction parallel to the wall. The reflected shock is
weaker than the incident shock, since M, < M;.

igure 1.
Example 14.4 For M; = 2.0,and 8; = 40°, determine 6,, M, and M. Refer to Figure 14.11.

Solution

From Chart C1, for M; = 2.0 and 8; = 40°, the deflection angle &§ is equal to 10.6°. This
corresponds to the angle through which the flow is turned after the incident wave and also the
angle through which the flow is turned back after the reflected wave.

8-15ch.14
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From Chart C2, for M; = 2.0 and § = 10.6°, M, is equal to 1.62.
From the same chart, for M, = 1.62 and § = 10.6°, M; is equal to 1.24.
From Chart C1, for M, = 1.6 and § = 10.6°, the shock wave angle 0is 51.2°, which is the angle
between the flow direction in region 2 and the reflected wave. From geometrical consideration,
6, = 51.2° — 10.6° = 40.6°.

If M, is low enough, a simple shock reflection may be impossible. That is, for a given M,, the
required turning angle may be great enough so that no solution exists from Charts C1 and C2.

In a real fluid, the problem of oblique shock reflections is complicated by the presence of a
boundary layer on the wall. the analysis presented here of oblique shock reflections is an
approximate one, which neglects real fluid effects.

14.5 Conical Shock Waves

Supersonic flow about a right circular cone is considerably more complex than that about a
wedge. But it has many similarities to wedge flow. For a cone at zero angle of attack with the
oncoming stream, a conical shock is attached to the apex of the cone for small cone angles. (see
Figure 14.12.)

It is interesting to compare the resultant wedge and cone flows (see Figure 14.13.) For a
wedge, straight parallel flow exists before the oblique shock and after the shock.

For the three-dimensional semi-infinite cone, this is no longer possible. Streamlines after the
conical shock must be curved in order that the three-dimensional continuity equation be satisfied.
For axisymmetric flow about a semi-infinite cone, with no characteristic length along the cone
surface, conditions after the shock are dependent only on the conical coordinate w. That is, along
each line of constant w, the flow pressure, velocity,
and so on, are constant. This indicates that the
pressure on the surface of the cone after the shock is
constant, independent of distance from the cone
apex.

Cofueal-shock front

At each point on the conical wave, the oblique M e — S -
shock equations already presented are valid. Conical
flow behind the wave is isentropic, with the static Cone

pressure increasing to the cone surface pressure. A “onditions atsurfacs of cons
solution for the conical shock thus requires fitting
the isentropic compression behind the shock to the

shock equations already derived. Results are shown
Figure 14.12 Conical shock with angle definitions.
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in Charts C3, C4, and C5, which show the variation of shock wave
angle, surface pressure coefficient, and surface Mach number with

cone semi-vertex angle and Mach number.
Whereas the conical flow equations yield two shock solutions, the
only one observed on an isolated conical body is the weak shock. As

with wedge flow, for large enough cone angles there is no solution;
the shock stands detached from the cone.

If we compare again the wedge and cone solutions, it can be seen
from Charts C3, C4. and C5 that, for a given body half-angle and M,
the shock on the wedge is inclined at a greater angle to the flow
direction than the shock on the cone; this indicates that a stronger ;/
compression takes place across the wedge oblique shock. In other ‘/'/r
words, the wedge presents a greater flow disturbance than the cone.

Again, this results from three-dimensional effects. B
il

From a physical standpoint, the flow is unable to pass around the .
side of the two-dimensional wedge since it extends to infinity in the
third dimension. Flow can pass around the sides of the three-
dimensional cone, however, so the cone presents less overall
disruption to the supersonic flow.

¥y

¥y
7

Figure 14-13  {a) cone, {b) wedge

Example 14.5 Uniform supersonic flow at Mach 2.0 and p = 20 kPa passes over a cone of
semi-vertex angle of 10° aligned parallel to the flow direction. Determine the shock wave angle,
Mach number of the flow along the cone surface, and the surface pressure coefficient.

Solution
From Chart C3, the shock wave angle is 31.2°.
From Chart C4, the Mach number along the cone surface is 1.85.
From Chart C5, the surface pressure ratio is 1.29
pe = 20 x 1.29 = 25.8 kPa
_@e—p) __ @e—p) _ (pc—p1)

0.5p,V#  0.5p,yRT{M?  0.5yp,M?

25.8 - 20

G = 05+14720+22

= 0.104
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14.6 Supersonic oblique Shock Diffuser.

For a turbojet or ramjet traveling at high velocity, it is necessary to provide an inlet, or
diffuser, that will perform the function of slowing down the incoming air with a loss of
stagnation pressure. The use of a converging-diverging passage as an inlet for supersonic flow
was studied in Chapter 4. Because such an internal deceleration device can operate isentropically
only at the design speed, this type of diffuser has been found to be impractical during startup and
when operating in an off-design condition. In fact without provisions for either varying the throat
area or over speeding, the design condition could not be attained.

To eliminate the starting problem involved with the converging- Inletlip
diverging passage, the internal throat must be removed. Thus, a
possible design is the normal-shock diffuser, where the deceleration
takes place through a normal shock followed by subsonic diffusion in a
diverging passage. (See Figure 14.14.) The disadvantage of this setup
is the large loss in stagnation pressure incurred by the normal shock.  gigure 14.14 A Normal-Shock
Only at Mach numbers close to unity would this design be practicable. Diffuser

The advantage of decelerating through several oblique
shocks rather than one normal shock was shown. The Oblique
oblique-shock spike-type diffuser takes advantage of this Shock \ /
condition and hence represents a practical device for M
decelerating a supersonic flow. The operation of a single
oblique-shock inlet at design speed is depicted in Figure  pg
14.15. External deceleration is accomplished through an
oblique shock attached to the spike. Further deceleration

takes place through a normal shock at the engine cowl inlet, Figure 14.15 A Single Oblique-Shock Spike-Type
Inlet at Design Speed

(5]

with subsonic deceleration occurring internally. Even though

a normal shock occurs in this system, the flight Mach number M has
been reduced by the oblique shock, thus reducing the normal-shock
strength and resultant stagnation pressure loss.

Theoretically, the greater the number of oblique shocks, the less ;.
the resultant total loss in stagnation pressure becomes. For example, —
a two-shock inlet is shown in Figure 14.16. Note, however, that
along the surface of the spike, the boundary layer increases in
thickness. The adverse pressure gradient created by the second Figure 14.16 ATWO_Oblique_Sho
shock may be sufficient to cause flow separation, with resultant loss Spike-Type Inlet
of available energy. The greater the number of shocks, then, the siDengnopets
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greater the tendency toward flow separation is.

It is necessary to affect a compromise in
supersonic diffuser design between the increased total- M.
pressure recovery achieved by increasing the number of
oblique shocks through which the flow must be diffused
and the increased tendency toward separation brought
about by the shocks. For this reason, with flight Mach
numbers up to 2.0, a single-shock diffuser is generally
employed, whereas multiple-shock inlets are required for
higher flight Mach numbers.

Several different modes of operation of the spike
diffuser may occur, depending on the downstream engine
conditions such as nozzle opening, turbine speed, and fuel
flow rate. This situation is in contrast to the converging-
diverging inlet, where operation was dependent on the

(a) Critical Mode

Spillover {(subsonic flow)

M.

inlet’s geometry. The spike diffuser’s modes of operation
are termed subcritical, critical, and supercritical,
depending on the location of the normal shock. M.

Critical operation occurs with the normal shock at
the cowl inlet, as shown in Figure 14.17(a), with the
engine operating at design speed. If the flow resistance
downstream of the inlet is increased, with the engine still
at the design flight Mach number, the normal shock moves
ahead of the inlet, with some of the subsonic flow after the
shock able to spill over or bypass the inlet. [See Figure 14.17(b).] For this subcritical condition,
the inlet is not handling the maximum flow rate; furthermore, the pressure recovery is
unfavorable, since at least some of the inlet air passes through a normal shock at the design
Mach number.

If the downstream resistance is reduced below that for critical operation, the normal

(c) Supercritical Mode

Figure 14.17 Modes of Operation of the
Spike Diffuser (continue)

shock reaches an equilibrium position inside the diffuser. For this supercritical condition [see
Figure 8.4(c)], the inlet is still handling maximum mass flow, yet the pressure recovery is less
than that for critical operation, since the normal shock occurs at a higher Mach number in the
diverging passage.

A turbojet engine must be able to operate efficiently both at other-than-design speeds and
at different angles of attack. An engine operating at the critical mode may be pushed over into
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the undesirable subcritical mode by a small change of speed or angle of attack. For this reason,
in actual operation, it is more practical to operate in the supercritical mode. While not providing
quite as good a pressure recovery as critical operation, the supercritical mode still yields
maximum engine-mass flow and makes a safety margin so that a small decrease in engine speed
will not cause a transition to the subcritical mode. Thus, the supercritical mode provides a more
stable engine operation.

Example 14.6. Compute the pressure recovery in one- and two-shock spike inlets. Compare the
loss in total pressure for a one-shock spike diffuser (two dimensional)
with that for two-shock diffuser operating at Mach 2.0. Also repeat
for inlet Mach 4.0. (See Figure 14.18.). Assume that each oblique
shock turns the flow through an angle of § = 10°. Take y = 1.4.

Solution

From the charts C1 & C2 at M; = 2.0 and & = 10°, the weak Figure 14.18 Flow Regions within

Ut ield the Spike Diffuser
solution yields () Two-shock inlet

&
0, = 39.3°. and M, = 1.65. =
3 T
My, = My sin8; = 2.0 sin39.3 = 1.2668 *ﬁv@ﬂ

®,

- For one oblique shock spike diffuser Figure 14.18 Flow Repions within
From normal shock wave table at M,,, = 1.2668 the Spike Diffuser
1.2668 — 1.2600 {a) One-shock inlet

Mzn = 0.80709 + (0.80164 — 0.80709) T

= 0.80344
0, = sin"1(M,,/M,) = sin~1(0.80344/1.65) = 29.14°
1.2668 — 1.2600

Poa/Po1 = 0.98568 + (0.98422 — 0.98568) * 7o —— - = 0.9847

From normal shock wave table at M, = 1.65

Pos _ Poz , Poz — (),9847 * 0.87599 = 0.8626

Po1 Po2 Po1

X For two oblique shock spike diffuser

From the charts C1 & C2 at M, = 1.65 and § = 10°, the weak solution yields
0, = 49.4°. and M; = 1.28.

M,,, = M, sin0, = 1.65 sin49.4 = 1.2524

From normal shock wave table at M,,, = 1.2524
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1.2524 — 1.2500
M5, = 0.81264 + (0.80709 — 0.81264) * 12600 — 1.2500 = 0.8113
05 = sin"*(Ms,,/M;) = sin~1(0.8113/1.28) = 39.33°
Po3/Po2 = 0.98706 + (0.98568 — 0.98706)
1.2668 — 1.2600
" 1.2700 — 1.2600
From normal shock wave table at M; = 1.28 M,
M, = 0.79631 and p,,/pos = 0.98268
Pos _Pos Pos Poz

— = 0.9847 * 0.98679 * 0.98268
Po1 Po3 Doz DPo1

= 0.9867

= 0.9548
) 0.9548 — 0.8626 Figure14.19 Flow Regions within a Spike Diffuser
improvement = 09548 * 100 = 9.66 % Operating in the Supercritical Mode
When M; = 4.0:
PG _ 02372 and  E%=03629
Po1 Po1
) . 0.3629 — 0.2372 100 = 34.6 %
= * = .
improvemen 03629 0

The improvement in total-pressure ratio gained by using a two- shock inlet over a one-shock
inlet is (9.66%) when M; = 2.0 and (34.6%) when M; = 4.0. Thus, at flight Mach numbers of
2.0 and below, the use of an inlet with one oblique shock is satisfactory; at flight Mach numbers
of 4.0, an inlet with two oblique shocks (or more) is necessary.

Example 14.7 A two-dimensional, spike-type inlet is operating in the supercritical mode at a
flight Mach number of 3.0. The local static pressure and temperature are 50 kPa and 260 K,
respectively. The flow cross-sectional area at the cowl inlet A, = 0.1 m?; the cross-sectional
area at the location where the normal shock occurs in the diverging passage A; = Ay =
0.12 m?. (See Figure 14.19.) Calculate the mass-flow rate and total-pressure ratio p,s/Po3-
Neglect friction. The spike half-angle is 10°, and the ratio of specific heats is y = 1.4.

Solution

From the oblique shock wave charts C1 and C2 M; = 3.0 and § = 10°, the weak solution yields
0, =27.4°and M, = 2.5

My, = M;sin6; = 3.0 sin27.4 = 1.3806

From normal shock wave table at M,,, = 1.3806
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M 0.74829 + (0.74396 — 0.748299) 1.3806 — 1.3800 0.748
- . . - . * = .

n 1.3900 — 1.3800

6, = sin"Y(M,,,/M,) = sin~1(0.748/2.5) = 17.41°

1.3806 — 1.3800

Poz/Po1 = 0.96304 + (0.96065 — 0.96304) * 7o —— o = 0.9630

The flow from region 2 to region 3 is assumed to be isentropic. Thus, from isentropic flow table

at M, = 2.5 gives A, /A5 = 2.63672 , then:

A; A; A, 0.2
k

* 2.63672 = 3.178 (A5 = Aj for isentropic flow)

Ay A, A, 01
From isentropic at this value gives

3.178 — 3.15299
M; = 2.69 + (2.70 — 2.69) 318301 — 315299 2.6983
Po3/Po2 = 1 (isentropic flow)
From normal shock table at M5 = 2.6983

2.6983 — 2.690

Pos/Pos = 042714 + (042359 — 0.42714) » 5" = 0.4242

So the total pressure ratio is:
po4 po4 p03 poz
_— — % — k —
pol po3 Poz pol
To calculate mass flow rate

= 0.4242 * 1.0 * 0.9630 = 0.4085

1.4

Dot 14-1_,\te1
Por=py+ 2t =50 (1 L 32) = 50 * 36733 = 1836.636 kN/m?

1

Poz = Po1 * % = 1836.636 * 0.9630 = 1768.68 kN /m?

01

1.4 1.4

14-1 1.4-1
2.52) = 110.207 kN /m?

1 \iai
P2 = poz/<1 + TM22> = 1836.636/(1 +

T —1 -1
01— (1+y—M12) = (1+—2 32) =228

T, 2

To2 y—1 -1

T2 _ (4 —M2)=(1 —2.52)=2.25
T, ( T T3

T, T
T, = 22, T, ==—=%28%260 =323.6 K stagnation temp is constant
T,, T 2.25

, b2
m = pyA;V, = (ﬁ) A;M,\/YRT,
2

, _( 110.2071
Mm=\0287+3236

) * 0.1 % 2.5 V1.4 » 287 * 323.6 = 106.971 kg/s
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Lecture Fifteen / Prandtl Meyer Flow

15.1 Introduction

When a supersonic compression takes place at a concave corner, an oblique shock has been
shown to occur at the corner. When supersonic flow passes over a convex corner, it is evident
that some sort of supersonic expansion must take
place. Previous results indicate that an expansion
shock is impossible. However, a means must be
available for the supersonic flow of Figure (15.1) to
negotiate the corner. Here will present an analysis
of the mechanism of two-dimensional, supersonic

expansion flow, as might occur, for example during Supersonic flow: over Supersonic llow over
. . & concave corner a convex corner
supersonic flow over a convex corner or at the exit .
Figure 15.1

of an under-expanded supersonic nozzle.

15.2 Thermodynamic Considerations

Two-dimensional, supersonic flow is to be turned through a
finite angle at a convex corner. The mechanism of the resultant
flow is of interest. Consider first the possibility of an oblique
adiabatic shock occurring at the corner. Figure 15.2 shows the
velocity vectors normal and tangential to such a wave. For this
two-dimensional flow, uniform conditions prevail upstream and
downstream of the wave. The equations of motion are exactly the
same as those presented for oblique shock compression shock.
Again, with no pressure gradient in the direction tangential to the
wave, the tangential momentum equation yields
Vie = Vot (15.1)

From geometrical considerations, as V,, > V;, it follows that V,,, must be greater than V;,,. The
normal momentum equation, eq. (14.2), yields
p1+ p1Vin = D2 + p2Vin

Combining this with the continuity equation, eq. (14.1), where A = constant;

p1V1n A= pZVZn A
We obtain,
P2 — D1 = P1Vin(Vin — Van) (15.2)

1-9ch.15
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Since V,,, > V,,,, see figure (15.2), it follows that p, < p,, indicating that the resultant flow
must be an expansion.

It has been shown that an oblique shock reduces to a normal shock for the velocity
component normal to the wave, with the tangential component remaining unchanged. The ratios
of pressure, temperature, and density across an oblique shock are functions of M, alone. The
entropy change across an oblique shock can be written, then, in terms of M, the resultant
variation of As with M,,, being exactly the same as that for the normal shock. Hence, an oblique
expansion shock V,, > V;,, just as a normal expansion shock, would involve a decrease in
entropy during an adiabatic process. This violates the second law of thermodynamics and is
impossible since As > 0. Therefore, the expansion shock, with sudden changes in flow
properties, cannot occur at the convex corner. Instead, a more gradual type of supersonic
expansion must take place.

15.3 Gradual Compressions and Expansions

When a supersonic stream undergoes a compression due to a finite,
sudden change of direction at a concave corner, an oblique shock
occurs at the corner. However, if the flow is allowed to change
direction in a more gradual fashion, the compression can approach an
isentropic process. Allowing supersonic flow to pass through several
weak oblique shocks rather than one strong shock has been shown to
reduce the resultant loss in stagnation pressure (or entropy rise) for a
given change in flow direction (see Figure 15.3). In the limit, as the
number of oblique shocks gets larger and larger, with each shock
turning the flow through a smaller and smaller angle, the oblique Figure 15.3
shocks approach the Mach waves. The Mach wave, brought about by
the presence of an infinitesimal disturbance in a supersonic flow, here

corresponds to an oblique shock of vanishing strength, with
infinitesimally small changes of velocity, flow direction, entropy, and
so on, taking place across the wave (see Figure 15.4).

The wave angle is given by Equation u = sin™*(1/M). Note that,

Figure15.4

from the oblique shock charts, Tables C, for an oblique shock of
vanishing strength (§ = 0), u is evaluated from Mach number; for example, at M; = 2.0, 6 =0
and u = 6 = 30°.
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So, by employing a smooth turn, with the resultant oblique
shocks approaching Mach waves, a continuous compression is
achieved in the vicinity of the wall with vanishingly small entropy
rise (see Figure 15.5).

Away from the wall, however, the compression waves
converge (Figure 15.6), coalescing to form a finite oblique shock
wave. The characteristics of this shock are the same as those
already discussed previously for an oblique shock wave of given
M; and turning angle &. In fact, far enough away from the wall,
flow about the smooth turn cannot be distinguished from the flow
about a sharp, concave corner of angle . It is important to note
that here, again, the weak compression waves, each involving
only an infinitesimal entropy rise, are able to reinforce one

another to form a compression shock wave, with the resultant

shock process involving a finite increase of entropy.

a——

Figure 15.5

Shock wave

T TATES

Figure 15.6 Smooth turn

Now consider a supersonic expansion through a series of infinitesimally small convex turns
(see Figure 15.7). Mach waves are generated at each corner, with each wave inclined at an angle
to the flow direction. For this expansion flow, unlike the compressive flow discussed previously,
waves do not coalesce but rather spread out. The divergent waves cannot reinforce one another;

the oblique expansion shock is physically impossible.

Flow between each of the waves in Figure (15.7) is uniform, so the length of the wall
between waves has no effect on the variation of flow properties. Thus the lengths of the wall
segments can be made vanishingly small, without affecting the overall variation of flow
properties across the expansion. By thus reducing the wall segments, the series of convex turns
becomes a sharp corner (see Figure 15.8.) The resultant series of expansion waves, centered at

the corner, is called a Prandtl Meyer expansion fan.

Figure 15.7
Smooth turn. Note the
isentropic expantion

3-9 ch.15
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15.4 Flow Equations for a Prandtl Meyer Expansion Fan

It has been shown that supersonic expansion flow around a convex corner involves a smooth,
gradual change in flow properties. The Prandtl Meyer fan consists of a series of Mach waves,
centered at the convex corner. The initial wave is inclined to the approach flow at an angle
uy = sin~1(1/M,) the final wave is inclined to the downstream flow at an angle u, =
sin~1(1/M,). Flow conditions along each Mach wave are uniform; the variation of pressure,
velocity and so on, through the expansion is only a function of angular position.

The equations for two-dimensional Prandtl Meyer flow will now be presented so that the
variation of flow properties can be determined for a given flow turning angle. A perfect gas with
constant specific heats will be assumed in the following analysis.

Mach Wave

Vi

Figure 156.9. Supersonic Flow through a Mach X
Wave at a Convex Corner.

Consider first a single Mach wave, expanding the supersonic flow through an angle of
magnitude dv. With no pressure gradient in the tangential direction, there is no change of the
tangential velocity component across the wave. Equating the expressions for V, upstream and
downstream of the Mach wave (see figure 15.9);

Vecosu=V+dV)cos(u+ dv)

= (V + dV)(cos u cos dv — sin u sin dv)
Since dv is very small, then
cosdv =1 and sindv = dv, therefor;
Vecosu=(V+dV)(cosu—dvsinpu)
Vcosu=Vcosu+dVcosy—Vdvsinuy —dVdvsinu (15.3)

The last term, containing the product of two differentials, can be dropped in comparison with
the other terms of the equation. Simplifying, we obtain
0=dVcosu—Vdvsinu

4-9 ch.15
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dV_d .
7= vtanu

Since u = sin"1(1/M), i.e. sinu = 1/M, it follows that

1
tanpy = ——— .
VM? -1
@v__1 d 15.4)
AR v (15.

To solve for M as a function of v, velocity IV must be expressed in terms of M. For a perfect
gas with constant specific heats, we can write,

V = M\/[yRT
Taking log and differentiatng, we obtain

1
logV =logM + log/YR +§logT
dv._dM 1dT

7 m + 5T (15.5)
But, for this adiabatic flow, there is no change in stagnation temperature.
-1
T, = constant = T<1 + (yz—)M2>
Taking logs and differentiating, we obtain
dT — 1)MdM
0=, = Dhtak (15.6)
T 4D e
2
Cobining egs. 5 & 6 gives
dv. dM — 1)MdM
v _aM )_ (15.7)
VoM (1420 2)
2
r-1
dv _am| = M2
vV M (1 + HMZ)
L 2
v dM 1 158
V - M (1 +(y_1)M2) ( . )
L 2 |
Substitute eq. 8 into eq.4 gives
dy = dM VM? -1 15.9
U_M (1+@M2) (15.9)
B 2 i

To determine the change of Mach number associated with a finite turning angle, the above eq.
(15.9) can be integrated
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vy = [ — M1
Av = (v, — vy =.f — dM
w M (1+£2m2)

Av = (v; — vy)

M,
+1 -
— | o an- y—(MZ—l)—tan 1 /M7 —1 (15.10)
y—1 Yy +

My
For the purpose of tabulating this result, it is convenient to define a reference state 1, so that
M;
y+1 y—1
Av = - =| [——tan™! |[—(M2—-1)—tan"tyM2 -1
v = (vy — Vyes) y_lan \/y+1( ) — tan
Mref

Let the reference statebe v =0 at M = 1. Now

y+1 y—1
v = /—t —(M2—1)—tan 1 /M2 -1 15.11
Y1 \/y ( )

The symbol v represents the angle through which a stream, initially at M = 1, must be
expanded to reach a supersonic Mach number M > 1. Values of v have been tabulated in
isentropic table, for Mach numbers from 1.0 to 5.0 for y = 1.4. Also presented are values of the
wave angle u, with both v and u expressed in degrees.

To determine the angle through which a flow would
have to be turned to expand from M; to M,with M; not
equal to 1, it is necessary only to subtract the value of
v, at M, from the value of v, at M,, where v; and v,
are found in isentropic table (see Figure 15.10).

The variation of pressure, temperature, and other
thermodynamic properties through the expansion can
be found from the usual thermodynamic relations for isentropic flow, presented in Chapter 3. For
this isentropic process, with no change in stagnation pressure;

Figure 15.10

_ y/(y-1)
p, |1+ yz—lMl2
2= |t — (15.12)
P1 1+—M:2
2
T, 1+ EM%
(15.13)

T1 1+ = M2
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Example 15.1 A uniform supersonic flow at Mach 2.0, with static ‘\lfm angle
pressure of 75 kPa and a temperature of 250 K, expands around a
10° convex corner. Determine the downstream Mach number M,,
pressure p,, temperature T,, and the fan angle. See Figure (15.11).

) Fi 15.11
Solution 'gure

From isentropic table , at M; = 2.0 —»
v, = 26.380° and py; = 30.00°
But v, = v; + 10° = 36.38°
Again from isentropic table at v, = 36.38 —» M, = 2.385 and u, = 24.79°
From isentropic table at M, = 2.385 — p,/p,, = 0.07003, T,/T,, = 0.4678
From Table A at M; = 2.000 — p,/p;, = 0.12780 and T,/T;, = 0.5556.
With no change in stagnation pressure p;; = p,; and constant stagnation temperature
P2 _ &*pﬁ _ 0.07003 — 0.548
P1 P20 P1 0.1278
p2 =75 % 0.548 = 41.10 kPa
T. T, T 0.4678
T_j - EZO i TL: = 05556 0842
T, =250 %0.842 =210 K
fanangle = (uy + v, —v1) —
= 30.0 + 36.38 — 26.38 — 24.79 = 15.21°

ExampLE 15.2 FLow in Example 15.1 is expanded through a second
convex turn of angle 10° (sec Figure 15.12). Determine the __
downstream Mach number M5 and the angle of the second fan.

Solution Figure 15.12
The initial wave of the second fan must he parallel to the final wave
of the first fan. Again, the distance between waves can have no effect on the resultant flow, since
the flow between the waves is uniform. Therefore, the variation of properties is the same whether
the flow is expanded through two 10° turns or one 20° turn.
vz = v, + 10° = 36.38° + 10° = 46.38°
From isentropic table at v; = 46.38 - M; = 2.831 — pu; = 20.68°
fan angleyng = vz — vy + iy — U3

= 46.38 — 36.38 + 24.79 — 20.68 = 14.11°
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EXAMPLE 15.3 An under-expanded, two-dimensional, supersonic nozzle o
2
exhausts into a region where p, = 100 kPa (Figure 15.13). Flow at the —_\/\

..,.,’
nozzle exit plane is uniform, with p; = 200 kPa and M; = 2.0. —
Determine the flow direction and Mach number after the initial ‘—/w'-‘

; A
expansion. 2
Figure 15.13
Solution

From isentropic table at M; = 2.0 - p;/p;, = 0.1278
Since p;, = p,, for an isentropic expansion, then

0
P2 P2 P12 01278 = 0.0639
P2t P1 Pio 200

From isentropic table at p,/p,, = 0.0639 — M, = 2.444
From isentropic table, at M; = 2.000 - v; = 36.830°

M, = 2.444 - v, =37.803°

So the flow is turned through

v, — vy = 37.803° — 26.830° = 11.42°

15.5 Prandtl Meyer Row in a Smooth Compression

It was shown in Section 15.3 that, at a smooth compressive turn in supersonic flow, Mach
waves emanate from the wall, coalescing farther out in the stream to form an oblique shock
wave. In the region from the wall out to the point of coalescence of the waves (see Figure 15.6),
the flow is isentropic and possesses the same characteristics as Prandtl Meyer flow. Therefore,
the equations derived for Prandtl Meyer flow can be applied to the isentropic flow region at a
concave corner, even though a compression takes place at the corner. Naturally, the turning
angle, Av will here be negative, corresponding toa decrease inMach number. The extent of the
isentropic flow region at a concave corner depends on the curvature of the wall. For a sharp turn,
the region that can be treated as Prandtl Meyer flow is negligible; for a gradual turn, with a large
radius of curvature, a much greater region has the characteristics of Prandtl Meyer now.

15.6 Maximum Turning Angle for Prandtl Meyer Flow
From Eq. (15.11), it can be seen that, as M — oo, or as
the static pressure p, — 0 (see Figure 15.14), the turning
angle approaches a finite value of 130.4°. This result has
significance, for example, in a determination of the shape of
the exhaust plume of an under-expanded nozzle discharging

Figure 15.14 Maximum Turning Angle for a
Supersonic Flow Exiting a Nozzle into a Vacuum
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into the vacuum of Space. To prevent the impingement of rocket exhaust gases on a part of a
Spacecraft, the designer must have knowledge of the shape of the rocket-nozzle exhaust plume;
modification of a spacecraft geometrical design may be (required to prevent possible damage
from the hot exhaust gases. Furthermore, the axial thrust of a rocket depends on the direction of
the exhaust velocity vectors.

The actual magnitude of the maximum turning angle presented here has only academic
interest, in that effects such as liquefaction of air gases and other departures from perfect gas
flow would occur long before the ultimate pressure could be attained. However, the result does
indicate the presence of a maximum turning angle for a supersonic expansion.

15.7 Reflections

When a Prandtl Meyer expansion flow
impinges on a plane wall, as shown in Figure
(15.15), sufficient waves must be generated to
maintain the wall boundary condition; that is, at
the wall surface, the flow must be parallel to the ‘
wall. Each Mach wave of the initial Prandtl Figure 15.15 Reflection of a Prandtl-Meyer from
Meyer fan, then, must reflect as an expansion a Plane Wall Expansion Fan
Mach wave. The resultant wave interactions
present complexities that render an exact analysis
of the flow extremely difficult; however, the
general nature of the flow can be recognized. An
application is the expansion that takes place at
the exit of an under-expanded, two-dimensional
nozzle. Since, from symmetry, there can be no
flow across the center streamline; this streamline Figure 15.16 Supersonic Flow from an Underexpanded
can be replaced by a plane wall. The resultant Hoe
flow situation is shown in Figure (15.16)

Pb < Pe
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Chapter Sixteen / Plug, Underexpanded and Overexpanded Supersonic
Nozzles

16.1 Exit Flow for Underexpanded and Overexpanded Supersonic Nozzles

The variation in flow patterns inside the nozzle obtained by changing the back
pressure, with a constant reservoir pressure, was discussed early. It was shown that,
over a certain range of back pressures, the flow was unable to adjust to the prescribed
back pressure inside the nozzle, but rather adjusted externally in the form of
compression waves or expansion waves. We can now discuss in detail the wave pattern
occurring at the exit of an underexpanded or overexpanded nozzle.

Consider first, flow at the exit plane of an underexpanded, two-dimensional
nozzle (see Figure 16.1). Since the expansion inside the nozzle was insufficient to reach
the back pressure, expansion fans form at the nozzle exit plane. As is shown in Figure
(16.1), flow at the exit plane
is assumed to be uniform and
parallel, with p; >p,. For
this case, from symmetry,
there can be no flow across

b Sy e
o -:
" ,::Ei- "#i
g =—— let centerline
o S

the centerline of the jet. Thus “Jet boundary
the  boundary conditions Underexpanded supsrsonic nozzle
along the centerline are the Figure 16.1

same as those at a plane wall in nonviscous flow, and the normal velocity component
must be equal to zero. The pressure is reduced to the prescribed value of back pressure
in region 2 by the expansion fans. However, the flow in region 2 is turned away from
the exhaust-jet centerline. To maintain the zero normal-velocity components along the
centerline, the flow must be turned back toward the horizontal. Thus the intersection of
the expansion fans centered at the nozzle exit yields another set of expansion waxes,
just as did the reflection of the expansion fan from a plane wall (reflected Pradtl-Myer
waves. The second expansion, however, produces a pressure in region 3 less than the
back pressure, so the expansion waves reflect from the external air as oblique shocks.
These compression waves produce a static pressure in region 4 equal to the back
pressure, but again turn the flow away from the centerline. The intersection of the
oblique shocks from either side of the jet then requires another set of oblique shocks to
turn the flow back toward the horizontal, with the shocks reflecting from the external
air as expansion waves.

1-7 ch.16
Prepared by A.A. Hussaini 2013-2014



UuoT

Mechanical Department / Aeronautical Branch

Gas Dynamics
Chapter Sixteen / Plug, Underexpanded and Overexpanded Supersonic Nozzles

The process thus goes through a complete cycle and continues to repeat itself. The
flow pattern discussed appears as a series of diamonds, often visible at the exit of high-
speed rocket nozzles. Theoretically, the wave pattern should extend to infinity.
Actually, however, mixing of the jet with ambient air along the jet boundaries
eventually causes the wave pattern to die out.

Flow at the exit of an overexpanded nozzle is shown in Figure (16.2). Since the exit-
plane pressure is less than the back pressure, oblique shock waves form at the nozzle
exit. The intersection of these shocks at the centerline yields a second set of oblique
shocks, which in turn reflect from the
ambient air as expansion waxes. Thus,
except for being out of phase with the
wave pattern from the underexpanded
nozzle, the jet flow of the overexpanded
nozzle exhibits the same characteristics as

* Jet boundary

Overexpanded supersonic nozzle
the underexpanded nozzle. Figure 16.2

Example 16.1 A supersonic nozzle is designed to operate at Mach 2.0. Under a
certain operating condition, however, an oblique shock making a 45° angle with the
flow direction is observed at the nozzle exit plane, as in figure (16.3). What percent of
increase in stagnation pressure would be necessary to eliminate this shock and maintain
supersonic flow at the nozzle exit?

Solution z T
—_—
From isentropic table, for M = 2.0 gives p;/p,1 =0.128. Py
The component of M; normal to the oblique wave is M; sin 45° =
Figure 16.3
1.41.
From normal shock table, p,/p,; = 2.15. Therefore, with the oblique shock, the ratio
Pr _Po Pr_ 515x0125 = 0.276

Po1 P1 Po1
With the shock, p,, is equal to

1
=——7 p, =(1/0.276) = 3.62
Po1 5/ Dot Pp Pp Pp

For supersonic exit flow with no shocks (perfectly expanded case),
p1o = (1/0.128) p, = 7.81p,,

(7.81 — 3.62)/3.62 = 116 percent

Thus, an increase of 16% in stagnation pressure is required.
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16.2 Plug Nozzle g
The thrust developed by a nozzle is dependent on design P=Py, upper limit

the nozzle exhaust velocity and the pressure at the /
nozzle exit plane. In a jet propulsion device, when an
exit-plane pressure greater than ambient gives a et s i
positive contribution to the thrust of the device, i
|

|

|

|

overexpanded

whereas when an exit-plane pressure less than ambient
gives a negative thrust component.
F=mV, + (pe — p)Ae (16.01) Back Pressure

When a supersonic nozzle is operating in the Figure 16.4: lllusterative diagram for thrust vs

. . . Py for c-d nozzle

under- or overexpanded regimes, with flow in the
nozzle independent of back pressure, the exit velocity is unaffected by back pressure (V, = c).
Thus, over this range of back pressures, Eq. (16.01) shows that the greater thrusts are developed
in the underexpanded case (p. > p,), and the lesser in the overexpanded case (p. < p,). A plot
of thrust versus back pressure for a converging-diverging nozzle is shown in Figure 16.4. For
back pressures greater than the upper limit
indicated, a normal shock starts to appear in the
diverging portion of the nozzle, the exit velocity
becoming subsonic, and this analysis no longer
applies.

The plug nozzle ( figure 16.5) is a device
that is intended to allow the flow to be directed

or controlled by the ambient pressure rather
than by the nozzle walls. In this nozzle, the (a) Annular Plug Nozzle (b) Truncated Annular Plug Nozzle

o -

supersonic flow is not confined within solid
walls, but is exposed to the ambient pressure.
Plug nozzle operation at the design pressure
ratio is depicted in Figure 16.6. Figure 16.6a
shows the expansion wave pattern and part b
shows the streamlines at the nozzle exit. The
annular flow first expands internally up to
M =1 at the throat. The remainder of the
expansion to the back pressure occurs with the
flow exposed to ambient pressure. Since the
throat pressure is considerably higher than the

Figure 16.5 Plug Nozzles

{a) Wave pattern for design {b) Streamlines for design

Figure 16.6 Wave Fattern and Streamlines within a Plug Moxzzle at
Design Mode
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back pressure, a Prandtl Meyer expansion fan is attached to the throat cowling as shown. The
plug is designed so that, at the design pressure ratio, the final expansion wave intersects the plug
apex. Thus, under this operating condition, the pressure at the plug wall decreases continuously
from throat pressure to ambient pressure, just as with the converging-diverging perfectly
expanded nozzle.

To produce a maximum axial thrust, it is necessary for the exit flow to have an axial
direction. Therefore, the flow at the throat cowling must be directed toward the axis so that the
turning produced by the expansion fan will yield axial flow at the plug apex.

For the underexpanded case, the
operation of the plug nozzle (Figure 16.7)
is similar to that of the converging-
diverging nozzle. The pressure along the
plug is the same as for the design case,
just as the static pressure along the
converging-diverging nozzle wall is the
same as for the perfectly expanded case. 3
With a lower back pressure than that for () Underexpanded (b) Overexpanded
the design case depicted in Figure 16.6, Figure 16.7 Wave Patterns of a Plug Nozzle Operating in Under- and
the flow continues to expand after the Svecexpended Modes
apex pressure, yielding a non-axial jet velocity component, just as with the underexpanded
supersonic converging-diverging nozzle.

The major improvement to be derived from the plug nozzle occurs with the overexpanded
mode of operation. This is significant, in that a rocket nozzle, for example, accelerating from sea
level up to design speed and altitude, must pass through the overexpanded regime. With the

ambient pressure greater than the design back pressure, the flow expands along the plug only up
to the design back pressure. The final wave of the expansion fan centered at the cowling
intersects the plug at a point upstream of the apex. As shown in Figure 16.7, the outer boundaries
of the exhaust jet are directed inward. Further weak compression and expansion waves occur
downstream of the point of impingement of the final wave from the fan; the strength and location
of these waves are dependent on the plug contour. Thus the expansion along the plug is
controlled by the back pressure, whereas the converging-diverging nozzle expansion is
controlled by nozzle geometry.

A plot of pressure along the plug surface versus X is given in Figure 16.8. The pressure
along the plug surface does not decrease below ambient, so there is not a negative thrust term
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due to pressure difference. As a result, the plug Pf‘-"i“’*
nozzle provides improved thrust over the
converging-diverging nozzle for the overexpanded
case (see Figure 16.9).

It would appear desirable to design the plug
so as to provide for isentropic expansion flow along
its curved pointed surface. However, this design
leads to a rather long plug and heavy design. it has

Overexpanded

De.sign_and
Underexpanded

been shown that replacement of the curved shape I >
with a simple cone results in only a small loss of Figure 16.8 Pressure Distribution within
thrust for a cone half angles up to 30°. Thus the plug a Plug Nozzle

nozzle has the further advantage over the Thn:t

converging-diverging nozzle of being short and Design

Plug MNozzle

compact. One major problem with the plug nozzle,
however, is that of designing a plug to withstand the
high temperatures that exist, for example, in the

C-D Noele

exhaust gases of a rocket engine. This requires ~~
cooling of the plug or allowance for its ablation is
necessary.

Studies have shown that one half of the plug
length provides almost no thrust and only added
weight. a truncated plug have been considered. The

. . Figure 16.9 Comparison of Thrust and Back Pressure
flow pattern of these shortened plugs is complicated. for Plug and C-D Nozzles

—

Back Pressura

Example 15.2

A rocket nozzle is designed to operate with a ratio of chamber pressure to ambient pressure
(po/po) Of 50. Compare the performance of a plug nozzle with that of a converging-diverging
nozzle for two cases where the nozzle is operating overexpanded; (p,/p, = 40) and (p,/pp =
20). Make the Comparison on the basis of thrust coefficient; CT = thrust/(p, * Athroat)-
Assume y = 1.4 and in both cases neglect the effect of non-axial exit velocity components.

Solution

X For the design case,

From (pp/p, = 1/50 = 0.02) and since the flow in the design case the flow is isentropic, then:
M, = 3.208 and (T,/T,) = 0.3270 , A,/A,, = 5.1584
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F = CrAenr Pc
Cp = My Ve _ (PernAenVen)Ve
poAth poAth
¢y = ( Pen )VthVe _ (pil) ( Po )(&) (Menaen) (M. ac)
RTth Po Do RTo Tth Do
Cp = ( Pth )(Mthath)(Meae)
RTth Po

For design condition the nozzle is choked and Mach number at throat is unity, then
Pen/Po = 0.5283 and T, /T, = 0.8333
0.5283 p, \+/1.4 =R *0.8333T, * 3.2077,/1.4 * R = 0.32707T,

(R * O.8333To) Po
Cr = 1.4862
<> For the converging-diverging nozzle operating off design:
_Male  Ae(Pe —pa) _ Menle ﬁ(& B p_a)

poAth poAth poAth Ath Po Do
For p,/pq = 40

F=

Cr

1 1
Cr = 14862 + 5.1584 (% — E) = 1.4604

For p,/p. = 20

1 1
Cr = 1.4862 + 5.1584 (% — %> = 1.3314

X For the plug nozzle operating off design:
Flow in the plug nozzle does not continue to expand below ambient pressure, so there is no
pressure term in the expression for thrust.
Now from isentropic table at p./p, = 40 — gives
0.0250 — 0.0256

M, = 3.04 + (3.06 — 3.04 = 3.0486

€ +( )0.0249 —0.0256

Te _ 0.3511 + (0.3481 — 0.3511) 0.0250 — 0.0256 _ 0.3485
T, ' ' 0.0249 — 0.0256

0.5283 p, \+/1.4 * R * 0.8333T, * 3.0486,/1.4 x R * 0.3485T,
Fe (R x 0.8333T0) Dy
Cr = 0.63399 x 1.08010 * 2.12944 = 1.4582
Now from isentropic table at p,/p, = 20 — gives
0.0500 — 0.0501

M, = 2.60 + (2.62 — 2.60) 0.0486 — 00501 2.6013
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e _ 04252+ (0.4214 — 0.4252) 0.0500 = 0.0501 _ ) /549
T, 0.0486 — 0.0501
0.5283p, \+/1.4* R * 0.8333T, * 2.6013,/1.4 * R * 0..42497T,
i (R x O.8333T0) Do

Cr = 0.63399 % 1.08010 = 2.0063 = 1.3739
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Chapter Seventeen / Supersonic Airfoils

17.1. Supersonic lift and drag coefficients

The shape of a wing section to be used in low-speed, incompressible flow is the teardrop, or
streamlined, profile. This shape is predicated on incompressible aerodynamics, where, for
example, drag is composed of skin friction on the airfoil surface and pressure or profile drag, due
to the effects of flow separation at the rear of the airfoil.

In supersonic flow, however, the design must be completely modified,
owing to the occurrence of shocks. For example, if a streamlined profile with
a rounded blunt nose were used in supersonic flow, either an attached shock o
of relatively high strength would occur at the nose or, if 8 were great enough, b
a detached shock (Figure 17.1) would take occur in front of the airfoil. In
both cases, the high pressures after the shockwave produce excessive drag
forces on the airfoil. To minimize the drag due to the presence of shocks, the

supersonic airfoil must have a pointed nose and be as thin as possible. The Figure 17.1
Detached Shock in Front of a
Streamlined Airfoil

ideal case is a flat-plate airfoil possessing zero thickness.
Consider a two-dimensional flat

plate at an angle of attack (AoA) to

the approach flow as shown in Figure

17.2. (It should be noted that the flat

plate is an idealization; structurally, M‘L,

such an airfoil is not exist). Flow over

the upper surface is turned through an

expansion fan centered at the nose;

flow over the lower surface is

pressure

compressed through an oblique shock
attached to the nose. The difference in Prower
pressure between the upper and lower
surfaces causes a net upward force,

pupp:t
directed normal to the flow direction,

the lift, on the airfoil. A force
opposing the motion of the airfoil, the distance
drag, on the airfoil, accompanies this  Figure17.2 Supersonic Flow Past a Flat Plate at an Angle of Attack
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lift. The latter force is called wave drag, since it exists only because of the supersonic wave
pattern involved with this flow.

For the lift and drag for supersonic flow past a flat-plate airfoil operating at an angle of attack
a to the flow direction are given by

L = —(Pupper * AT€aupper surface) €05 @ + (Prower * AT€Qiower surface) COS @
L = —(pupper * ) cos & + (Prower * €) cOS

= c(Prower — pupper) cosa (17.1)
D = —(pupper * c) sina + (Prower * €) sina

= c(Prower — Pupper) SIn@ (17.2)

17.2. Existence of an Oblique Shock and an Expansion Fan.

When a thin body, for example a flat
plate of zero thickness, is placed at an angle
of attack within a supersonic stream, both A
oblique shocks and expansion fans will ap- -, it
pear at various locations on the body, (See ----------- - "
Figure 17.3.). Oblique shocks will appear at
locations where the flow must be turned
because the plate forms a concave corner
with the stream (on the bottom of the plate at
the leading edge and on the top of the plate at Figure17.3 Supersonic Flow past a Flat Plate at an Angle of Attack
the trailing edge). to the Flow

Expansion fans will appear at locations where the flow must be turned because the plate
forms a convex corner with the stream (on the top of the plate at the leading edge and the bottom
of the plate at the trailing edge). Here, we are interested only in the flow at the trailing edge of
the plate. At this location, there is a confluence of an oblique shock and an expansion fan, as
shown in Figure 17.3.

Moreover, because the streams that pass over the top and bottom surfaces of the plate will
not have the same value of entropy as after they have passed through the shock and expansions
on each side of the plate, a contact discontinuity, originating at the trailing edge, will separate
the two streams. The flow direction of the contact discontinuity is determined by requiring that

Contact
discontinuity

—'-/_'

the flow on either side of the discontinuity have the same flow angle and that the pressure across
the discontinuity remain constant. And the following is valid (see figure 17.4):
a; = a, = AoA

az = Ay

2-8 ch.17
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a3:a2+v3_171

Ps _Ps M,

Po Poo —— .
MyxM, TSt e
At rear of trailing edge there are many unknowns A SR i__.
(as, v, ps and M ) and the solution procedure is =as ____z____:”_f_f_____, "

iterative and it is left for the interest student.

For a supersonic airfoil, a thin airfoil with a
pointed nose is required. The curved, symmetrical  Figure 17.4
airfoil represents one possibility. For small angles ;'}:’a:'sl";’tgii’:‘;‘:;; :’S‘J:Ii'f‘l’;’;ff
of attack, oblique shocks are attached to the nose,
with the stronger shock occurring on the lower surface, since
the flow turning angle must be greater on this surface. (See
Figure 17.5.) Due to the continuous curvature of the airfoil,

Pupper

flow over the airfoil continually changes direction, and a _\

gradual expansion occurs over the upper and lower surfaces. P= =i
Expansion waves are produced as shown in Figure 17.5. If T

the angle of attack becomes too great, or if the nose half- afagir;sion
angle A is too large, the oblique shocks may detach from the

nose, yielding excessive drag. b -

Another airfoil shape for supersonic flow is the diamond
profile, shown in Figure 17.6. Flow over the upper surface is
first expanded through a fan centered at A and then is turned
through another expansion fan at B. If the angle of attack is
small enough, or if the airfoil is thick enough, flow over the
upper surface may first be compressed through an oblique
shock attached at A. (See Figure 17.7.) Flow over the lower o
surface is turned through an oblique shock at A and then
through an expansion fan at C. As shown by the pressure  poure 175 d;:;:;:sonic el
distribution, higher pressures over the lower surfaces yield a Symmetrical Airfoil
lift force; higher pressures at the front surfaces caused a drag force.

Plower

3-8 ch.17
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Pupper

D=

= e

distance

Diower

A

Do

distance

Figure 25.6 Wave Pattern on a Supersonic Airfoil of Diamond Profile at an
Angle of Attack

Example 17.1. Compute of the lift and drag coefficients of a flat-plate airfoil at an angle of
attack in a supersonic stream. The flat-plate airfoil is of chord length ¢ = 1 m in supersonic flow
through airat M = 2.5 and a = 10°.

Solution

From figure 17.2

For lower surface: find the static pressure on the lower surface behind the oblique shock.
From oblique shock tables at M., = 2.5 and § = 10°gives

The shock angle 8 = 31.85° and M;,,err = 2.1

Mgy = My, sin@ = 2.5sin 31.85 = 1.3192

From normal shock table at M,,, = 1.3192 gives

Plower 1.3192 — 1.31

e = 1.83545 + (1.86613 — 1.83545) 13200 — 131 - 1.8637

For upper surface: find the static pressure on the upper surface behind the Prandtl-Meyer fan.
From Prandtl-Meyer table at M, = 2.5 gives v,, = 39.1236°

And the final shock wave angle is

Vypper = Voo + A0A = 39.1236 + 10 = 49.1236°

From Prandtl-Meyer table at v, = 49.1236° gives

4-8 ch.17
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49.1236 — 48.78333

Mupper = 2.96 + (297 = 2.96) oo s— o = 2.9687

The flow through the expansion fan is isentropic; that is stagnation pressure is constant, so

Do,co = Poupper » and from isentropic flow table at M., = 2.9687

pupper 2.9687 — 2.96

— =0.02891 0.02848 — 0.02891 = 0.028536
Do * ) 2.9700 — 2.96

And from isentropic flow table at M, = 2.5 gives p.,/p, = 0.05853

Then

Pupper _ Pupper  Po _ 0.028536 _ 0.48755

Poo Po  Pw  0.05853
C, = L _ L _ C(plower - pupper) cosa
LT 0.5p5,Vi2S,  0.5ypoM2c 0.5ypM2c
_ (1.8637 — 0.48755) cos 10 _ 1.3552
- 0.5 % 1.4 % 2.52 4375
C. = D _ (plower - pupper) sina
47 0.5p.,Vi2S,, 0.5ypo M2,
= (0.3098 tan 10 = 0.0546

= 0.3098

=(;tana

Example 17.2. For the two-dimensional
symmetrical airfoil with a diamond profile i’

A= 5°, shown in Figure 17.7, compute the ,, -, =
lift and drag coefficients in supersonic flow — ‘ ----------
through air M, = 3.0, with an angle of
attack (AoA4) = 10°.

Solution

On the upper surface, supersonic flow is first
expanded through a Prandtl-Meyer fan. The
Prandtl-Meyer function for the free stream
conditions is obtained as

From Prandtl Meyer tablesat M., = 3.0, v, = 49.7573°
The Prandtl-Meyer function in region 2 is therefore

Vy = Vg + A= 49.7573 + 5.0 = 54.7573°

And the value of the Prandtl Meyer function in region 4 is
vy = Uy, + 20=54.7573 + 10.0 = 64.7573°

Figure 17.7  Wave Pattern on a Supersonic Airfoil of
Diamond Profile at Zero Angle of Attack
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Using the Prandtl-Meyer tables, we determine the respective Mach numbers for these functions
to be
54.7573 — 54.7035

54.8770 — 54.7035

M, = 3.92 + (3.93 — 3.92) 647573 — 64.7125 _ , 5,23
L ' 7% 64.8483 — 64.7125

The static-to-total-pressure ratios at these two Mach numbers, as well as the freestream ratio, can
be readily determined,

M, = 3.27 + (3.28 — 3.27) 3.2731

_ _1 y/(y-1) 0.4 1.4/0.4

Poo (14X 2mz) = (14302)  =367327
Poo 2 2

—1 /oD 0.4 14/04
Poz _ (1 + —MZZ) = (1 + —3.27312) = 55.0211
D2 2 2

—1 /oD 0.4 14/04
Pos _ (1 + —MZ) = (1 + —3.92332) = 137.0047
D4 2 2

And since the flow between the freestream and regions 2 and 4 is isentropic
Pooo = Po2 = Pos

Then

P2 P2 Dow 367327
2 _ 2 _

Do Doy Dew  55.0211

Ps P4+ DPo  36.7327
—_— = — % =
Poo Posa Pe  137.0047

Flow on the lower surface is first compressed through an oblique shock, and from oblique shock
chartsat M, = 3.0 and § = (A+ AoA) =5+ 10 = 15, give

0 = 4 and M, = 2.255

M, = My sin@ = 3.0sin32.24 = 1.6004

From normal shock tables at M,,., = 1.6004 gives

0.6676

= 0.2681

Dot 1.6004 — 1.6000
~ = 0.89520 + (0.89145 — 0.89520) 16100 — 1.6000 = 0.8951
P15 8200 + (2.85745 — 2.8200) — oot — 10090 _ ) o015
DPoo 1.6100 — 1.6000
Now from Prandtl Meyer tables at M; = 2.255 gives

2.255 — 2.250
v; = 33.01841 + (33.27301 — 33.01841) 2260 — 2.250 = 33.1457°
And

-1 1.4/0.4

P (14 L) (1 Bazs) T 1resa0
D1 2 2
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vy = v; + 2A0=33.1457 + 2 * 5 = 43.1457°
And from Prandtl Meyer tables at v; = 43.1457°
43.1457 — 42.96819

M, = 2.67 + (2.68 — 2.67 = 2.6781
3 +( )43.18678 —42.96819
-1 y/(y-1) 0.4 1.4/0.4
’;ﬁ = (1 + TM%) = (1 + 72.67812) =22.5112
3

As p,3 = p,, Tor isentropic flow throw Prandtl-Meyer fan, then
b3 _P3s Po1 P1

1
* = ————*x 11.654 * 2.8215 = 1.4607
Po Doz P1 P 225112

The lift force is calculated, ( we have 4 equal quarters for the diamond airfoil), as
The straight segment line length for each quarter,?, is
c/2

c
f_cosA_ 2cos5 0.502 ¢

The depth of the airfoil is unity and the surface area is 0.502 c. Now
L =+(p; *0.502 ¢) cos(a + A) + (p3 * 0.502 ¢) cos(a — A)
—(p, * 0.502 ¢) cos(a — A) — (p, * 0.502 ¢) cos(a + A)
L =+(p; *0.502 ¢) cos 15° + (p5 * 0.502 ¢) cos 5°
—(p, * 0.502 ¢) cos 5° — (p, * 0.502 ¢) cos 15°
L =+42.8215p, * 0.502 ¢ * 0.9659 + 1.4607p,, * 0.502 ¢ * 0.9962
—0.6676p * 0.502 ¢ * 0.9962 — 0.2681p,, * 0.502 ¢ * 0.9659
L =+1.3681py,c + 0.7305p,c — 0.3339p,c — 0.13poC
L =+1.6347psC

= — % —

L L 1.6347poC
G= 0.5p,,V2S,, - 0.5ypM2c - 0.5ypM2c
1.6347
=05+14x-307  029%

D = +(p, * 0.502 ¢) sin 15° + (p3 * 0.502 ¢) sin 5°
—(p, * 0.502 ¢) sin 5% — (p, * 0.502 ¢) sin 15°
D = +2.8215p,, * 0.502 ¢ * 0.2588 + 1.4607p,, * 0.502 ¢ * 0.0872
—0.6676p * 0.502 ¢ * 0.0872 — 0.2681p,, * 0.502 ¢ * 0.2588
D = +0.3666p.c + 0.0639p,c — 0.0292p,,c — 0.0348p,C
D = +0.3665pc

D (plower - pupper) sina  0.3665pycC
Ca = = = = (tana
0.50,,V2S,, 0.5yp M2, 0.5yp M2,
__ 03665 o
© 0.5%1.4%3.02
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The computation of the angle of the slip line, and therefore the angle of the flow downstream of
the airfoil at regions 5 and 6 is left for the interested student.

constant-pressure,
constant-flow-direction
regions

Figure 17.8 Supersonic Flow Past an Airfoil with a Diamond Profile
illustrative drawing for example 17.2.
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Chapter Eighteen/ Fanno flow-Part 1

18.1. Introduction

We have mentioned that area changes, friction, and heat transfer are the most important factors
affecting the properties in a flow system. Up to this Chapter we have considered only one of these
factors, that of variations in area. We now wish to take a look at the subject of friction losses. To study
only the effects of friction, we analyze flow in a constant-area duct without heat transfer. We consider
first the flow of an arbitrary fluid and discover that its behavior follows a definite pattern which is
dependent on whether the flow is in the subsonic or supersonic regime.

Working equations are developed for the case of a perfect gas, and the introduction of a reference
point allows a table to be constructed. As before, the table permits rapid solutions to many problems of
this type, which are called Fanno flow.

18.2. Working Relations for Fanno Flow

Consider one-dimensional steady flow of perfect gas with constant specific heats through constant
area duct. In case of adiabatic, no work exchange, the flow is Fanno flow where friction effect is
considered. The basic equations of continuity, energy, and momentum under the following
assumptions, are derived:
Adiabatic dSeyy = 0,6q = 0
Friction exist dSint # 0
No shaft work dwy, = 0
Neglect potential dz = 0
Constant area dA =0
Constant specific heat ¢, = const

The stagnation temperature will be proved to be constant along the duct while the stagnation
pressure will suffer from losses due to friction. The entropy is expected to increase.

e State
p = pRT
d dp dT
dp _dp  dT

=5t T (18.1)

e Continuity

m = pAV = const.

pV = G = const (18.2)
The flow area is constant. G is a constant, which is referred to as the mass velocity.
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e Energy
We start with s.f.e.e.
h01+q = h02+Ws

For adiabatic and no work, this becomes

ho1 = ho (18.3)
If we neglect the potential term, this means that
2
h, = h+7= const
VE
cplo = cpTh + >
T,=T, + Vi T, + Vi
= 1 _— 2  —
© 2¢, 2¢,
V =Ma = M,/yRT
RT,M? RT,M?
) _I_Y 1My 4 YRiM;
2¢y 2¢y
RM? RM?
T1<1+V 1>=T2<1+y 2)
2¢, 2¢y
T, _ 1410~ D/2IM (184
T 1+[(y=1)/2]M; '
From continuity equation
P2 _"
pr V2
p2 Vi  May M <T1)1/2
—_——=— = = — x| —
pr Vo Ma, M, \T,
po _Mi (1+1(—1/2IMF\"? (185)
py M, \1+[(y—1)/2]MF '
&z&*§=%<ﬂ)m I
pr pr T1 M\T; T
p_ M (L)
pr M, \Ty
/2
M, (1+][(—-1)/2]M2\"
P2 _ My < [((y —1D/2] 1) (18.6)

p. M, \1+[(y—1/2]M?

e Entropy

d
Tds = ¢, dT — vdp = ¢,dT — RT?p

Prepared by A.A. Hussaini
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ds =c,— ar Rd—p
14 T p
As = cplnT—Rlnp
S2 7 S1 T, (%)

In——In—
R Y 1 T, P1

Substitute for Temperature and pressure ratio, from egs. (18.4) and (18.6) gives

s2=S_ ¥ (1 + [y - 1)/2]M2>V/<V g M <1 + [y - 1)/2]1\/12>1/2
R y—1 \1+4[(y—1)/2]M2 M, \1+ [(y — 1)/2]MZ

(18.7)

S, — 81 I M2 (1 + [(y - 1)/2]M12>(y+1)/(y—1)
R M, J\1+[(y = D/2]M2

To derive an expression for stagnation pressure ratio for adiabatic, no-work flow of a perfect gas,
we start from the following thermodynamic relation for stagnation (total) properties

d
T,ds, = dh, — 222 (18.8)
Po
ds, = dSexternar + ASinternai (18.9)
Since 6q = Tds,,; = 0 for adiabatic flow and dh, = 0 from energy equation, then
d
Po _ —TodSine (18.10)
Po
Po = PoRT,
dpo — _ dsint
Po R
ASint Po2
—Iln— 18.11
R Po1 ( )
Substitute from eq. (18.7) into eq. (18.11) gives
1 -1
P _ My <1 + I - 1)/2]M§)(V+ =y (18.12)
Por M, \1+[(y—1/2]M} '

e Momentum

ZFzﬂpr(V.ﬁ) dA

The external forces that act on the element are the pressure and shear forces as shown in figure (17.1).
pA — (p +dp)A — tAgy,r = (PAV)(V + dV) — (pAV)V (18.13a)
—Adp — TAgy, = (pAV)dV (18.13b)
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T is shear stress due to wall friction and As,, duct

surrounding surface area. The hydraulic diameter;
cross section area 4A

V+dv
p+dp
p+dp

Dy = =—

"7 wetted perimeter P
_ 4(mnD%/4
-

Surface area is

Asur = Length * wetted perimeter
dx*P =d 24
= b3 ol —
X x5
Friction factor, f, is four times friction coefficient, c;.
f = 4c; = 41/0.5pV?

_ 2 _ 2 Figure 18.1 Controll volume for isolated, constant
= . = ) 4 g i
T=6r 0.5pV f* 0.5V / area duct with frictional flow

(p +dp)A

Substitute for T and Ag,,- in eq. (18.13)
f0.5pV?  4A

~Adp ———dx—-= (pAV)dV

dx
—dp — O.SszfdxF = (pV)av

Divided by p

dp VZ dx V?dv

7 T 05%pS E RTV O

dp dv

> + 0. 5yM2f i yM? — 7 =0 (18.14)

From state equatlon and the definition of Mach number

pV = —M,/}/R / pM = const

Taking logarithmic of this expression and then differentiating gives

1
log\/% —=logT + logp + logM = log const

2
d_p = —d—M + = Ldr (18.15)
p M 2T
V =Ma = M,/yRT

1 1

10gV=logM+ElogyR+§logT
d—V = d—M + ld—T (18.16)
|4 M 2T

Substitute for dp/p and dV /V into eq (18.15) gives
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dM 1dT ,dx dM 1dT
_W-{_ET + 0.5yM f3+yM (W-I_ET) =0
Then
dx 2 dM 1dT dM 1dT
3*%(‘7%?)‘47%?) (18.17a)
dx _ 2dM dM? dT 1 dT
For this type of flow, the stagnation temperature is constant, then
-1
T, = T(l +TM2> = const
Taking logarithmic of this expression and then differentiating gives
y—1
logT, =logT + log(l + TMZ)
i __a(1+550)
? = - Y — 1 (1818)
(1+155=m2)
Substitute for dT /T into eq (18.18) gives
ac_zam_awr d(1+Bw) g d(1+lwe)
(18.19)

- + +
D yM3 M2 y—1 yM?2 y—1
(1+L—=m2) (1+L—=m2)
Eq (18.19) should be simplified further. The last term can be manipulated to be

L (5 4 s o

P () T () T ()
Then
1 d(1+y21M2)_(y_1)dM2 (y_l)d(1+y21M2)

Substitute this expression into eq (18.19) and rearrange gives

-1
fdx (y+1)d(1+yTM2) 2adMm (y+1)dM2 (18.20)
D — sm3 oy ) vz .
D 2y (1+y21M2) yM 2y / M
Integration of this equation gives
-1
(x, —x) (y+1 1+VTM22 1/1 1 y+1y. M2
= ()3 ) (i
D 2y 1_|_V2 M2 Yy \M5y  Mj 2y Mj
For Fanno flow, the integration limits are
5-6 ch.18
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At x, = L. — M, =1. Thisisreference length.

At x; =0 — M; = M . This is the section under consideration.
L +1 r+1 1 1 +1 1
|4 2 Y
plmes () (2 ) La- D) - (C () asan

Eq (18.21) relates friction factor, f, to M directly. For air y = 1.4, then;
For supersonic the value of f L,,,,/D lies between 0 at M = 1 and 0.8215 at M = o
For subsonic the value of f L,,,,/D becomes very large as M becomes very small.

18.3 Reference state and Fanno Flow Table

Egs 18.4, 5, 6, 7, 12 and 18.21 are casted with respect to reference point * where M = 1 and tabulated

in a table called Fanno flow table.

The equations developed in this chapter are the means of computing the properties at one location
in terms of those given at some other location. The key to problem solution is predicting the Mach
number at the new location through the use of equation (18.21). The solution of this equation for the
unknown M, presents a messy task, as no explicit relation is possible between M, and M, .

In = reference case we imagine that we continue by Fanno flow (i.e., more duct is added) until the
velocity reaches M = 1. Figure (18.2) shows a physical system together with its T —s diagram for a

subsonic Fanno flow. We know that if we continue

Lmax1=Lmax2
along the Fanno line (remember that we always - Ly —s
move to the right), we will eventually reach the 1 e _
limiting point where sonic velocity exists. The %_‘_ PR Elongsted duct
dashed lines show assumed elongation duct of | L _ 1
sufficient length to enable the flow to traverse the (b é) é}
remaining portion of the upper branch and reach Pt a, M =1
the limit point. This is the () reference point for
To1 To2 Tofal refarence points

Fanno flow. & ?

The isentropic * reference points have also |
been included on the T —s diagram to emphasize ' Elongaled duct
the fact that the Fanno = reference is a totally
different thermodynamic state. One other fact T
should be mentioned. If there is any entropy Fanno reference point )
difference between two points (such as points 1 Isentiopic reference points
and 2), their isentropic () reference conditions are
not the same 1* # 2*. But for Fanno flow 1* = 2*.

&
Figure 18.2 The * refesence for Fanno flow.
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Chapter Nineteen/Fanno Flow-Part 2

19.1 Fanno Flow line
If we want to study the behavior of Fanno Flow on T-s diagram, we must establish a relationship
between entropy and temperature. From isentropic relation as T, is constant:

T y+1)/2
T 1+ [(y— 1)/2]M2
m-[HED -
N\t /\y -1 -1 (19.1)
Where T™ is the static temperature at M = 1, and from eq. (17.7)
x (r+1)/y
- +1)/2
575 o am? { I/ } (18.7)
c M2(1+ [(y — 1)/2]M?)
Substitute for M gives
y—1 1 y-1
()T R
o |y =1 )\ 7T (19.2)

Figure (19.1), a plot of eq. (19.2), shows the Fanno line on T — s coordinates. For a perfect
gas with constant specific heats, the T-s and h-s diagrams are similar. It represents the locus
of states that can be obtained under the assumptions of Fanno flow for a fixed mass flow and
total enthalpy. Consider the point of tangency A, where ds/dt=0 . To determine the

characteristics of this point, let us starts from energy equation.
2 T

vV
h, —h+——const

V=y2(h,—h) = /2c,,(T -T)

From thermodynamics relations

Tds = dh — vdp = dh — vd (pRT) 8
= ¢pdT — RdT — vRTdp Figure19.1 Fanno Line
= ¢, dT — vRTdp
dT dp
ds = Cy T —R ?

T p
s—5; =c,,lnT——Rlnp—
1 1

Substitute from continuity equation for constant area duct (p/p; = V1/V)

T
s—51 =c,,lnT +R1n7
1 1

1-6 ch.19
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Substitute from energy equation, V = /2(h, — h) = \/Zcp(To -7

s—35 T y-1 (T,—-T)
=In—+ In
Cy Tl 2 (To_Tl)
s—s —
. 1=lnT+y In(T,—T) +c
v

Differentiating with respect to dT

d((s—sl)/cv)_o_l_ y—1
dT T 2(T,—T)

1 y—1

T 2(T,—T)

Dividede by c, and rearrange
Tcy(y — 1) = 2¢,(T, — T)
YRT = 2¢,(T, — T)

a2 =V?2

so means that at point A the Mach number is unity,M = 1.

According to the energy equation, higher velocities are associated
with lower enthalpies or temperatures, so the section of the Fanno line
on T — s coordinates that lies above (A) corresponds to subsonic flow,
and the section below (A) to supersonic flow. The Fanno line becomes
a most useful tool in describing the variations in properties for this
frictional compressible flow.

Consider a subsonic adiabatic flow in a constant-area tube. The
flow is irreversible because of friction, so for this adiabatic case,
ds > 0. In other words, the entropy increases in the flow direction.

Returning to the T —s diagram in Figure 19.2, we see that for a
given mass flow, the state of the fluid continually moves to the right,
corresponding to an entropy rise. Thus, for subsonic flow with friction,
the Mach number increases to 1. For supersonic flow, the entropy must
again increase, so the flow Mach number here decreases to 1.

Suppose now that the duct is long L

T
h

flow direction
«--""L-

5
increasing
velocity
'—-'-""L
Mnul
decreasing
velocity
5
Figure19.2

enough for a flow initially subsonic to L,

..|_1_,.I

reach Mach 1, and an additional length is
added, as shown in Figure (19.3). The
flow Mach number for the given mass

}‘_- Actual duct

o

M,

flow cannot go past 1 without decreasing
Figure 19.3
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entropy. This is impossible from the second law. Hence the
additional length brings about a reduction in mass flow. The
flow jumps to another Fanno Line (see Figure 19.4).
Essentially, the duct is choked due to friction.
Corresponding to a given inlet subsonic Mach number, there «
is a certain maximum duct length L,,,, beyond which a flow
reduction occurs.

Now suppose the inlet flow is supersonic and the duct 7T ity < 1y
length is made greater than L,,,, to produce Mach 1. With
the supersonic flow unable to sense changes in duct length
occurring ahead of it, the flow adjusts to the additional
length by means of a normal shock rather than a flow
reduction. The location of the shock in the duct is
determined by the back pressure imposed on the duct. (This

Sy
5’::‘*‘:
kDR

My< M, 1y <1y M=1

e

l;'ll

"y

As

subject will be discussed in detail later) Fliire19:0: mitias flow redurton

19.2 Friction factor f
Dimensional analysis of the fluid flow in
fluid mechanics shows that the friction factor

Table19.1 Absolute Roughness of Common Materials

Material e (fth
can be expressed as f = f(Re,e/D,). Where
. : . : Glass, brass, , lead th = 0.00001
€/D, is the relative roughness. The relationship 3.5515 w:gfgﬁﬁr <t mnﬂ DEGIS
among, Re, and /D, is determined Galvanized iron 0.0005
experimentally and plotted on a chart called a ~ Castiron 0.00085
Riveted steel Q.03

Moody chart or a Moody diagram. Typical
values of ¢, the absolute roughness are shown in
Table (19.1).

Example 19.1 for the duct in figure (19.5), given M; = 1.80, p; = 275.790 kN /m?, and M, = 1.2,

find p,, fAx/D and stagnation pressure ratio. - L, >
mnx

Soluton ]
Since both Mach numbers are known, we can
solve immediately.

From Fanno flow table, at M; = 1.80 (b @ @
p1/p" = 0.47407 Figure 19.5

Po1/Ps = 1.43898

3-6 ch.19
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fLimax/D = 0.24189

From Fanno flow table at M, = 1.20
p2/p* = 0.80436

Po2/Ps = 1.03044

fLymax/D = 0.03364, then

p2 p°

=S x— = 0.804 275.790 = 467.904 kN /m?
Dy p**pl*pl 0.80 36*0.4741* 5.790 = 467.904 kN/m
Poz _Poz P’ 1
T T =1.03044x————— = 0.7161
Por P* DPo1 1.43898
Ax  fL L
fD = ! 1Dm“" _I ZD’”“" = 0.24189 — 0.03364 = 0.2083

Notes that for supersonic flow, due to friction effect p, > p, , but p,, < po1.

Example 19.2 for frictional constant area duct, <

Ly >
see figure (19.6), given M, = 0.94, T; = 400 K, < Ax i > Lynax >
and T, =350K, find M; and p,/p,. Also —————————— === — ==
calculate stagnation pressure ratio ; .

]

1
Solution @ é_" ______ é
From Fanno flow table at M, = 0.94 Figure 19.6

T,/T* = 1.01978, p,/p* = 1.0743 and p,,/p; = 1.00311

To determine conditions at section 1, figure (19.6), we must establish the ratio
ﬂ = E * E = 400 * 1.01978 = 1.1655

T T, T* 350

From Fanno table at T, /T* = 1.1655

M, = 0.385, p;/p* = 2.8046 and p,,/p* = 1.64105

*

P2 P2 P

L= =1.074 =0.383

b, P D1 " 2.8046

Doz P2t D 1

— = % — =1.00311 x—— = 0.61126
Poi DP° Por 1.64105

Notes that for subsonic flow, due to friction effect p, < p; and p,, < pPo1

Notice that these examples confirm previous statements concerning static pressure changes. In
subsonic flow the static pressure decreases, whereas in supersonic flow the static pressure increases,
while the stagnation pressure ratio decreases in both cases due to the effect of friction losses.

4-6 ch.19
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Example 19.3 Air flows in a 152.4 mm diameter, insulated, galvanized iron duct. Initial conditions are
p, = 137.895 kN/m?, T, =21°C, and V; =123.75 m/s. The absolute roughness is &=
0.1524 mm and viscosity is 1.8 x 107> N.s/m?2. After 21.34 m, determine the final Mach number,
temperature, and pressure.

Solution
Since the duct is circular we do not have to compute an equivalent diameter. The relative roughness
e 0.1524

D 1524
D1 137.895

T RT, 0.287 294

= 0.001

k
P = 1.6343 "9/,

Re, = p1ViD _ 1.6343 +123.75  152.4 » 1073
1.8%10°5
From the Moody diagram at Re = 1.7 x 106 and &/D = 0.001, we determine that the friction factor is f =
0.0198. To use the Fanno table (or equations), we need information on Mach numbers.
ay = /YRT; = V1.4 x 287 x 294 = 343.7m/s
vV, 123.75
T, 3437
From the Fanno flow table at M; = 0.36
p./p* =3.0042, T,/T* = 1167 and fLqmar/D = 3.1801
The key to completing the problem is in establishing the Mach number at the outlet, and this is done
through the friction length:
fAx 0.0198 x 21.34
D 01524
Since f and D are assumed constant, then
fo — lemax _fLZmax
D D D
fLZmax — lemax _fo
D D D
From Fanno flow table at fL; ;0./D = 0.408
M, = 0.623, p,/p* = 1.6939 and, T,/T* = 1.1136, Thus

Py = P, Z— *p, = (1.6939)
1

p*

= 1.7 * 10°

1

= 2.773

= 3.1801 — 2.773 = 0.408

- _ ,
(3_0042) (137.895) = 77.75 kN/m

r,=2, g (11136)(
= — % — % = .
2orer t 1.1697

In the example above, the friction factor was assumed constant.

)(294) =280 K
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Example 19.4 Flow enters a constant-area,
insulated duct with a Mach number of
0.60, static pressure of 150 kPa, and static
temperature of 300 K. Assume a duct
length of 45 cm, duct diameter of 3 cm,
and a friction coefficient of 0.02.

Determine the Mach number, static (Lasch -
pressure, and static temperature at the duct

et Figure 19.7 lllustarative drawing for example 19.4
outle

Solution
From Fanno flow tables, at M; = 0.60

fLimax/D = 0.49081, p;/p* = 17634 andT,/T* = 1.1194
The actual Fanno flow friction coefficient is

fox  (0.02)(45) _

) 3 0.3, Then
fLZ max le max fo
= — =04 1-03=0.1 1
D D D 0.4908 0.3 =0.1908

Thus from Fanno flow tables at fL, ;,q/D = 0.19081 gives
M, = 0.709, p,/p* = 1.4728 and, T,/T* = 1.0904, Thus

1.4728
&:&/ﬂ: = 0.8349
p1 p*/ p* 17634
T, T, /T; 1.0904
—=—/== =0.9740K

T, T*/ T 11194
p, = 0.8349 x 150 = 125.235 kPa
T, = 0.0.9740 * 300 = 292.2 K
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Chapter Twenty/ Fanno Flow through a Nozzle-Duct System

20.1 Converging Nozzle and Duct Combination
Very often a situation occurs where a duct is fed by a
nozzle; with the back pressure and nozzle stagnation

ags . T =
pressure are the known quantities. Consider, for It_

Py = constani
example, a duct supplied by a converging nozzle, with ¥, =0

flow provided by a reservoir at pressure p,.s (see Figure Fi“"/
20.1). Assuming isentropic nozzle flow, with Fanno flow @
in the duct, the system pressure distribution (p versus x),
can be determined for various back pressures for fixed
Dres- AS Py, IS lowered below p,..,, curves such as (a) and
(b) are obtained, with pressure decreasing in both nozzle
and duct. Finally, when the back pressure is decreased to
that of curve (c), Mach number 1 occurs at the duct exit Distabce,x
(note that the Mach number at the nozzle exit is still less F'9ure 20-1 C-N and Constant Duct
than 1).

Further decreases in back pressure cannot be sensed by the
reservoir; for all back pressures below that of curve (c) the mass flow & 5
rate remains the same as that of curve (c); m is plotted versus py, in
Figure (20.2). The system here is choked by the duct, not the
converging nozzle. The maximum mass flow that can be passed by
this system is less for the same reservoir pressure than that for a
converging nozzle with no duct.

For a subsonic Fanno flow situation, figure (20.1)
shows a given length of duct fed by a large tank and
converging nozzle. If the receiver (back) pressure is below
the tank pressure, flow will occur, producing a T -S
diagram shown as path 1-2-3. Note that we have isentropic

*

b}

(c}
()

pressure
E o

(d) (€}

| (a}

Py
Figure 20.2

flow at the entrance to the duct and then we move along a r
Fanno line.
As the receiver pressure is lowered still more, the flow 7 / /
rate and exit Mach number continue to increase while the e / c—./” G,” ¢'>G6'>G

system moves to Fanno lines of higher mass velocities G
(shown as path 1 — 2" —3'). It is important to recognize

Figure 20.3 T-s Diagram Nozzle-duct Combination

1-9 ch.20
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that the receiver pressure (or more properly, the operating pressure ratio) is controlling the flow. This is
because in subsonic flow the pressure at the duct exit must equal that of the receiver.
Eventually, when a certain pressure ratio is reached, the Mach number at the duct exit will be unity

(shown as path 1 —2" —

3""). This is called duct choking and any further reduction in receiver

pressure would not affect the flow conditions inside the system. What would occur as the flow leaves
the duct and enters a region of reduced pressure?
Let us consider this last case of choked flow with the exit pressure equal to the receiver pressure.

Now suppose that the receiver pressure
is maintained is kept constant but more
duct length is added to the system.
What happens? We know that we
cannot move around the Fanno line, yet
somehow we must reflect the added
friction losses. This is done by moving
to a new Fanno line at a decreased flow
rate. The T —s diagram for this is shown
as path (1 —2""—3""—4) in Figure
(20.4). Note that pressure equilibrium is
still maintained at the exit but the
system is no longer choked, although
the flow rate has decreased. What
would occur if the receiver pressure
were now lowered?

In summary, when a subsonic
Fanno flow has become duct choked
and more duct is added to the system,
the flow rate must decrease. Just how
much it decreases and whether or not
the exit velocity remains sonic depends

Supply air

T, = constant
P, = constant
V, =0

Original duct choked, M =1
More duct added

AT

B, held constant

M=0

Mew Fanno line at
lower flow rate

Farmao line for
original duct

GHI‘{ G-"

Figure 20.4 Addition of mors dust when chokad.

on how much duct is added and the receiver pressure imposed on the system.

Example 20.1 A constant-area duct, 20 cm in length by 2 cm in diameter, is connected to a
reservoir through a converging nozzle, as shown in Figure (20.5a). For a reservoir pressure
and temperature of 1 MPa and 500 K. Determine the maximum air flow rate in kilograms per
second through the system and the range of back pressures over which this flow is realized.
Repeat these calculations for a converging nozzle with no duct. Assume f = 0.032

2-9¢ch.20
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Solution Iseatropic flow [=0032
For maximum mass flow through the nozzle-duct l'
system, M, = 1. For this condition, the actual fL/D of
the duct becomes equal to fL,,../D, so that

fLmax/D = 0.032 %20/2 = 0.32
From Fanno tables at fL,,.,./D = 0.32 gives

M; = 0.652 Figure 20.5a lllustrative drawing for example 20.1
For isentropic nozzle flow, from isentropic flow

tables at M; = 0.652 gives

(p/p,), = 0.7515 and (T /T,), = 0.9217

p1 = 0.7515% 1 = 0.7515 MPa

T; = 0.9217 * 500 = 4609 K

= pVA = (}f—;) AM,[yRT,
1

[ 7515 |7 (2« 1072)2] [0.652VT4 = 287 = 460.9] = 0.5009 kg/
0.287 «460.9] L4 J -

Also.
p1/p" = p1/p2 = 1.6130 it (kgs)
p, = 751.5 % (1/1.6130) = 465.9 kPa 0.5679 No Duct
So the system is choked over the range of back ;. | Duct
pressures from (0 to 465.9 kPa).

If the duct were to he removed, choking would
occur with Mach 1 at the nozzle exit. For this
condition
From isentropic table at M; = 1 gives
(p/p,)1 = 0.5283 and (T/T,), = 0.8333 T SEa Ps (kPa)

p1 = 0.5283(1000 kPA) = 528.3 kPa Figure 20.5b Comparison of Mass Flow Rates in a

T, = 0.8333(500K) = 416.7K Converging Nozzle with and without a Constant-Area
Duct for example 20.1

So the maximum mass flow (for choked flow) is
. 528.3
Mmax = [0.287 4167
For this case, the system is choked over the back pressure range from (0 to 528.3 kPa) Results
are shown in Figure (20.5b).

T/ 4
] [Z (1000)] *[1.0v1.4+ 287 x 416.7] = 0.5679 kg/s
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20.2 Converging-Diverging Nozzle and Duct Combination

When a duct is connected to a
reservoir through a converging-
diverging nozzle, the situation

=

becomes somewhat more complex.
Consider first the case of subsonic
flow in both nozzle and duct. A
typical pressure distribution is \
shown in Figure (20.6). Depending G ,
on the duct length, the minimum §

-~

o i e et e e

=

pressure point, or point of
maximum Mach number, can occur

distance

Figure 20.6 Pressure Distribution of a Subsonic Flow in a Duct Connected to a

at the nozzle throat or duct exit. Reservoir by a C-D Nozzle

If the duct is long enough (see dashed curve), the system reaches Mach 1 first at the duct
exit; in this case, the nozzle is not choked. Once Mach 1 is reached, no further increase in
mass flow rate can occur by reduction of the system back pressure. Supersonic flow in this
system is impossible with the converging-diverging nozzle unchoked.

Generally, however, the duct length required to cause choking is very long. For this
reason, the more important case is that in which the system is choked at the nozzle throat, and
supersonic flow can occur in the duct.

With supersonic flow at the nozzle exit, there is the possibility of shocks in the duct.
Note, however, that once the back pressure is just low enough to produce Mach 1 at the
nozzle throat, the system is choked, with no further increase in mass flow possible. Unlike
the case previously discussed, in which mass flow was affected by duct length, here, once the
throat velocity reaches the velocity of sound, the mass flow rate is unaffected by duct length.
Now the system is choked by the nozzle, not the duct. Let us consider the flow pattern
obtained with supersonic flow at the duct inlet.
> First, suppose the duct length is less than the maximum length corresponding to the
given duct inlet supersonic Mach number M;, needed to reach Mach 1 at the duct exit i.e.
L < Lyax,in- The change in flow pattern is to be described as the back pressure p, is increased
from 0 kPa. A back pressure of 0 kPa, or a very low back pressure, implies the existence of
expansion waves at the duct exit. This means that the exit Mach number must be either
supersonic or unity. Since L is less than L,,,,, supersonic flow occurs at the duct exit, with
the exit static pressure p, > p,,See curve (a) in Figure 20.7. When p,, is raised to a value
corresponding to curve (b), p. = p,. A further increase in back pressure yields oblique shock
waves at the duct exit where p, < pp,curve (c), until eventually a normal shock stands at the
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Prepared by A.A. Hussaini 2013-2014



uoT

Mechanical Department / Aeronautical Branch

Gas Dynamics
Chapter Twenty / Fanno Flow through a Nozzle-Duct System

duct exit for a back pressure equal to that of curve (d). It can be seen that the flow described
is exactly the same as that obtained at the exit of a converging-diverging nozzle. Increases in
back pressure over that of curve (d) cause the shock to move into the duct. For a high-enough
back pressure, the shock moves into the nozzle, thus eliminating supersonic flow in the duct.
For a high enough back pressure, the shock moves into the nozzle, thus eliminating
supersonic flow in the duct.

pressure

(c) oblique shockwaves
outside duct

distance

Figure 20.7 Pressure Distribution in a Constant-Area |
Duct Connected to aReservoir by a C-D Nozzle

Example 20.2 A converging-diverging nozzle, with area ratio of 2: 1 is supplied by a reservoir
containing air at 500 kPa. The nozzle exhausts into a constant-area duct of length-to-diameter
ratio of 10 and friction coefficient f = 0.02. Determine the range of system back pressure
over which a normal shock appears in the duct. Assume an isentropic flow in the nozzle and
Fanno flow in the duct.

Solution

From isentropic flow tables at A/A* = 2.0, gives

M, = 2.197 and p,/p,; = 0.09393

From Fanno flow tables at M; = 2.197, gives

(fLimax/D)1 = 0.3601.

For the duct under consideration

fL/D = 0.02 %10 = 2.0

So that L < (L4x)1- Calculations must be made for two limiting cases, one with shock at the
duct inlet (Figure 20.8a), and the other with shock at the duct outlet.
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(a) Shock at the duct inlet

From normal shock tables at M; = 2.197, gives M, =

0.5475 and p,/p; = 5.4656

From isentropic flow tables at M, = 0.5475 gives

p2/p* = 1.9483 Figure 20.8a Shock at duct inlet
From Fanno flow tables at M, = 0.5475, gives ( fLpq/D = 0.7427), Thus

(52),-(52),-(5).= (%),

<fLmax) _ (fLmax) B (f_L>
D /3 D J, \DJ/;,
<fLmax

D
So that from Fanno flow tables at (fL,,q/D)3; = 0.527 gives M; = 0.5875

From isentropic flow tables at M; = 0.5875 gives p;/p* = 1.8071
Then

m=ps=(22) () (2) ()
P T\ \po) \py/ \pot/ T

= 1.80713 *

) = 0.7427 — 0.20 = 0.5427
3

* 5.4656 * 0.09393 * 500 = 238.2 kPa

1.9438

(b) Shock at the duct exit
From Fanno flow tables at, M; = 2.197, gives p;/p" =
0.3557 and (fLqx/D), = 0.3601. So

(fLmax)l _fL. (fLmax)z

Figure 20.8b Shock at duct exit

D D D
= ——=0.3601 — 0.20 = 0.1601
< D /, D /i D

From Fanno flow tables at (fL,,4x/D), = 0.1601 gives M, = 1.5663.
From isentropic table at M, = 1.5663 gives p,/p* = 0.5728
For normal wave tables, at M, = 1.566 gives p;/p, = 2.695 , then

p=rs=(2) (&) () (2
b ° P2/ \p*/ \p1/ \Po1 ot

= 2.695 % 0.5730 = * 0.09393 * 500 = 204.0 kPa

0.3557
The shock will appear in the duct over the back pressure range

204.0 to 238.2 kPa

6-9 ch.20
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> Suppose L is greater than (L,,qx)i, 1.€. that the duct length is larger than that required
to reach Mach 1 at duct exit for supersonic duct flow.

For a back pressure of 0 kPa and for very low back pressures, it is evident that the back
pressure is less than the exit-plane pressure, so expansion waves must occur at the duct exit,
with the exit-plane Mach number equal to unity. (Flow after the shock cannot reach
supersonic velocities without violating the second law of thermodynamics.) For curves (a)
and (b) in Figure 20.9, therefore, a normal shock occurs inside the duct, with sonic flow at
the duct exit and expansion waves outside the duct.

For curve (c), the exit- plane pressure is equal to the back pressure. It should be noted
that the location of the shock is the same for curves (a), (b), and (c). For this class of
problem, this location represents the farthest downstream position that the normal shock is
able to reach. Finding this location is beyond our stage.

As the back pressure is raised above curve (c), the normal shock moves upstream toward
the duct inlet, with the exit Mach number subsonic and the back pressure equal to the exit-
plane pressure. Again, for high-enough back pressures, the shock moves into the nozzle,
eliminating supersonic flow in the after-section of the duct.

(@) pe=pesM. <1

------- '~

(C)Pf =ppM,. =1
:11.““"?4#’3

— N N PN PO

} 1
| (a, b)Pe>Pb'

1

pressure

T
1
1
1
1

distance

Figure 20.9 Pressure Variation in a Constant-Area Pipe Connected to a C—D Nozzle
Example 19.3 A converging-diverging nozzle, with an area ratio of 2to 1. is supplied by a
reservoir containing air at 500 kPa. The nozzle exhausts into a constant-area duct of length-
to-diameter ratio of 25 and friction coefficient of 0.02. Determine the range of system back
pressure over which a normal shock appears in the duct. Assume an isentropic flow in the
nozzle and Fanno flow in the duct.

7-9ch.20
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Solution
From isentropic flow table at A/A* = 2.0 gives M; = 2.197 , p;/p; = 0.3557 and p;/p,;i =
0.094
From Fanno flow tables at M; = 2.197 gives
2.197 — 2.190

(fLmax/D)i = 0.35828 + (0.36091 ~ 0.35828) —— —"— = 0.3601

For the duct fL/D = 0.02(25) = 0.50 which is greater than (fL,;,ax/D)i 1.€. Lauct > Lmax

For this type of problem, a normal shock usually stands in the C-D nozzle-duct system. The
range of back pressures over which a normal shock exists within the duct can be established
as follows:

(a) Shock at the duct inlet

From normal shock tables at M, = 2.197, gives M, = 0.5475
and p,/p; = 5.5199

From isentropic flow tables at M, = 0.5475 gives p,/p* =
1.9483

From Fanno flow tables at M, = 0.5475, gives ( fLpq/D = 0.7427), Thus

fLmax fLmax fL

(= ) - (&= ) - (3) = 0.7427 — 0.5 = 0.2427

So that from Fanno flow tables at (fL,,qx/D). = 0.2427 gives

M, = 0.6833 and p,/p; = 1.5333

Because the exit flow is subsonic, the exit pressure is equal to the back pressure, which may
be computed from

m=pe=(2) () () (22)s
PR T \pr) \pa) \py/ \por/ !

= 1.5334 *

Figure 20.10a N.s at duct inlet

19435 * 5.5199 % 0.0944 * 500 = 205.562 kpa

Thus, a shock will reside within the duct for the following range of back pressures: 0 < p, <
205.562 kPa
(b) Shock inside the duct

Since the value of fL/D = 0.50 > (fL;4x/D)1, the shock
cannot exist at duct exit. When the back pressure has the
lowest value, (p, = 0 kPa), the position of the normal shock
is positioned far away from duct exit. As the back pressure is Figure 20.10b N.s inside the duct
raised, the normal shock moves towards the duct inlet. Finding the position of the normal
shock and the back pressure is left for the interested student.

8-9¢ch.20
Prepared by A.A. Hussaini 2013-2014



uoT

Mechanical Department / Aeronautical Branch

Gas Dynamics
Chapter Twenty / Fanno Flow through a Nozzle-Duct System

For interested student:

Since the back pressure for the first case of this example is 0 kPa, the exit Mach number is
clearly unity and p, = p*. However, to reach the low value of p,, further expansion must take
place outside the duct, as shown in curve (a) of Figure 20.9. To determine the location of the
shock for this case, we proceed as flow; for the duct shown in Figure 20.10, the duct length
can be written as:

L= [(Lmax)z - (Lmax)e] + [(Lmax)i - (Lmax)l]

[(Lmax)z - (Lmax)l] =L+ (Lmax)e - (Lmax)i

Multiplying by the average friction coefficient, f, dividing by the hydraulic diameter, D,
and rearranging yields
F(Ml) — (fLmax> _ (fLmax) — (f_L> + (fLmax> _ (fLmax>

D /, D /J; \D D /., D J;

Note that because the flow between the duct inlet, station i, and the upstream side of the
shock, station 1, is supersonic and because the friction decelerates supersonic flows so
Mi > Ml and (Lmax)i > (Lmax)l-

Also because the flow between the downstream side of the normal shock, station 2, and
the duct exit, station e, is subsonic and because friction accelerates subsonic flows so
Me > MZ and (Lmax)z > (Lmax)e-

And from eq. 18.21.

y+1

La (7 +1 o 1, 1y m+1y /1
fFoma _ ( )ln 2 _ —(1 _ —2) _ (—) In (—2) (17.21)
D 2y 1 +V2_1Mz y\. M 2y M

And eq. 10.7 which relates M, and M, across the normal shock

. Mi+2/(y-1)

/(G -D)ME -1
Then we have an expression to evaluate M,
y+1. [24+ @ -DM?] 21 +yM3HM?2-1)

In
l (y + DM7 l YMZ[2 + (y — DMS]

The value of M; can be obtained by numerically solving this equation using the Newton-
Raphson method. Because the derivative of F(M,) is complicated, it was obtained using the
finite-difference approach. The solution is beyond our scope.

(10.7)

F(M;) =

When M; is known then we find M,, (Lyax)1 and (Lyax)2- This gives the position of the
normal shock.

(5). = (52),-(52),
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Chapter One
Fundamental of Fluid Dynamics
fntroduction:

Gas dynamics is a branch of fluid mechznics which describe the flow of

compressible fluid. Fluids which show appreciable variation in density as a results of the
flow — such as gases- are called compressible fluids. The variation in density is due
malndy t& variation in pressure and temperature.
The flow of a compressible fluid is governed by the first law of thermedynamics, which
relates 1o energy balance, and by the second law of thermodynamics, which relates heat
interaction and imeversibiliny o entropy, The Now is also affected by both kinetic and
dynamic effects, which are deseribed bv Newton's laws of motion. An inertial frame of
reterence that is, a frame in which Newion's laws of motion are applicable- is generaily
used. In addition, the Now fulfils the requirement of conservalion of mass.

These laws are not dependent on the properties of particufar fluid, therefore in
order to relale the motion 10 a2 particular fluid it s NECEssary to use subsidiary laws in
additian to these fundamemz! principles , such as the equation of state for perfect gas.

p=pRT ..( 1)

Although the most obvious application of compressible fuid flow theory are in
the design of high speed aircraft, and this remains an impertant application to the subject,
acknowledges of compressible fluid flow theory is required in the design and operarion of
many devices commonly encountered in engineering practice. Among these application
are:

t- Gas Turbine: the flow in the balding and nezzie is compressible,

Z- Steam turbine. Here, oo, the flow in the nozzles and biades must be treated as

compressible.

3- Reciprocating engines, flow of gases through the valves and intake and

exhaust,

4- MNatural gas transmission line.

3- Combustion chambers

8- Explogive.

1 Conservation of Mass:

The prmciple of conservation of mass, when referred to 2 system of fixed identity,
sitnple states that the mass of the system is constant Consider an arbitrary eontrol
volume through which fluid streams Fig, |, we wish to derive the form of the law of
conservation of mass as it applicd 1o this control volume. However, in order to apply
the law, we must begin with 2 system of fixed identity, and so we defined our sysiem
as the fluid which some instant ¢ oecupies the control volunte.

Next, we eonsider what happens during the succeeding time interval 4f, By
definition, the contral volume remains fived in space, but the svstem moves in the
general direction of the streamline. The two position of the system are shown in figi
by dashed lines. For convenience in analysis, we consider three repion of space
denoted bt LJLI in fig. 1. At time 1 the system occupics spaces £ and Jif, and at time
r=dr it pocupics space Jand I Thos, since the mass of the system is conserved, we
Wre.




) = " 2
i P YO DU L PP 2

where sy means the mass of the fluid in space [ at tine t. and 50 on. A simple
rearrangement then gives,
?nn' e mi ] m."."a‘ 1 ey N oamg

e - ———vsmmErEsa—aa—}

ar i dr
The first team represent the time rate of change of mass within space 7. But as ZOEs 10
zerd space { eoincide with the contral volume, and so io the limit,

-

Pem ~ 7y, L@

r

where ., denoted the instantaneous mass within the control volume.
The third term may be written,

i bt _ zﬁ'ﬂ.‘.’ Bkl ':S'”H dtt e emm e
DD L ’

where ds-g represent the amount of mass erossing the elermentary surface g4, during
the time dr. The ratio drts./d? is called the out gaing flux of mass cross the area dd,
Or the mass rate of flow and is dencted for convenience by dmg, .
simnilar reasoning ylelds for inbet,

.???J.lr

D

and $0 the conservation law may now be expressed as

2 e, )= fam, = Jamy, e

for detailed computation we note that a1 any instant

M., = J"ﬂng .= '[_r,ﬁkf‘r’ — e

where dv is an element of contrel volume. p is the Incal mass density of that element and
the integral is 1o be taken over the entire control volume.
S & 5
—’lu—‘[pdvzij‘ﬂdv -------------------- 9

ar dr tv v O :
with the help of frz.t we may express the mass rate of Aow in the torm.
i s _ plad, a0y

o dt dt

where p is the local instantancous mass density in the neighbourhood of gy and ¥y is
the carresponding tocal instamtaneous component of velocity normal to el g, with the
torgaing expression cquation 7 may now writen. '

Loy = Jo¥aa, - [pVdd, e 1

v 8t
2 form whick: s usuzily called the squation of continuity.

When the flow is steady, the identity of the fluid within the centrol; volume
changes continwousty. but the total mass remains constant or mathemaically #p.5/ 15 zero
for each element of control volume . Then equation |1 state that the Inconting and
outgoing mass rate of flosw are identical.

=pVdd  —ee 10



Jo¥,dA, = [o¥,dt et

For one dimensional steady state  flow equation 12 for the inlet and outlet condition
became.

L R IS —

Frg 3 flon through control volume with obstacle( momentum equation)

L.




Exampie: |

Ten kgfsec of air enters a tank of 10m’ in volume while 2 kuisec is discharge from the
tank as show in fig. if the temperarure of the air inside the tank remaine constani at 300KS,
Find the rate of pressure rise inside the tank.

Sofuiion:

Appling continuity equation

Lty = fov,da, - fpvaa,

a -
lﬂ§=]ﬂ—2, but p= pR7 0 fﬁ;gr,‘:"_p
cf &t cr

D - 287173002 =68880 P jsec
ar il

Exumple:?

A tank | m? in volume contains air at an initial pressure of § aumn (606,95 kPa} and an
initial temperature of 25°C. Alc is discharged isothermally from the tank at the rate of 6.1
m*/s. Assuming that the discharged air has the same density as that of the air in the tank,
find an expression for the time rate of change of density of the air in the tank, What
would be the rate of pressure drop in the tank after § seconds?

saiulion:

Appling continuity equation L%:.dpz ]‘ﬂquAM _ I,GF",,::HM

dp
i.0Q E: —0.1p
or
E= —O.ip
ar

Separating variables and integrating gives:

o
-_— —0.1¢ oo
#f = me ( RT, )f

where subscript | refers to initial conditions in the tank Pressure changs may be
expressed in terms of density change according to the relation

o= aRT
10 Lhal;
dp L an
r =R7 a1 =RT(~0.1g)
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Substituting numencal vzlues gives:

i)
== = 0.0 X 606,95 X ¢0 = <102.) KPass
) I

1.2. Momenium conservation thegrent.

The fundamental principle of dynatnics is Newton's law of motion, and according
to this law the resullant of lorce applied to a particle which may be at rest or in mation is
equal to the rate of change of momentum of the parlicle in the direction of the resuliant
furce. Newlon's second law is vectur relation. Consider the x-direction we write for the

EYSiem.

ZE=%ME} --------- 14

Where the left hand side represent the algebraic sum of the X-force acting on the system
dursng the urme inferval df, and the right hand side represent the time of change of the
total momentum of the system see fig,3,

(V) +Um¥ N = (m¥ 2, — (W Dy,

ot

el 3

%{m V=

':mVr}fn.d.' - [mp‘-’ }jr
di

- &
change of the X-momentum within the ¢ontrol volume. = Y (md},,
!

as dr goes o zero this term represent the time rate of

50 that :
ZE = i{m V., + F",dmw - J';«:dmw R I

ZF LCPVJV*' J}:P’Viq 'fpVﬂV;.:H,.ﬂ S, b |




Example:3

Arr flowing isentropically in a nozzle strikes a stationary blade when it leaves the
ndzzie as shown in fig. Determine

E- The magnitude of the rezction in the x-direction and in the y-direction peeded 1o
hold the blade in place.
1.

2. The magnitude of the rcaction in the x-direction and in the y-direction of the blade
moves towed the nozzle at B0m/sec.
Sufution:

[x=!1fr a4
o L2 . i -
r:—T:(P:) —.»tJE( ]_5) = M43 K

The gas weloaicy 26 this section is obiained fram the ensrgy equation:

¥ (551
Rl F T et
i 2

THerchare:

-

(60)

5
)

- 1OKK 308 — 274,33 +
fram which b5 = 266,446 m#z. The mass rate of flow 15:
. 2
m oAy by - (R_Tl )A| Fy

PLEM 1 D138
28T A I0R

)[1.‘5 A0 60)

= (3158 kg5
Applying the momentum equation o the conral volume shown gives:
R, =¥y, — ¥, = L2580 V) cos 300 F Fa)
={ 258(265.45 coz 30 < 266 46) = L2378 W
and
R, ~ m{¥y, — ¥3,) = 0.258{ V3 5in 30 — 0)
=[.758(2656.45 4in 30) =34 37T M

1 2
L
' '
. L
—_——— e e  — —-
H s
L ———
. T
'
] 1
&4, = 1.3 acm Fg ™ Lk
F,-MEar

W, =
-, — 7% @ d" mt

. P . =
1
P e e D g el O W) - TN TE ALy




(b} Whan the blade moves towesd the nozzle, the relaive velocily is 266.46 + 0
= 794 46 mts. The mass swiking tne Dlade per woit TmMe fiow e s

. 298468
o= 258 36648 =0.287 kg's
From the velogily diagram shown:
Vo, = 25674 mfs and by, = [48.25 mfs

The momecolom eguaton then gives:

K= Vyy — Fo ) = G28T(256.14 + 266.45) = J4%7 N
and

R = wi by, = VL) = QAN 143 21 — = 4204 N

Example:4

An zirplane is traveling at a constant speed of 200 mfs, Air enters tae jet engine's inlet at
the rate of 40 kg/s while the combustion products are discharged 2t an exit velocity of
£00 mys relative to the airplane. The intake area is 0.3 m? and the exit area 0.6 o, The
ambient pressure 1% 0.7 atm, and the pressure at the exit iz 0.72 ztm Calculate the ne,:t
‘hrust developed by the engine. Assume uniform steady conditicns at the inlet and exit
planes and the properties of the products of combustion to be the same as those of
air.

Solution: consider the jet engine as a control volume as in fig. the air enters the engine

with a speed of 200ms. assuming herizontal flisht and neplecting the momentem of the
fuel, the ner force opposite to thrust is:

Apoling momentum equation;
_r dady
N N

since the case is sleady state thus mean that Sp/i=0 therefore the momentum equation
become

F=(gids T mV3)—{p A, +m¥)
= [(0.72 — Q731013 X 10° X 06 + 40 X 600] — (0 + 40 X 200}
- 72156

— oy EBOG M




1.3The First Law of thermodynamic: {Fnerav Equation)
Energy is conveyed a cross the boundary of contral volume in he form of heat and
work, Consider the flow through the control velume with of fig., with the system
defined a3 the material occcuping the contral volume at time . We consider what
happens during the time interval di. Passing through the conrol surface are a
stationary strut and a rotating shaft attached to a turbo-machine, perhaps a COmpressor
or turbing. The energy equation in a simple form can be written as ollowing.

5 _dE oW

dr dr  dr
Rate of change of (otal energy E:

E _ {E,' fT + E.f.'l+d'-' :] - [Efr * 'E.'.’IJ ]I

— L

dr e
dE Ey - En redm,,  edm
HE +J 'fL_J crmma—
at ot oft g
&
A A S
oE : fepdv
E - L Ef + J’€dmunr - j'E'ﬂrmm ____________ -

Rate of work done.

Omitting from our consideration capillary, magnetic, and electrical force, the
work dote during the processes is the resuft of normal and shear stresses at the
maeving boundartes of the system.

A - Work Done by Norma) Stresses.

Taking the normal stress at the beundary of the system as the hydrostatje pressute,
the work done by the system owing to nomal force at an element of area &4, is
Padonax , where dy is the component of distance moved normal 1o dd; . But o4 ..dx
is the volume of the mass element dmy .2 which volume may be wrilcen as védmy,. 4.
The total rate of work dene by nomal stresses during the process may now be set
down, with the aid of the foregoing, as

_{F_’P_'r _[F' VE"”E et J-F v,

{ dar o dt it
= [pvam,,, - [pudm,

B- Work Dong by Shear Stresses: This wark may be conveniently divided into two

categories (1) the work done by the part of the shaft inside the svstern on the part
outside the system, owing 16 the torque in the rotating shaft resulting from the shear
stresses. (H) the shear work done at the bounderies of the systern on adjacent fluid
which is in motion. Therefore the rale chanoe of work can be written as follow,

o
= shaft T ;Vf.l-h'r.'.l' + JP I"ﬂ'rnaur - '[pl',dmm - T Tt

et
The tatal fluid energy per mass flow ¢ is
Tatal fluid energy= internal energy + kinetic energy + potential tnergy

e rms s .-
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L - AR
T te
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Substitute these equztions into the energy equation results
i ¢ S Geplv v e
:f.;_ = Hm:; - i'FMmr + LT + J{.’?+—2~ -.agz}dmm, - I{F! + ? T g...}d.i?.i'm ----------

r

Bweadiy 1
Aasimm b
Temp Eedr

1.4The second Law of Thermodvnamics:
In a fixed-mass system entropy change occurs as a result of irreversible events or as 2
result of interaction with the environment in which there is heat wwansfer.
d0 38
—— A [ -
r:LI —_ ( > Jo + sdmm + J‘sa’mm
&0 el v
=< [ ZE" 0 d son
{J T L at ijp aA
for steady —one dimension flow
40

mis, —nizd =

a
for adiabatic flow d0=0therefore

sp—8 20 or de20 forisentropic flow oy = 0 and flow adiabatic irreversible flow
de=()

1.5 The perfect Gas:
For most problem in gas dynamics, the assumption of perfect gas law 1g sufficient|y
in accord with the properties of real gasey 2510 be a acceptable. We shall therefore set
down here the speciat themmodvnamics relations which apply to perfect gas,

1 Eguation of state:
p V= —'E- = R’T = E- T ..............
o M

Where T is the ahsoluie empersiure (KY), B is the gag constant{Fkg mol K™, R is
the eniversal gas conswy and s equal to 81343 Mkg.molK®, and M is the



molecular weight ka'kemel.  For atmespheric air betwesn 0 and 100 km,
M=28.966, therefore the air zas constant (s 287.04 Lke K

When a perfeet gas undergoes a thermodynamic process between to cquilibrium
state.

U, -l = _[ cv.dl and B, o K = Jfﬁ'p.df'

du ch n
cv=(—=) =— and (p={— for perfect pus
E J s ( Il =F p g
Cp-tv= __‘{‘1=Ml_ du _ 2RT)
ar 47 ar ar oF

o T . S

The epearfic heat ratioy is > = e there fore Lp—i and Cw = A
Cv ¥yt -1

Changes of Entropy © Appiving the special retation of a perfect pas w the peneral
relation between 5w, we get
e pa’v af  _dv

L

dy = — =v—+ F—
T r T v
and, upon integration
T,
Sa _S| - C‘L'I['I £ +R[nf'i— = C?]n(ﬂl(i}?-l ______________________
) T T v

| ¥ I
Altematively, we may eliminate either T or v fram this express the aid of pp=fT.and
so phbeain

5, -5 = Cvin£2 +Cplnit= Cv]n{ﬁ}{ﬁ-}? ________________________
pl i P| i

$. -8 =Cplnz o Rlnbs "'C'L-'In{ 2y (BTN e
7 & (I 7

The isentropic. Ofien the isentropic process is taken as a model or as a fimit for real
adizhatic processes. If entropy is consant ac each step of the processes, it follows
from equation that 7 and v,p and v, and T and p are connected with each other during

the processes by the following laws:
..'P_
=1
Tv™™ = const. pyl = i,. = CENSE. d
: P o
Far isentzopic low process the enthalpy change is important. [t is caloulated in teems
of the mitial termaperatuce and the pressure ratio as follows:
', ] AN

(AhY, =Cp(F, - T) = CpTi (2 - J CoT(2ey 7~ e
17 [ Py J

= CQHFE e




Chapter Twao )
Wave Propagation in Compressible flow
2.1 Introduction.

The torm compressible flow implies variation in densiiy throueh the field of Haw.
These vasiations zre. in marny cases, the resalt principally of pressurs changes fiom
one= poinl o ancther. The rate of change of density Wil TCSPESt 10 Pressurs is.
‘herefore, an importent parameter in.the analysis of compresstble flow. and. as we
¢hall sez. it is closch cennecied with the velaciny of propagation of small pressore

distrkance. e, with the velociy of sound,

ter w3 exomine what happens when a solid elastic object such as seel bar is
subjecizd 1o = cudden uaiform distnbuted compressive siness apnhied 2t ong end. in
e et imstznr of time, o i laver naxt to the peint of applicer’en is comorassad,
while the Termainder of the bas is wpaffzcied. This compressien is ihen transmitied io
1he rent lever. 2nd so on down the bar. Thus 2 disturbance created ol the |zt side iz
evemizaly sans=d at the oppositz end. The compression wave mitized ot the loft side
of the bas wkes a faite ume o tresvel to the richt side, the wave veloiy beng
depaniem onthe clasiion and densinn of the media.

Gesas ard Yquid zlso are clastic subsiancs and lenoituc
ssopacated troush there media n the same way thal wanes propagiies throwgh sl

2.3 Wave Propagation in Flastic Media:

wavE LAn ©s

let a gas pe centfingd in a long b2 with 2 piston ar the leld hand. Tie misian is given
a sudden push 1a the righi, [ ihe Grstinstant 2 laver of pas piles L neai io Sl H
and is comprassed, the semieder of the gas iy unaltecrad. The COmMpPEssion wand
created by the piston then moves ihrough the zas unul event.aliy 2 be zas is akle iz
sonse the movemnent of the piston, 1F the impulse given o the gas is infimtesimally
crall. he weve s celled a sownd wave and the resultant comprossion weve move
throeeh the #2s ot ve'vginy gcual wthe velooity of sound.

ko =

Let the pressure change across the wave be do and let the carrespoanding density and
wmpesatss charge be go and o7 respectively, The gas into vwiien the wave i3
nropaeated iz zssumsd o be at resi. The wave will then induce 2 gas velogity o1
hehidd it as il move throurh the gze. The changes across the wave erg, therefone as
shown ‘o 0,22 [norder ta anglyze 1he low trough the wave and thus 1o detsrming
(a1 it 35 convenient fo use a coordinaied systam that is aitached 1o the wave, 1 s
morving wits the wave. To this coordinate sy siem, the wave will of course be at '3l
and tre gas wil effectively flow through &t with the velaciny a2, anezd of the wase ard
a velogity, o710 behind the wave In this cooedinate syveiery. then, the changes
throwugh the was e are shown in fig. 2.3 The pressure, 1emperatuie 2rd density cnange,
of course, independent of the coardinate system used.
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The contnuity and momentum equation are zpplied to a comral volume of v area
across the wave as indicated m fig. For stzady stale the centinuity equation for the
cantrol velume is:

m=m=ig+dofa—dl f--cremmmaenn 7,
where M is the mass low rate per cnit srea through the wave, Since the case of 2 very
wezk 5 Deirg consicer, the second order ierm. dpdl’ ihat arises in veuation can be
nezlecied znd (ks equaiion then gives:

2t e T
Coasemvat oot momantuin @5 road congiderad, The oo’y oo aclre o The cenire]
volume arr ¢ pressore force The momentum equation for $lescy sisie become:
IR B Y .rl:'[!’rf el - c:r] e 23
R leac 2
-.’{?:9 =mdlt o Go= podi il 2

obsilivte eduetien 2 2 om0 euation 2. gives

e . e - -

..'_:I.-'_.' DFodr = I-—I":- ECEEE R

e ‘H Lef'e)
D erLer b sveluale 2 oesing ite above equalion iU IS necessary 1o keow the mooocss

TN fas undergoes in pessing throueh ihe wae. Boesuce a vory ek wove i
relng conaiderad, e tlemperstire 2nd veleziny chanves tirouch the wave are ey
; nd e grediens of temperature 2nd velogity within the wave remain spzlll For
s reason, feat traasfer and s lncoue et for fow through the wave are 2sssmed o
EFg:':' ”"nl:"". 15 pata;z 1?'.:-:ch the wave ife pas s 2ssomed 1o underzo an

n
i)
Tl
T

ceonceilgiti Ms
senropic process. The flow dwewgh the wave is. therefare. assomed to serisfiy;

Y FE U,

puiting this :=ie logerithmic form, and Zifferentiating the equation:
Mp-ving - cons.
ao o a
L p o7 it el -"f. _______________ 21
g f2 40 p
nating they e fluid is compressible and s perfect sas, thetefore p=pR T substitnting

this o equation 2,7 2nd egustion 2.3,

t?:._.] _RI‘ ________----—-'2-1‘.}
Cdp




ng Point Disturbance:

Incity of the body relative to the speed of
Il bodv, ie, esseriaily @ point source of
e velocity, through the gas and fet e
v emutiad wave

2.3 Pressure Ficld Created by a Mowi
Iy order 1@ illustzale the efiect of the ve
sond an the fow field, consider the smia

disturbance, 1o be rmoving at a urifos liny
spzed of sound in inc a3 be 2 Although the body is esseniie:

continugusly, 2 senies of wave ercined @ tme interval 1 will be consider. Since

hody is moving through (he 2as. the cricin of these waives will be continuzily
changing. Wave generated at time 0.1.21, and 3t will be considered. Firsi, consider e
case where the speed of the body by very mail compared 16t sprad of seuind. Ths
pressure pattess which exisis 2l an inslars is then fourd by supeeposinen of alithe
aregsure pulses witign were pravioushy amivied. Figo saous Sy er3) TETSUTE pinss
 for differert valuz of the speed of e soure carrparad with i Dol

r
o
T

ru
=1
-

Inen of Sllenca

Fir (2.3). Pressure field produced by 8 poinl source of disturkance moving at
uni form speed leffwards.
{ay Incompressible Juid (¥F/e = 0
(b) Bubsoric mation {V /e = M)

¢z Transomic motien (¥/: = 1),
{d) Supersanic motion, illustrating Kammeeaz's three rlee of sepersanic flow

[¥ie = 2,
um it incompressible (fig. 2.32 ). or when the

¥ Inconipressible Flow: YWhen the mcdi
smail compared with the speed of sound. the

speed of the moving point disturbance is
pressure pulse spread vnifermly 1 2l direction.

13



"+ Subsonic Flow: When the source mave al sebsanic speeds, Fig 2.3b, the pressure
gisturbznce is 12 in 2]l direction and 2t all poirts in space, but the pressure patiern is no
lenger symmerrizal,

=~ Fupersonic Flow: Forsupersoiiie speed Fig.2.3d indicetes 1hat the phenomena are
entizelv cifferent from those 2t subsonic speed. A1l ihe pressure disturkance are inrcluded
In & cone which has the point source of disturkance. The cone within which rhe
cisturbances 2re confined is called the Mach cone. Fig.2, 3¢ shows the pressure pattern at
2 boundars beragen subsonic and supersorie, that is. far the case where the <trears
vedoein is identical with the sonie velocity; here the wave front is a plane.

Karman's Rules of Supersonic Flow @ Fig 2.3 :lusizales the three rles of supersonic

Sow prepesed by Van Kamman's
1- The Rules of Forbidden Signals. Tke offect of pressure chznge pioduced by 2
cody mevongz ata speed faserhan sosd canaol repch pois 2head of ihe ot

2. The Zooe of Action and the Zone of Sifences. A siaiionan Pl Lourse A
SUPEMSCTII SR AUDILCES SHECT Priv on p0int thal e opoar inside the SMach
cone extendng downires from the peint souree. Conversely, (he prestore aod
LetO0a &1 AN arkirany peirt of 1he siream can pe nfluenced only by disierbence
zcting et peind that les on o1 inside  conz exiending upsiream from the SRt
corsi¢ered and having tle same venies anele 25 the Mach core.

2- The Rule of Cancentrated Action, The pressure distirbance s large
coszennaied inrke nglghbouckood of e Mach cons that forms the voter el of
the zong of action.

2.4 The Mach Number and the AMach Angle:

.Lwas own thal the nature of the flow patiern depends on the cOmLDArarit
miz:tiiudes o the siream v elocity and the senie velociny, The ratio of these tuo
vooaniiv s ezlizd the Mach Number. Thus,

. z4
[¥)
The semi-znzle of the Mach cone is relared 1o the Maeh simber by
: ]
BT = —— oo Z-10
M

etz ikl e mach argle s imaginary for subsonic Mow,

11

Enzmple:

An obseroer on the ground finds that an airplane Aving borzanizily at an aliutude
Cf 3000 m hzs traveled 12 km from ihe overhead pasiion befora the sound of the
aurplane s first heard. Estimate the speed a1 which the zirplane is Aying.



Solution
Tuis assurmed that the nei disturbance prodoced by the aircrall is weak, 1e., that,

as indicated by the wording of the question, basicasly what is being investieated ts
how far the aiccrafl will hav e traveled from the overhead position when the seund
waves emitted by the aireraft are first keard by the observer, 11 the discussion of
Mach weves given above is considersd, it will be szen that, 25 indicated in Fig.
Ti5.9. 1he sizeraft will first be heard by the observer when the Mach wave emanat-
ing (rom the poss of Lhe aireraft reaches the absepver,

Mok, sinoe the tsmperaiust sanes Inroseh vhe zimuepheie, Ghe spesg af

foupd wApiet a6 (e arcad waves pask down abrough she ainesphoie whizh -
meens ihel soe MR waves from (he woreraft are aciualy turzd Thois efacr i, ____.f"
hemagves, emall 2nd will p= aeclasted here, tbe sound speed 30 s erags Lem- =
prralore Beiweznochr pround ond the sirctell benp used o coas e the Mach . _,::-:_;_’._‘}""_3 ERr,
wat . BT

Noaoas gososisd in Exampea 33 Toc aliitulas, ff. el T-om Cmoiaea- AL = . Bt L
enklp o V1015w ke mmpralurs o tREoan 2o oynen b Tz . x‘x.___ .
TEE R - D RSN e o7 oloe mnban oTlfoae ST DFDD L bt lemrpetailin s I _——
TR Tk - DQLEE o 2E0G = Z¥idk Memge the meanospesd of s2Und ir giezn b - e

L=

S AT e A TR 2N = 36 s

n

=
-

From the 2o fpars ia B se2a ka3 5 o the Mash angts heiad on the
r=raq speed of seand then

Tan o= MEH 00 = 00T

Bisince sinp = 1500, 00 falloas thel fane = 1000 — 1 4o
" . .
W = 0T - =28

Hance, it Falieaws that:

Velozite of arerafi = 262 2308 - Bi0Em

Probiem:
A v

CAlrat a temperatere of 23°C s fowme with 2 velooty of 180 m's. A projzctile
15 fred (mio the air stream with a selocity of 800 s in the opposite direcuon (o
that of the air flow. Caleulate the angle that the Mach waves from 1he projectile
make (0 the direenon of melion.
An obstrver 21 sea level does not hear an aircrafi that (s fiving at an altitude of
000 . unti! it is 2 distance of 13k from the observer. Estimate tae Mach
number at which the airerafiis fiying. In amving 21 the answer, assume that the
average temperature of the air between 23 level and 7000 m is ~ 10°C.

r-4

h
r

. An observer on the prownd finds that an airplane fving horzonially at an
<2 altiredes of 7500 m has traveled 6km ltom the averhead poilon before Lthe
sound ol the airplane is first heard, Assuming that, overall, the aircraft creates
a small disturbance, estimaic 1he spesd at whick the 2irplane 15 fying. The
average air temperature between the ground end the altiiude at which the
airptanz is Awiag is 10°C. Explain the assumptions you have made in arriving
2t the answer,

15



In the absent of electromagneiic foree and with friction neplisible, ihe only force acting
on the controb surface are pressare force. Assume that 2 pressure p—epe/? acts on ke side
surface of the conwzod volume.

d . ot . g
pd=lp= ~_}£}d.4 S(p=Epild s dd) = (¥ £ dl - 1),

Simplifying rvelds.

dp = phfdV =0 oo 3.2
The energy equation with no exterrel heat iransfer and no wark, for slady one-
dirmensional flow Decome.

P R L R [y ————

. P
or dh+ -- = G

Arn exprersion forihe sooond law of thermadynamioas aiven

dir , : - o
Fads - % znd fecasenioopic Tow e ahereiore o - 0
& £
[Combining thes? cquition we oodin:
& I ] e C _
B e o+ el =0 whick G he sere g the momeiam ogeslion
-
A -~
3.3 Isertropic flow Through a Vanving Area Chanrel.
Compining :he coniinuity &R momentim cgualion for izantropic flow result in
1 dos dd|
T i e L
o A
oyl
Es - . ’ . .
= =y Therefere forisentrapic flow
2
, ap  dd ‘s
ap— gl = - — =0 and M =--
* == o
. - A .";'I.'] A
Gt - M7= T — e 3
"

Fquation 3.3 demengirais the influence of Mach nurbar onthat Dew. For M=,
cubsenic daw. the ienm F-4 15 positive. Therefore, an increzse in area result in an
increase in pressure and from eguation 1.2 2 decrease In velncity. Likewise, a decreass i
zrea resulis in decyease in pressure and an increase v velocity, For sapersonic fiow, the
Yerm 1-3° in equation 3.3 s negative, and apposite vactation oceur. The jesult iBesirate
in fig have ramifications, Sucsenic ow canned be accelerated 10 2 velociy grester than
e veloeity of sound i a convergizg nozzle. This is tree imespective of the pressure
difference imposed on the flow through the nezzle, I it is desired to accelerate & siream
rom neglicible velaciiv to supersenic velociny. A convergent-divercent chennel must be
used as show m fig,
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3.3 Flow per Unit Area.

Waxtwe will derve a useful relation between the flow per urit zrea, si2enalion
iemperaiura, pressure and Mach nuiabher for perfect gas, Stanting with the equasicn of
conlinsiy we make the E‘-::lllcw‘ne  AMTaiSEmEris:

LT . L O
A RT AT VRYT T
Sohatitzie equation 34 for adizbone Dow
L YN Pl R 1
1 Va f ¥ 1
T{'n Mg a L OO eniional u|'111,_1.a for e racs flow per anit ared mtemmn of W

liminaie pin e equation zhowe By means of the isentropic law reiziion | or subsiute
CoLEn 25

' vy af -
SN ST S — 18
- VR ]"_ =1 L=
|:-|_.- — Il-lp'.\._"ll
1
T oa NMavimum Flow ser L]‘l] Avear To fied e condition of maxirium Tow pes
: Fe
critarcd we conld difforentizie o agliern 15:'-\:‘.h. pErel i A and el thic dernoaine
foaal e oo, -'*.l his cordian we weoid Ung rran N L Thezefore e find e S owe
nzed paly s2t W] i cavation 3 & s we Nnd,
+ " |-.. 5 o] .
Ei‘, LY S S T o 13
AT VR s G

Fora civen poe therefore, the meximon Tow per onii arca deperds oniv onthe
ralia pen I, ror a 2iven value of the stagnation pressure and stzgnalion lemperaiere and
for a passage with minknum erea, Favauon 3.9 shows that maximum flaw which can be
passed is relatively lerge for gases of high maleculer weight 2nd relatisely smail for gases
of low molecolar weight, Doubling the pressura level doubieg the maximum o
woierezs Soutling the ehsoiute s M*pu:ra‘ure level reduce tbe mawimem fow by 2 bour 29
nereent, For 2 with v=F4 and R=287 The K the masimem mass Now por it area iy

— gl bam
T "
it gos0a PRE U
'-I ."Dh' M

Fhe paniculzr veluse of the temperatuze, pressure and dessily ranos at the crivcal swate
(i r: as the mmmimum area) are found by setling M=1n equations 3.4, 3.5, 2.6, Ye will

meter w0 ihe ool properiies by superscript asierisk (L
T ) for air = 0.833
e - T mr = llasas
T APy
* n L . 2 _I_
2o )77 for air =0.5283 2oy )7 for sir 06339
1% o o :r"-'r




3.7 The area Rauo. :
Jusi a5 we have found it convenieat 1o work with the dimensionless 1aiio pip, lc.

[

reference area is 4 . and 50w o compute

i convenient Lo MIEnGLCeE 3 dimensionless area e
from eguzt

c-l
- a

gJ 0 omod 1 ol P
L e = [ = ] e _‘If'
A m oA A |_|::.-f - ]:IL 2 :I_:

am ration i3 alwass mrater (nan onity, and ferany givenr g
prespond twa value of M one for subsonic flow and the ocher for supersanic

Since the formulas thus fee derned Jead io
redious corserical cxieslation | of theof s
sriai-errar natural pracical computalion ire
aly fazitiialed by wosking chan and
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3.5 Isentropic Flow in Convergent Nozzle:
Consider a Guid stored in a large reservosr is 1o be discharge thenueh a converging

nozszle to recion where the back pressure Py is comrollable by means of 2 valve. Fora
canstant resorveir pressure By it is desized o stedy the eliects of the variations in back
sreseure on she rat of mass flow through the nozade, the pressure distribrtion 2long the
nassaoe and on the exit-plane pressure P, These effect are porirayed graphically in Fig

am b, and ¢, respectively,

f'fj‘f_‘:f.ﬂ‘fff:"f ol
Fga
{varigble}

e
3
o i F oW To
Pa* cONST = -
To* cM Exhauster
& i L
e i g
valve
(i)

1 {I-H:I—;-_—-:— IQI €

Regime
o

DisYance Along Nozzle

(a)
Regime I I' Regime T

uk

~—Regime H———-»-}-—H‘egimeI-w J I

Fie. aperation of converging nozzle at various hacy pressore.
i aing

2l



To begin with, suppose that Lo Po=1, shown as condition (i) in fig.. The pressure

is then eonstant through the nozzle, and there is no low, If £ ts now reduced 10 a value
slightly bess than P, as shown by condition (i1}, ihere will be flow with a constantly
decreasing pressure through the nozzle, Because the exit flow i subsonie, the exit-plan
pressure Pz must be the sarne as ithe back pressure Py, A further reduction in P10
condition{iil} acts 10 increase the flow cate and 10 change the pressure distribuiion , bt

here s no qualitative change in performance. Similer consideration apply unlil cangition

(v} is reach a1 which point PP, equal the criticel pressure rztic and the value of Me
ecual wnirv. Furher reduction in PosPo, sey o coadition (v, cannot produce funber
channe in condition within the nazzle, for the value of PerPe canno! be made fess than
e criteal pretsure ratio unless there 15 a throat cpstream of the @xt section (it rs

gasuried lere thal the stream fillsihe passaae). Consequently at condmigniy). iha pressuse
distribusion within the noezle, the value of Pe. Po . and the flow rate aie 2l iZentizal with

ke comesponding guantities for conditian {iv), When the flow reach the conditien the
Dow is called to be chocked.

To surmmarize the proceeding discussion, the two different tope of Tow il he
demeted as recime and rephine 1L Tnese regimes ey be compared ag fuliewe.,

Regine | #ezime [
FoPozpP™Fo PoclPac PPy
FePo=FPiPo FasPg PEPg
NES * el
i Fa maiFo
dependent an Fh#o ndependent on Fhily

AePa He fo

3-10 Convergent-Divergoent Nozzles:

Consider an experiment similar io the one describe, except that a
converging —diverging nozzle 15 to be used. Fig. With Pb less than Po by a
smell amount , the flow is sumilar to that through a venture passage, and it
may be ireated approximately as incompressible. The corresponding
pressure distribution is shown by curve(l) and (it} in fig. When PbiPo 1s
recduced to the value corTespondmg to curve (). The Mach Number 2t thie
throat is unity, and no further reduction 1n PrPo are possible if the stream
fills the passage. We consider next the operation wien the flow is entirely
supersenic, comesponding to curve(iv). The value of Po/Po for curve(iv)
comesponds exactly 1o the arca ratio of the nozzie. A=A, as given by
isentropic table( in this case Ar=A", since Mt=1). Thig is often called the
design pressure ratio of the nozile

22
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. No fiow pattern fulfilimg the condition of isentropic and opc-cimensional
flow ean be found which will correspand to values of P&/Pp between those
of curves (i) and (iv) in D12, One mazthod of finding salutions foe these
boundary condition is 1o suppose that irreversible discontinuity involving
eniropy increase occur somewhere within the passage.

P A L A
= P
1 :

pD=CDp51- Flow To

1
Ta —mpﬁt o
- ]
F P77 7AT 7777
@ : Vatve

i

Exhauster

Distonce Along Nozzle

Fio. Operation of converoine-divergine nozzle at various back pressure,
£ E 2NE 1L

311 Some Application of Isentrapic Flow.

Theust of Rocket Moror. Rocket motor is aenerally consist of two parts,
the combusiion chamber which is a container where the feel is bum and the
thrust unit where the thrust is develap. The thrust unit iz almost a
convergent-divergent nozzle. The combustion chamber 15 2énerale gasscs
steadily at a stagnation pressure of Po and stagnation temperzture of To and
then the gas is expanded isentopicatly in the thrust unit as show in fig.

The converging-diverging nozzle has a throat area of At and exit arca
of Ae. The generated gases discharge 1o the atmosphere at pressure of Pa,
\fost rocket engine gases at about 3600kPa and operate in atmospheres with
pressure of |1 01,3kPa or less, therefore, such a reduction in pressure 15 only
possible by converging-diverging nozzle. The net thrust acting on the rocker
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From cheked flow eguation
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Subsisting these nto ke thrust ecuaticn and rezrranging, there resujis.
pu-] 1 nr -

P 1 o
3 | 2 | Pe ;s 42 M Po
. SRV fal-f== T m U3 [
Podt " _v—[':';i:-]:| I (.F‘cr] .~!r{f-'a P..r:r:l e

Since the pressure ratio Pesfo depends only on the azea ratio squation 3113 | indicates
that the trust for a nozzle of given size and geomery depends Oy on Po and the ratio
Pe. Po and is independent of the 1emperature Jo.

Effiect of Area Ration

We now ask, for given vaiue of AL Po and Pa what exit area chould be oced in
arder (o obtain maximuim thrust?, By appling the caiculus to ecuation 313 it may he
shown afier a laborious caleulztjon that 3 is & mavimem when (Ne sees raiio is chiosen i
such a way io make the pressure in the exit plane exactly equel 10 Pa. Therfore eguzlion
313 become.
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Performance of Real Nozzle:

The performancs of rezk nozzle differs slignly from thal computed by Isentropic
flow owing 1o the fiction effect. Since departure from isentrapic flow are usuaily small,
tha useel design procedure is based on e v 01" |*-u*|fr::np1-: fiow furction which then
modified by empmcal v determined coafficien:. These eoeffizient arz the nolzie
clziciency 2nd 1he nozzie discharge cosfiitient.

The nozzle eiciensy 1wy may defined 25 1he rate of tae exit L m.r_ ererss 1o Lhe
kinztic eneroy whicl may be ohzined by o spanding the g2s isen: ronicaily 10 e same
fizal pressurs,

-
.= __,‘_'__ e ce - pmmrmmmmsanrr= O 3
I . 313

The pozcie decharse coceient (s delined 25 1 :///

the rate of the aciual mass Dow rzte prlote = — — =gl /g/ —_—T
sentropie mass fow rzie ar, whi would be T

abtaized by expanding :he aas iseriropically ic
tha same Jmnal pressore.

pﬂf

The figure at the fight hand side shows the P
inentropic and the real £xpansion process (hrough

(he nuzzle. When the firss taw of thermaedynamiz 5
azplying atthe eapansicn protess fur both fsentropic and the rzal pr £3,

i’ ]
o=, - and  fr=e¢, T thergfore

T
e B

T i P = .
=2c 1, []——-—} and for sentropie progs — = (=) " therziors

A = o

()

e

- -

. Iy o
s =1 P T LI T R
V=2 T I:F IR 37
L =
similarly one imight consider the imaginary isentropic process between ihie aciual calt
stalg znd its Slagnation S1ate a2,

i, =h —% and  h=e, T . iherefore
s z-
i =2c, T, {1—L:| and for iseniropic process  — = £ }* iherefore
' 7. . P
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The procese withiin the nozzle 1= adiebanc Wis mean inat 7, = T, , substiluie equation .18
ard 317 imio eceetion 216 and simplify ing.
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The rmess pervai aea for bsenirops Dow oan be evzloated as 2 funciien of pressure rang
insieted of Mach Nomber, ene czn o substiznle eguation 2.5 in1a equation 3.7,
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Substtging equatien 5.2, 220 ima e ssien 5 M o find e discharge coeficient tn

ieTn el pressune ratio.
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Substituie squation 3.9 into the zhove equation w0 find the discharge coefficient in orm
of Jsuirepic pressore ra2tio 2nd nozzls cHficiency,
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i Po=

PROBLEMS

Air flgms 2t the rate of | xgfs through a coovergent.divergent naczle. The
ealrance area is 2 2 J07F m? and the inlel temperature and pressure are 438 K
and 5B0 kPa. Il the exii pressuce (s 140 kPa and 1he expansion is isentropic,
find

fa] The velosiiy at eatrance.
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(B) The stagnation wemperatse and sTagnation pressure.

{c} The throat and exit areas.

{d} The exit velozity.

A convergent nozzle has an sxit arez 6.3 X 107 m*. Alr enters the nozrzle 2t
po = 6B0 kPa, Tp = 370 K. If the flow is isentropi¢, determire the inass rale af

flow for back pressure af:

fa} 359 kla
{b) 530 kPa
{c] 203 kFPa

' A copvergent-divergent steam noztle has an exit area of 3.2 167" m? and 2n

exit pregsure of 270 kPa The inlet condisions are | MPa ard 390 K with
nepligible valoeity, Assume ideal flow, i.e . no losses, and
-
L

= (0. %45 Al e

A oo
Find:
{#) The mass raie of Aow for ihis nozzle
(b} The throat arsa.
(<) The sonc wewncity o 1the throat
Air flows isectropicaliy (hrough a com ergeni-divergent passage withiniel arca £l
eI minimum arca 3.2 o and ealtarea 1 87 cmi. Atthe mlet the air velfocity I3
100 m/'s, pressure is 630 kPa and tempetature 345 K. Digreasming:
{a) The mass rate af Oow hroteh the nozale.
() The hiach nwmber ai the minimum-ares secticn,
{c) The velocity and the pressure 2 the exit seclion.
Alris flowing in 8 convergem nozzle Ata particular location within che nozzle the
arcsgure is 280 kPa, the stream lemperalure iz 345 K. and the »elooty is 150 ovs.
If the cross-sactional area at this location is 8.28 X to—4 7, find:
{a} The Mach number at this location.
(b} The stapgnation temperature and pressure.
{c}) The arsa, pressure, and lempeoyature 2 the exil where M = 1.0
{d) The mass rate af flow for the nozle,
Indicate ahy ASSSIMpPLiOns you Ma¥ make and 1he source of data used in ihe
sO/uLiomn. AT

. A flows isemtropicaily at the raie ol 03 kp/s through a supsrsonic CORVETEEnt-

divergent nozzie. Al the inel the pressure i3 680 kPa, the temperature 293 K. and

the areais 6.5 cme, I the exit areais 13 cm?, ¢alculate:

(ay The stapnation pressure and lemperaturc,

{b} The exit Mach number.

fe) The exit pressure and remperature, -

td) The area and the velority at the throat, genttd ;

{e) What will be the maximum rate of fow and the carTespeonding #xit hach
number iF the flow is completely subsenic in the nozzic?

A stream of carbon dioxide is flowing ind 7.5 em [.D. pipe at a straam pressure af
GED kPa and a stream tempcratlure of 364 LA TS5 em X A om venlL I EeT
installed in this pipe shows a pressur Ti¥erential reading of 1.68 mm Hg
Assuming ideal flow, determing -
{ay The mass rate of flaw GFCQ-: Compare your answer with 1r.at obtained if the
--pas is considered incompressible.

-
i

"
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3.8.

{b) If the mass rate of flow of CO, were ta be doubled, what would be the new
pressure differential reading for the verturimeler?
¢ed If the Auig were hydrogen insiead of T, other conditions being the same 35
given in the problem staiement, what wouild be the mass rate of Now?
(d} If the temperature of the GOy were 440 K instead of 365 X, olher conditicns
' heing 1he $arme as givenin ihe probiem stetement, what would be the mass rale
of fipw for tha CO5°7
& 0.14 m' tank of compressed air discharges through a 2.2 &m diameler
converging nozile locsied in the side of the tank, If the mass fow cocfficient of the
rozzle based on isenopiz fow throwgh i is 0.9% and the zas within 1me tzrk
expands isothermally from 1 MPato 350 kPa, zlot the pressure in the tanz versus
elzpsed [ime o Lhe pressure Ceeroases. Assume the temperature of the tank s 257
¥ znd tne serrounding pressurz is 1013 <Pa
stromienlly throegh a
A kgds. deternire:

Alr at stagnatian cangditions of 2 MPa anc TR0 K Tows s

convercing.diverging rozzle. 17 the manimam Dow rEve s

qa) Thethreararen s

(b} The velochy, pressere. and lempersture = ke aorzle eait if the ¢xit ares is
three SiThes as lgree a5 Che hrogh res.

Find the th=oai end exit areas in @' for a cnteal-low nozzie handing air 27 the
cate of 6.7 kgss when the desired eall veinaily s 1100 s with the stream 2
p= 170 kPa arnd T 30 K Assume iseotrapic Now and v = 1 <.

3.11. Air flews revessibly and adigbatically in 2 norzbe, Al section 1 of the rozzle the

vglocily, pressurs, temperature, and area are 165 ms, 350 EPa, A80 K. and
113 1074 m3. At section 2 ia nozzbe the arez is 26 X 1077 m®, Find:
{3) Ths mass fJow rate in the pezzle.
[b} V:, .1{3.,‘,5?,. fa and [ LR
{Nore: There are [wo indopendent enswers for this canditan. Calculaie boib
Caigs Er'jtpflml }iﬁ. g throst, delermine i ares,)

e o

3.17..Ar a1 a pressare of 880 kPz and a temperature of 333 K enters a conversing:

33

I -

-

" giverging nozzle through aline of 4.6 X 1077 m* area and expands 10 2 Jelivery-

region pressure of 33 kPa Acsumimg sentropic expansion and a mass rate of fiow
af 1 ke/ss, finc

(a) The siagnaticn enthatoy

{b) The temperature end enthalny a1 Cischarge.

(c¢] The Mach oumber and velogily of the air stream oi discharge.

{d) The maximurl mass flaw ralc per unit 2res.

 Aic Mows itentropically atiae rete of 1 kgfs througn o duct AL one section of ihe

_duet the ¢Tosg-sectional area 592 107 . ostauc pressure is 200 kPe, =nd
stzpnelion temperature is S350 Ko Dewermine the velosiny of the siream and the
runimum arez at the exit of the duct that causes no redueciien ip 1be mass raig of

g,

) % 14. Air flows isentrapically through & converg:’ﬁg nozzlel At the inlet of the nezzie the

*

L

A

b
-

pressure py = 340 kPa, the temperature T is 330 K, the velocity ¥y 15 200 mfs,
and the cross-sectional area 4 is 9.3 1077 . Consider air to be an idesl gas
with == 1.4 and find:

¢a} The sragnation temperzture and pressure.

{5) The sonic velocity and the Mach number at the inlet

(¢} The area, pressure, lemperaleie, and velocity =t the exit if Af = 1 al oxit.

18
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A
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{d) Draw graphs of G, M. F. and v versus pressure, indicating the values at the
inlet and exit of the nazzlc, - - '

Suparheated steam expands isentropically in a eonvergent-divergent nozzie from

an initial $t4te in which the pressure is 2.0 MPa and the superheat is 378 K 10 a

pressure of 680 kPa The rate of Now is 0.5 kg/s.

{a) Findthe velocity of the steamy and the cross sectional area of the aozzle at the
sections whers the pressures arg |0 MPa and 1.2 MPa

(h) Determine the pressure, velocity, and cross-zectional ares st the thrast

(c) Determine the velocity and cross-sectional area at discharge.

. . . _
Assume il = 055, - -
Pa

A convergent nozzle recsives sleam at a pressere of 3.4 MPa and a temperature of
6§40 K with negligible velocity, The nozzle discharges into a chamber at which the
pressure 15 maintained at 1,3¢ MPa. 1f the throar area of the nozzle is 2.3 % 101
m* and the discharge chamber ares is 0.056 o, find

{a) The velogily at the Lhroal,

(b) The mass rate of flow,

2"
ASELT F_ = .55 and the flaw t5 isenuropic.
i
Adr Nows isentrapically through the convergenl-divergent nozzle shown in Fig
3.24 The iniet pressure i 80 kPa, the inler temperarere 295 K, and the back

:' o T
T T ]

i Thran 2
FIGURE 334

pressure 1.013 kPa. What should be the exit diameter of the nozzle which
corresponds to the maximum obiainable value of Mach number at the cxit? What
are the mass rate of flow, the exit Mach number, and the exit temperature?

A rocket motor s fiked with a convergent-divergent nozzle having a throat
diameter 2.5 em. If the ehamber pressure is 1 MPa and the chamber temperatuee
is 206 B, detsrming

{a} The mass flow raic through the nozzle.

(bl The MMach numnber at the exit [ g, = 1013 kPa).

{c) The thrust developad at sea level
Assurie that the products of combustion behave like 2 perfeet gas fv= 1.4,

R =540 J/kg K} and the expansiocn lhrough the nozzle i$ sentropic,

Alr is Aowing through 2 section of 2 strajght convergent nazzle, Al the eptrance 1o
the nozzle scolion the arez i3 4 X 1077 = the velocity i 100 mys, the air
pressure (s 680 kPa, and the air temperature is 365 K. At the exit of the section
the area is 23 107 mf Assume reversible adiabatic flow, Caleulate the
magritude and dircction of the force exerted by the fluid vpon the given nozzle

SEctIon,
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Chapter Four E M
Normal Shack Waves /VI'- /ﬁ /

Introduction: St
The shock process represent an abrupt change in Nuid properties, in which finite e

variation in pressure temperature and density occur over 2 shock thickness comparable 1o b

the mean free path of the gas molecules. It has been established that supersonic flow

adjust to the pressure of a body by mean of such shock wave, whereas suhsoaic flow can %

adjust by gradual change in fow propenies. Shock may also eccur in the flow through

nozzle or duct and have a decisive effect on these flow.

How Shock Wave Take Place:

Consider a piston in a tube and its given a sieady velocity to the right of
magnitude dv. A sound wave travels a head of the pisten through the medium in the tube.
Suppose the piston is now given a second intrement of velocity dv. casing a second wave
to move into the compressed gas behind the first wave. The location of the wave and the
pressure distribution in the Tube after a time 1 are shown in figwe, Each wave trave! ar the
velpcity of sound with respect 1o the gas into which ils moving. since the second wave 15
moving into a gas that is already moving ta the right with velacity dv. The second wave is
moving inte a comprassed gas having a slightly elevated temperature, therefore the
second wave travel with a geeater absolute velacity than the first wave and gradually over
take it. A& series of this induced wave afier its over take each other wilf produce a shock
wave or a sudden change in pressure and other properties.

o < wﬁ’: Fi=Ti=Ti therefore  ajizal>ral

L z 1
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Fig shows onc and two, three and the over take of the sound wave propagae
a kead of the piskon
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Chapter Four
Normal Shack Waves

introduction:

The shack process represcot an abrupt change in fluid prapetties. in which finite
variatian i pressure lemperatirs and densiTv poour over a shock thickness comparable 1o
he mean free peth ef the 2as molecnles, 1t hes been estublished that suparsonic flow
adjust to the pressure af a body by mean of such shoek wave, whergus subsoric flow can
adjust by gradwal chanze in flow propeitics, Shock may alsp ocour in the flow through
nozele or duct and nav: a decisiva effsct on these flow,

How Shock Wave Take Place:

Consider @ pisten in oy whe and s given a steady vebociy to i ront ot
magniitda o A sound wave trasels a hzad of the oiston through the medium in ths tebe.
Suppase the piston is now given a second inCrEmest of velogiy dv, casing a second wive
10 move into the compressed gas behind the {irst wate. The locaiton of the wave and the
pressuce distribution (- 1he mbe atter a time t are shown in figure. Fach wave trave] ul the
velacity of sound with respect 10 the mas inte which its moving, since the second wave is
maving inte a gas that is already maving 1o (he Tignt with veloginy v, The second wave s
moving i a comprassed “yas having 3 shghily elovated temperature, therefore the
seegnd wave travel with a greater absoluiz velocity than the first wave and gradually over
cake it A series of 1his induced wase after 115 aver take each other will produce a shock
wave or a sudden change in pressure and other properties.

g -.,u'rl‘_" Ti=T3=T1 therafore  adzalzal

—_—
Ly

Fig shows one and twg, three and 1he over take of the sound wave propagati
a head of the piston
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Stationary Normal Shock Waves.

ln order 10 anatyze the fow through a siationary normal shock wave, consider a
control volume of the orm shown. This control volume has cross sectional area S normal
Lo che flow direction, The shock wave relations arc obtained by applying the laws af
conservation of miss, MOMentu and energy to the control voleme for steady state Hlow,
We will refer 1o the propeniss of the flow upstream of the shock by subscript "x" and

downsirezm by v

”:. = .I':‘-"r[" -r"_"'r = .lo. lr. "‘;_I' u--;.:a-mi.— Zantral
T S T R T . £ _ Puily WEluTa
Fhe shock wave thiokness 15 vy small iherefore 4,7 ;. S N i S
= \\\iy
. - i

.":‘.I'::-'P.[_-_ """""""" 4.1 \f,—'_""i I—-r--'-.r},
Far periact 233 ':_ i

2 — s —_ ‘_.-"..",-f..f.r.:‘xy.r.-';.-f.-'.rf.n'
—EM MR, o M, JART, emment2 - i

LY kT

Sipce the anly force acting on the cantro! volume in the flow directien are the prossure
foree, COTSErvalon of marnentum s

P4, -rA =m LA

Combine of 2quatian 4 1 into the above cquation, where " = o V.4, =p A,

Popl¥i=P= o 4.3
Farperfectgas F= o R T
Fr+p;E’I::PI[i+I:-e‘LfI!] N

P oV} =P M)

Pl Y= P+ R R
The flow through the control volume s adizbatic and the energy equation becams.
1 I z

¢ 7, v T =c, T, * —;— =¢, +{, For 2diabatic flow the siagnation temperalurs does it

change across the shoek wave this mean that Tor= T -

- ¥+ 1 1 ¥l 1

fl{l"l'—?'—."—'fl }:TIUT.?._M’ ) 4.5

ubstitute energy squation 4.5 and momentum equation 4.4 into the continuity eguation
42

__Mﬂ_l .[1_+?'_'.".l M7= M, _ J; ALY VI .
1+ M, ¥ 1 N

By inspection its evident that one solition 4.6 is the teivial one, A=, This solution
involving no change in properties in constant arca flow comesponding 1o isentropic flow
and that is not of interest far the :rreversible of normal shock, Equation 4.6 can be solve
to yield A, in term af Ad,.
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At -5-—2—
.'Il'ir},: = ?F rq: 1- [, B | .

e 7

¥ -1
~ow to find the pressure ratio after and before the shock, substitute equation 4.7 il
equalion 4.4

P_ - 2;{?&_2:&;'} . 48

= L

E

also o find the temperature ratio aftsr and before the shock, one may subsElIuTe eguaticm
4.7 into zquation 4.2

1, ol -gonkroo]

T (+ UM

and if we substitute couation 4.7 into equation 4.1 we can fieed the densicy and the

¥k

velocity ratio.
0, V. (r+DM

A

P P.r 2+ {.-F - !}*w:-
The ratio of stagnation pressure i3 a measure of the irreversibility in the shock process. [t
may be found by observing that:

Pay _ F:;r "il:: P;
B P PP, )

Now £,/P, is given by Eq. 4.8, and £/P,and PPy, may be found from Eq.3.5. Using Eg.
4.7 for the value of Af, we get after algebraic simplification,

SRR | i

1 F
P Pl sy LT SR e
fa _{ 21 Mj-f_’_] _r+ DM, R e B
£, Lyl ¥+l 24y + DM, '

To evaluate the entropy change across the shock, we employ the perfect gas formula,

T
SI — S‘I = {_-P 'ln_r. - R Iﬂ—-{' . i I |
£

substitute Bg. 4.8 and 4.9 into Eq. 4.12 then.

5,5 ; - v+ DM,
o Ly 2 Mf—y l}+ 4 !n'r (7 +1)M, = .12
R y-1 tr+l y+l]| -1 LE+{;,~+1}M‘
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lIinpassibility of 2 Rere Faction Shock, 4 To
Cariul study of Eq.4.12 indicaie that tor gases with
| <r=1.67 the entropy change is alhways positive when Mx 13
ereatsr than unity, and is always negalive when M i less
thzn unity. The general forn of Eq.4.12 (s shown in Fig, 1t g il
is proven rigerousty that for perfeet gas only the snock {rom !
supersoILEC 10 subsamic is possible. Since the shock process
s adisbatic and according to second law of termody aAmic
the entrony change must be posirive.
Compating Fq. 4.1 for enteapy change apd Ead.11 -
for slagnation pressure ralion, One an conciude ths
foliowing camelution: 1=
NS '
R . 1
According 10 the sevond law of thermodynamic the ra of change of entropy 15 POSILivE
e, and refevrice to Eg.4.13 this mean thiat £, 12 less than Py

Faympteld

The shouk wave whe place in-order 1o kewp the tlew cantinuation this mean that the flow
i steady and the mass flow does nnt change acrass thz shock.

M. Sy
wa have s=en from the presious chapter that the mavimuem mass fow rate can be
achicved at the choked condition aad the mass flaw ratg in term of stagnation propeniss
ared the critical area is,

P4, constant L, A, constans

7. J7,

the fow through the shock is adiabatic theretore Toz=Top

Pocd ;=P d, of F"— = T‘_— since P, P,  this mean thal 4,74
az My

Normal Shock Table:

Table is avaliable which Yist the ratio of the various flow variahle such as pressure,
tempetaiure , and density across the nommal shock wave and the downstream Mach
“Jurber az a function of the upstream Mach Number,

A, M. PP T s FoyPo or 444,
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Convergent-Divergent Nozzle:

We etern now to the problem of the operating characteristics of converging-diverging
nozzle under pressure ratio, discussed previously in chapter owa. Fig. show the
characteristic performance of convetgent divergent nozzle with various back pressure 10
the supply pressure.

Four different regimes ar: possible . In regime  the fiow i$ entirsly subsonic, and
the passage behave like a conventional venture tube, The flow rate is sensitive to change
in back pressure, At condition 2, which forms the dividing line between [ and Jf, the
siach Number at the throat is unity, As regime Jfis entered, a nomnal shotk appears
down steeam of the shroat, and the process aft of the shock comprises subsonic
deceleration. As the back pressure is lawared, the shock move dewn the nozzle until, at
candition ¢ it 2ppears in the exit plane of the noezle. [n regime #F, a5 in regime £, the exit
plane pressures Pe is viraally \dentical with the back pressure £y, On the other hand, the
flows cate in cegime H is constant and is unaffected by the back pressure, This is in aceord

" frtrArT
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| iy I1
| 21
|
-
X Ln__._p s, I — 3 T
H a
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Sioles Downytraom | :
of mormot Shock 1 |
1] L L
Cistamce Akng Mozl
{a)

»
.,
&

in] Curves of pressure verrs distance eleng oochke axis.

{b) Exit-plang presvucd versus back prasmure.

{h “Throat presaure versus back prassure.

[d) Masa flow parsmetser versuy Tetic of back pressars to sapply

]
o

b
T
yn

{d}

with the fact that throughout regime I afl stream progerties at the throat section
are constant.

In regime Jff. As for condition 3, the flow within the entire nozzle (s supersomc,
and the pressure in the exit plane is Jower than the back pressure. The compression which
subsequently occurs outside the finzzle involve obligue shock wave which cannot be
wreated on one-dimensional grounds. Condition § is termed the design condition for the
nozzle under supersonie condition, since the exit-planc pressure is then identical with the
back pressure, A reduction in the back pressure below that correspanding to condition 6
has no effect whatspever on the flow pattern within the nozzle. In regime [V thc
expansion from the exit-plane pressure to the hack pressure occurs outside the nozzle in
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the form of ohlique expansion waves which also cannot be studicd by wne-dimensional
analysis.

in both rezimes JI7 and IV the flow pattemn within the nozzle is independent of
pack pressure, and ¢orresponds 10 the flow patten foe the desien condition. Adjusinent
ta the back pressurc are made outside the nozzle,

Far subsonic flew, there are an infinite number of passible pressure distance
cutves. For the supersanic region of flow, however, the pressure-distance curve is unique.
T put it differently, in subsonic flow the pressure eatio does not depend salely on the
area ratio; in supersonic fiow the pressure ratio does depend solely on the area ratio.

Only over a narmow range of back pressire ratio, namely, the range coversd oy
reyime £ does the flow rate depend on the back peessure, For regime fi 7 TF, the flow
e is indepeadent of the hack pressure, sinee =/ at the sqroat, may b computed form
choted [low eguaticn,

Converging- DHverging Supersenic Diffuser.

A diffuser is a device that cause the static pressure of a gas 1o rise while the gas 15
decelerating, When deceleration i3 isentropic, the maximum pressure thal can be attained
i the isentropic slagnation pressure. Ditfusers are either stbsonic or supersonic,
depending on the Mach Number of the appropching stream. Tn a subsonic diffuser the
cross-sectional aren increases in the direction of flow, whilz in a supersonia diffuser th
crass sectional area first decrease and ther increases.

A supersonic diffuser is located at the inlet 1o such air-breathing engines as the
supersonic turhojer and the ramjet,. The high velocity air is decelerated by the diffuser
pefore it 18 compressed in the axial flow compressor of the turbajet or befare it undergoes
combustion in the ramjet. An iddéal supersonic diffuser consists of a convergent-divergent
passageway in which the flow is shock-[ree and isentropic, Decelaration of the flow to
=1 at the thyoat is followed by a fusther deceleration to subsonic speed downstream of
the ihroat. In real application, however, starting transients and off-design interfere in
establishing the desired flow pattern. The maximum pressure that can be achieved in the
diffuser is the isentropic siagnation pressure, Any loss in available encrgy { or stagnation
pressure} in the diffuser will have a harmful effect on the operation of the engine as 2
afole. For a supersonic diffuser it would be highly desirable to provide shock [ree
iseniropic fow.

For any configuration of the converging-diverging diffuser, there are Twip vahues
of Mach number in which the flow is isentropicatly compressed, this will called subsonic
design Mach number{ Mprs Yand supersonic design Mach number(Mpr} The following
cases will show how the flow is established from the starting-up 1o the design flving
tfach number.

1- When the flying Mach Number is below Mpa. value, this mean that the aciual
hroat area is orater than the critical area, therefore the flow at the throat is
subsonic and the flow is continue to compressed at the divergent pait as show in
fiea.

2- When the flying Mach number reach the Mpms value, this mean that the actual
throat area is equal [0 the critical area of the flying Mach numnber, therefore the
flow at the throat is sonic M=1 and the flow is continue to compressed at the
divergent part and the exit Mach number will be subsonlic fig.b.

35 ) S




+-
1

C

When the flying Mach nuember is grater than Mpne valug, this mean that the
actual throat area is less than the critical area this mean that the throat area is oo
small to accommedate the flow, The pressure is ifstantaneously increased at the
throat avea and part of the incoming féw is divert or spill over the infet cowl of
the diffuser as show in fig.c This mean that as the flying Mach number increase
the differcnt between the throat area #nd the required area increasc and hence
mass spill aver is increase.

When the fiving Mach number (g grater then one bt is l2ss then the Mo, | in
this case the throat arca is less than the critical area or the reguired area to
sccummadate the flow, Thercfore the instantancously pressure built up at the
theoat area. A curved or nomal shock is appears 1n the front of the diffuser
intet. The subsonic flow downstream of the shock is panially spilled over the
ditfuser inlet, reducing the mass {low through the inler, this will lower the
combustion pressure and a loss in thrust,

YWhen the Aying Mach number is equal to the Mpg, vzlue, 1n this case the
existing of the shock wave will caused of stagnation pressuee loss, The eritical
area behind the existing shock is increassd and this mean that the eritical area
upstream of the shock is equal to the 1hroat area but the arca down streant of the
shock is still grater than the throat arca. Therefore the nomal shock is still
existing and the flow spill over is continue as show in fig. .

To pver come the cxisting shock the engine have to speed over the design
supersonic Mach numbgr until the shock located at the diffuser inlet. At this
case the bMach number dawn stream of the shock wave i3 equal 10 the Mpne so
that the mach number at the throat is equal to sonic. A little increase in speed
will make the shock wave to swallowed and stand at the divergent part of the
diffuser as show in fig. e

To teturn back to the design condition the engine have to slow down 1o the
design supersonic flying Mach number, in this case the shock wave is drawn
back toward the throat and it strength will reduce gradually unti] it vanished at
the throat when the flying Mach number s equal 10 the Mo, as show in fig.f

el
-
R o g M _H_/./
L < —— Hexd L - ek o [T [« AT -— el
e < e e Co bl
N /"~JAT“‘\\ e
\H'l.
ll
ol -

-rp-...é M_p W el 'IE \\-\—L-r'}/ Wlﬂl!;:;;b l*:_,_,_/
o . ] Hea wr P M=l kel — - e
| —_— - " k B vl

/ﬁ‘_“\ I -
- .
P T : k] P
'\_\1 ATt ‘L"‘--ﬂ-l' e
.l
AL = \‘\—\—Ai.—'-'/
= . W

=2 - Moed MiaL M
Py
T N-I"'

36



L

4.3,

44,

4.5,

4.4.

- 4 pz. .

PROBLEMS

Air with initial stagnation conditions of 700 kPa and 230 K passes through a
convergent-divergeni nozzle at the rate of 1 kg/s. Althe exit area af the nozzle the
stagnation pressure is 350 kP'a and the stream pressure is 500 kPa. The nozzle is
insulated and there is no irreversibility excepl For the occurirence of a shock.

(a) What is the nozzle throat area? T e

(b} What is the Mach number before and after the shock? T e

- ™
A

' {¢) What is the nozzle area at the poiat of shock and at the cxit?-

{d} What is the stream density at the exit? )

A perfect gas {(y ™ | 4)enters a converging-diverging noezle with a Wach number

of 0.50 and Jocal pressure and temperature values of 280 kP and 280 K,

respectively. The nozzle thioat area is 6.3 X 104 m? and the nozzle exit area is

26 % 10~* m?. The nozzle exit pressare is 170 kPa.

(a) What dre the values of the Mach number and the stréam lamperature at the
exit?

{b] At what ar¢a does the shock oocur?

Show your method of solution on a skeleton flow chart.

An air nozzle has an exit area 1.6 times the throat area. Il a nommal shotk occurs

al a plane where the area is 1.2 times the throat area, [ind the pressure,

temperaturs, and Mach number al the exit. The stagnation temperature and

pressure before the shock are. 310 K and 700 kPa.

Air epters a supersonic nozzke with inle conditions A, = 6.5 % 107* e,

M =18 p=35kPa,and 7| = 160 K. A normal shock occurs in the nozzle

resulting in an increase in entropy of &g = 113 J/keg K. 1f the Mach number al the

exit M, = 0.3, find:

{#} The area of the normal shock A,

(b) The Mach numbers before and after the shock M, M.

¢y The pressure at the exit p;. '

{d) The mass rate of flow per unit area &t gxit.

{x} Show the process on a schematic flow chart and a Fanno-Rayleigh plot.

Assume isentropic flow except for the normal shock

An impact {stagnaticn) tube in an air stream reads 186 kPa, If the local

temperaturs is 293 K 'and the Jocal Mach number is 0.8, deleqming:

{a) The losal pressure.

{b} The mass raie of flow per wnit area.

A Pitot tube and a thermocoeple give the lollowing measurements pertaining to air

flow in a duct:

po =180 kPa, p=137kPa, Tp=1250K

:\.FJ
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Moving Shock Wave:

Previous secijon have dealt with the fixed nommal shock wave, However, many
plrysical situation arise in which & normal shock is moving, When an explosive peouts, a
shock propagates through the atmosphere from the peint of the explosion. As & blunt
body re-zniers the atmosphere from space, & shaek travels a short distance a head of the
bodv., When a valve in a gas line 13 suddenly closed, a shock propagates back through the
sas. o trext these cases, 1t 15 necessanto ewterd the procedures already devclop for the
neced normal shock weve.

Consider a nonnal shock moving at constant velocity nlo still aic as show in fi=.
Lot Ve= absolule shock velucitn apd We= velocity of the gases behind the wave, hoth
velocilies are measured with respeat 10 a fixed observer. For a fixed observer, the flow s
not swady, sinee condition a: 2 point are dependent oo whether or not the shoek has
paxsed over that point.

Mow consider the same physical situation with an observer moving at the shack-
wave velacity, 2 situation, for instant, with the gbserver "sitling on the shock wane” The
shock i€ now fixed with respect to the observer #5 shown in {ig. B3ut this the same case
zlready covered in the pormal shock section. Relation have been derived and result
cabufated  for the fixed normal shock. To apply these result (0 the maving shock,
consideration must be given ta the effect of observer velocity on static and stagnation

proparties,

vr
'
- /-0
1
ur - r il il il
¥ v v - I"llr - v, Vem W, - v,
N [ -— . N
?I‘ rr F i
ol Moving wive (b} Srarineary wisp

Since staiic praperties are independent of the observer  velocity,  the
wansformation of the coordinzte system bhas no effect on slatic properties, Stoynation
properties on the ather hand depsnd on the ohserver velocity and conseguentiv ase
aifected by the choice of the coordinate systern, Table 4.1 show properties in a fixed
cocrdinate system and | a moving coordinaie system.
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\When a normal shock wave travels in a closed-end. the gas between the shock wave and
the closed end remains at rest, The gas behined the shock, however, moves at a velocity
V' as shown in fig. The incident shock is reflect ed at the closed end of the tbe and
propagates back through the incoming gas. For zn observer moving with the wave the
veloeity zppear us shown in fig. Since the gas veleainy decres aLross the reflecied wave,
the incident shock wave is reflected at the end of the mbe as a shock wave.
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Chapter 9

Fanno Flow

94 INTRODUCTION

Arthz star ol Chaoierl we mersaned ihar area changas, friction, and h=at leansfer are
the most Imponane faciers sffesting the propecies in 2 Pow system. Upom ki point
vz huare corsidered only gee 48 these facioes, that of vanaiions in arca. Howeser, we
has e alae disocssed the various mechatiirns by woick 3 fow adjosts o meet inzpased
bouadar conditens of either How direcrion or prassore equalizanon. We mow wish
b take 4 ook @ the subject of fiction losses.

To swwdy anly the effeers of friction, we analvze Aow in a constant-area durct
without heat ranskes This comesponds o many practical Qow sitezions ehar invelve
reasonably shom ducts. Ve consider fiest the fow of an arbirary Muid and dizeever
that i behavior follow s a definite pattern which (s deperd=ant on whether the Aow i in
ihe subsones ar supersonic regime, Working equations are developed for the case of a
perfect gas, and e invreduction ni a reference point allows aable to be consiracted.
A before, the wble permeits rapid solutions ta maey problems of this tvpe, which are
called Fanns fow.

9.2  OBJECTIVES
After corpleling this chapiae susvessfully, vou should be abls B

L. Last the assamptions made in the apalysis of Fenno Aow,

2. (Qprioesl) Simplily the pererzl equations of continutly. energy, and momen-
tum b phiin basic celuticny valil for any Auid in Fanao fow.

3. Sketeh a Fanne lins in the b=y and the A-s plancs. Identify the sonic paint
and regions of subsonis and supersonic fow.

4. Deseribe the vanation of jlatic and sragoalion préssure, stalic and stagnaticon
ternperatere, Statie density. and velowity as Now progresses aloag 2 Fando hine.
Do for bod subsonic and supersonic Ao,




A (Ol Staming with b principhks af CUTLIRLILY, SREEDy, and RRHen-
e, deries exarsssions for property calias such as o T ey anl s o
i Lertre o8 Sagh e 137 ) and specific heat ralws 1o for Fanas £oa
a purlect s

6. Tieazribe (mzlete 7 =5 dinerari) hoew she Faano table s Jevzlopes i e
wic ol g 7 orefrrence lacation,

7. Dieiing fricrion fistor, equivilert dimerer, grbzntute and eofseive £ TN
b soinre ared Einemaric viscenioe, and Mevualds s ard Bndw pas 0
determing cach

&, Comsyare similarites and diiTerenzes between Fanng fowe e gt 22ochs,
Syelch an & -5 diagram showite a tpeca! Fuana ling wzelfier with rentl
sroch 10 108 ims Ma3ss Ve,

%, Explain what b5 maant by feicien chosog.

10 (Aotinealt Describe some poestie Coneuedies wf addine oot in a2nsked

Funog o situarion (for both subsanic and supsreonis Aow).

I1. Demonicae the axility o solve 1ppical Fanno R proolems by Lz of e

appropan tatles and equarions.

6.3 ANALYSIS FOR A GENERAL FLUID

We Hrat cansider the geaeral behavior of ar arbirary fluid. To isolate the efieoss OF
friction, we riake the Following assumptions:

Sieady ong-dimensional lew

adiabatic - dg =10,di, =0
ver shafr work Ew, =10
Maglect potential d-=10
Conmsiant area da =10

W prowsed by applying the basic copaepts of cominuity, snergy, 10d momenlum.

Contindity
gAY = cona
bl since the flow ered bs cosstant, this redses 1o
_p'.-"' = C[INai [g.l:l

Wz assign 8 new symbol G to this constaet (The quantity o V' b which is referred o as
the mizss vedociny, and Lhus

aV — (G = const (9.

What are the Lypical units of &?
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Enargy

W nla witk

o .—.gf’.-' ho-—w

Foe icdiabatae arsd poowoek, Lthas becomes

frop o= da oz from oot (.3
Ifwe et ey peyntiod ferme dhis mgon s that

By =i — = coms LR

il (9.9

tow Tor any given flow, the constant i, and & a*: kaown. Thus equation {8 5;
establishes 2 untque relationship belween # and o, Figure 9.1 is 2 plor of tais equalion
inthe k-t pL‘tIl: for variouws walues of 7 [but all for the same b Eachcurve s called
& Fiastreo fine and cepeesents Aow at a particelar meepr velpoty, Noke carefolly thas thas
i comslant & and nol canstant . Docts oF wariows sizes could pass the dame moss
flow ratz bul would kave differant mass velocities,

Voo ! Emcreasing entropy
[
1| H.
k)

L
1 "..I % A = constant

'q‘l -

Fanno ne

5= canstant
= ¢onsiant

lngreasing
mass velocily

v=1/p

Figure 9.1 Fanno Lines in b=y plane.




Onee the Nuid is knoswo, vsne s al-e plot Lines of cowskint entiopy 0 the fr-1
diagram. Typival curws uf = wnsiail e b o Jushed lines i the frgure. It
1w much more initrctive to plad these Fanmo Bies in the fantliar d—s plane. Suclen
Jiaeram i show an Fagure .1 AL pain, 2 significant Facl hocoues yuite clead
Gipee we hove assumed ot here 1~ o il Lrgiefer e, = Q. the pafy way thil
enteopy cun he generaled is trrouzh areversibidities defs, b Thus fhe o can only
proaress toweal fnrning v o enreopt Why? {an you Tecate the pointy ©F
i entropy foreawch Fuono s Froure 9,17

Let Uy examine one Finnd ha i grealer detwil, Floure 9.3 shows o mivenn Bonos
lina tomether with Ty ploill pressie tege, Ab points on this Jine paprese il states with
the smme miAss Bomw pabe per QT ared (ians veligityy ol the same spagnation £n-
thalpy. Due to e rreversiible nutura o the friviiom effects, the Aow can only pro-
cegd to the prht. Thus the Fanne Ling - Jivided into b distingt parts, il Uppet ]
o lower branzh, which are sepacated By o lmtine point of masimum enteopy.

What does intuition tell us abaut sliabatic fow in a constant-area duet? Yve nor-
mally teal that frictional effets will shovs up as ao iaternak generation of “peat” with
g corpesponding reduchion in densinn of the fieil. To pass the same flow rote {with
comstant agea). contipuity then fone - the velneity o increase. This increase in kinatic
preray must causs a dedrense in enthalpy. since the sag ration enthalpy reinains con-
ctant. As can be seen in Figure 9.5, (his agraes with flow along the upper brondh of
the Fanno line. Itis also clear thatin this case baeh the static and stagnation pressurs
are decr2asing. -

But what about Aow alpny the fower bruch? Mark two poinls on the lower
branch and draw ap arow 1o indicate proper movement along the Fanno line. What
is happening to the enthal py? To the density [see equation (9.3)]7 Tor the velocity
[see equation ($.23}2 From the figure. whal is happening (o the static pressure? The
stagnation pressure? Fill in Tabde 6.1 with fnerease, decrease. O reRtrng Consianl.

Fanao Las \. |z asing
prustare
Pomt of masim
' pren Fann
fo g L Lumsi Lo prnl

Figure 9.2 Fanrn i i =3 plan. Flaure 95 T brrchis of 3 Fanm Dy,




Talde vl wnalssls oF Fannn Flaw for Figure 9.3

Prarsi Livwei Braneh

Enta oy
TR

Lppaer ooy

Nubeiny
Fosaslor dlalicn

Frosa ne [~z e

————— i ——— .- D — e —— - . . —_——

Notice o on Dz lawae branch, propsitigs du el safy 0 1he munnet prredic fed
by deiiatian, Tt asisd e o bhow resimz with which w2 are il veny Famiiinae.
Gotore we inestizae the o paoind that separatus dies B flows regimes. LT ws
foTs that thee fos s oo have one thieg 1 eomaon. Rocall the stagoalion pressoee

elersy 2unilan

STAGHATION PRESSURE-ENERGY EQUATION
Consider e Dww sectin 1 logations on tie phrsica systein shown in Fiyuee TP
we ot Lo distanes botwecn fhese ‘ocalivns approach zew, we are deabing with an
b nitasinial conenal valime with the thesmodynamns stares Jdiffersntally sepaned,
as show 1 in Figure below. Ao shown ate Lhe corresponding STagnatton sties for these
tw bocitions.

We may write the foliowing property -elation berween poinis 1 aad iR

h

Fiunre Infavesimally separaled static siains wilh ass <raded sdagnaliCny siames.

Yas=dh - 1vdp (A1)

Mote that even thouzh the siagnation stales do not acwally £xIs0, they reprosend
legitimate thermodvaamic states, and thus any valid propenty relation or equation
miay be appiied to these points. Thus we may also apply cquation (A1) berween
stares 1, and 2,

Tids. = i'.'”!r — dPI [ﬂl}




Hueays o,

dr, = 14 %)
el
o8 = ok s A4
Thus we paay sl
Teveds, 4 sy =, — vl 1AL

Fovai] the ey evuatues weiiten 1 the Troin

.';,c‘; = 5“'_.' + |;.:'.;'Ir 14 &

By sulstinng duy um aqualaon A 31 ma A 61 we whrn

Sip o= Sy 4 Tpids, 4l b weedin AT
N atun recall that
g =T ds, (4 5l
Subsimte equalion (A8} e LA T and note Lhat 1-, = /@) and

your should abiain the following gquation, called the srﬂgurnr,m Dressure—eRergy

'E'iir”li'l FI'J‘N.

dp
£

L ds 0Ty — Ty Tods, + 3w, =0 (A9

For Fanno fow, ey, = du, = b

Thux any foctionul e'fect Mt v ause adesreasa in 1 olal orslagnatin pressime::
Fizure 9.3 vertfies thi< for fov olong tah the upper and |ower branches of the

i

I-'nn:'u:: hine.

L imiting Peint

From the epergy equarion we had developed,

1

=h+ _ - constant (%4
‘?gr




Chlierentianrs:, v ablair

) ) (e
i = —-- - -0 14601
3
Fronocenim iy we Bl Towand bt
ol = (7= consian w2
Erilerzntialie g 1hid, we oboin
] :.I.l-I — ll.’l".l':.:r_:‘ 1".:' ?;
wh o e e snbved Sof
. il
e - — IE
i

Tnrodace g zston 4908 inta (96 ard i that

LT

an o= (949;
g
Proe tecal; the preperly relalian
Tds =l —dp
'™
which cam b wrillen a5
3
.o
Tds =g g (5 1k
a
Substituiing for ¢ foom equaion (9.9) yislds
. Vide d
'Fnrs=--~-———'? 9t}
g8 ¥

W hastsn tu point oUt il this expredsion 1= ov3hd For any Quid and betweern
v diffzrenrially separated points anyplace along the Fanno lane Bow ey apply
egution (9.1 1] w wwo adjacenl peants that surccund the limiting peint of maxicruen
eRtropy. At this kecation 5 = const; thes 4 = (0, and (2 L) breomes

¥ o L
—— =dp at limdt point (S
kD

or




. dpr g
v e g (O P (913
£ (tf.ﬁ);; lirzie g=ud: h £'+"J ): w ot J

o

This shoutd be 2 Fimsilioe expression {dp'dp= J'_:ﬁ:' Oy ad we revoamie et e
velngdre fi ol of S Dimiting peainr. The ubget Rranct van bow fe mere shenn-
cantty colled Lhe sisonds Branch, aaud the kow or Brinch is seen o e e Saperili
£ reareatit

Mow we Begid 4 ses @ peasan [or e failure of gur intucion o pradic Beius o
o the lawe: »oanch of the Fanro Tine. From our privotis sidizs, 12 sows Lhis
Nuid bekauior in supersaaic o is Fregqueicly Comraey o cspoclatiuna. This
poinLs OuL the fadd il we Tliws most of aur lives captannically,” anmd, an factood
Liaw isdge of fuil phenomens Somes enainly from experieacss with RSt L
P icds. 1 sheoouldd b anppaznt (At s Saniot Lss nor intuition o guess 2 whaimignt be
kappening. pariiularly enbe supersuaic flos regime. W o [earn o gebreligious
and put Exith ie our carefully derived relaions.

Komentum

Tiwe foresaang analyiis wid made using oaly the contaii; ancl 2nengy Tetatiang. e
now proce sl 1o apply IROmMER T Conge pts o the contre! volume shos nin Figure 9.4
Toe £-gompanznl ¢f the mormentum equation fue steady, one-dimensional Aaw 13

Frorm Figuee 5.4 we sie thal the force surumAtion 1§

Y R=pA-mA=f (9.1

where Fr reprasnts M roval wall frictianat force on tha Auid Belwesn seclions 1 and
3 Thus the momensum equation in the direction of Qow Teeomes

£
i ———
T ¥

_—h-: II"+_

. | | -
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1 g
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O h T Coptra] valume
1

Figure 9.4 Momentum analysis for Fanng Baw. -
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St equasion T Can be w2 as
F. EIETE R A i
oo Do R 19341
A oy 5.
"
: = Fs -V,
N ) Sos T 1917}
\ : A o

s Eris b U =gandtion baonet pasticotacty ceebi) encept 1o briog vt one signifcan
Cacl For rhe sroady, pre dimeradaan? consientare flaw of oy fdund, the value of
fo4 eV s caneer be consiand iF frictional Forces ace present. This fact wili be
recaliod Later o the chapier when Fanne Bow s coniparzd with normal shecks

Hetarz [2aving Lhis section on Huids (o geceral, we might w1y o ben wionds ahows
Fannt g 2 lew hlech numbers. A glance at Figuee ®.5 shows that the upper branch
i+ maymitezally approaching the hoerizontal lne of constant total smbalzy. Thus the
eagrere laflend af the Fanoo 1ine will be nzzels bonizontal. This indicates that Ao ar
very low lach numbers will base almos: conglan veleoity, TRis checks gur peevioas
work, which trdicated that we coglel el $agai a2 incompressible fluads if the 1"'«-]’:|.Cl'|‘l
numbers wers very srmall.

5.4 WORKING EQUATIONS FOR PERFECT GASES

W have diseovered the general trend of property varaeions that oecur in Fanno Aow,
buih io the subsonic and sunersoaic dow Tegime. how we wish  deselop some
specife wosking equations far the vuse of o perizel gas. Recai thatthese arg rejatioes
berween proreriies at arbiteary sections of a flow system wrtten in teoms uf Mlack
recribers 2o the specifc haat ratio

Energy
Woe srart with the engrey equalion daveloped an Sepdegr 003 sinca g leads iorowedi -

alely tooo empealues ratiae

hy = "!":" {93}

Bur for & pecfeet 2as, enthalpy is o fupction of lemperature enly Therefare,

- Too = T (9.18)

P s

I [




Nira [or a peresl gas wilh canaiant spevilic edts,

e
T = T(I - .*u-)

-

Ha e the enasrey cijuatian forEanng Give Can b wrifan as

- .

el S
T,{LJF'”,, .w.‘-)=r:L1+’rﬂ .ur:-)

i T bfiy - LM
R HES
Continuity
Fram S2ciipn 9 3 we have
pyY =0 = const

ar
m Y= i

1f we inroduce the periect pas equalion of s:ote

p=oRT
the defnnion of Hach aumber
¥ = &a
apd sonic velocity For 2 perfet gas
6 ,,-"EET

equation (.21} zan B salvedd far

pr M (Tz)m
™ MAT

19 L

L 20t

191

(%21}

{5.22}

£"an you obbain 1his expression? Now introduce the temperature retio oo (5.20) and
¥ P

you wilk have the faliowing working relation foc static pressure.



L -
Taz densla relaten car easily be ghiz -0 S0 equazion (2009 23,0 and ks
perfecl pas Law
'- |1
§ B A e L] B T
- — ! - - RS

F ” -1"Ir:- [ | - ;‘. “.. :III'J‘:J

Entropy Change
Wz sear wilh an espredsian for entmopy €0 2722 113005 w20l Berasen Qi 1w 0 il
M=o b= - & I E REY
] I

Egumion (4 137 van be used oo subsibate {3002 and we nondimensinnalize the egua-
Licn g

L ¥ T 1 o
—— = Ir = —in— (.25}

E ?—i ]r: fg

1w sy wtilize the expressions just desslopad far the tempesdue: catio (9.20) and
(he pressure m@iio £9.13) the entropy changs beromzs

fr=& 7 I s (! — e - I],."l}-.'rflz)

R v — b- Ly — 7260
M, (1=l — D2ty ' )
S # 19.201
Miblefir - 1p72]AES

Sl iz thes entropy chasae berween i n st in Faees flow cun be wiineg o.

(27

§1— 5 | X (] +1 v - |_alf3|.\;|2)t,fr:;-3-.r
= In — ry
" .'1".ir| 1+ ['.:-" - ]_:'_,‘IEI.'LIE'

B regatl that in Section 4.5 we inlsgralad he slaznation prassure—energy equaticn
for adiabatic nowork Aow of a perfect gas. with the resul

P _pmron — (4,281
et
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aeeed eguiatan b 2o T

T v 1072

_ et = f A rebdiy
o v (S T TH !

W oser (i T 77 = S0 3t and wewun £a4ln vanddrooia iahls pivipg vatuzs of
For wersas 8 ver zoamcular y, Egaztiae {0 2 e be bl i sumilar fashior.

[ey 3inin cade
f-=2 A= AL an el
e M=

ard gapaativns o 20 ARl

! e 2 352 -
-] = — 1 - VI iy
AT L= YEIRE } = J A R

Tha deasitn e2ne 241 be obtained 15 b Tugesion ol Mach rumber amd 3 fram
pqulion {9,241 Ta< is particularly we=tul sinee 1o By reprosenils @ velaziay Lo,
Why"

_ ' |-2

P S O b Bl (el P s P

PR B . S = A G943
T T ( T+ 172 JEM )
Appky [he ' 5am1 [20qEes L equatian (92587 aned show that

lr=lt: 20—

I o .
- A A (et L
% T ( [I:E:'T 1].“| ) = fiM.y) {9.44)

We now pecfarT the same (ype of (ransiormauon o equaton {34000 hat 1s, let
T = X Mao=e M [any walue)

& = " o= 1 ’ !

withn the ballewing r2sult

IR ("'_1) Y el iy ni2Me
D, Ny [\ w4 172 )
L 1 =l .
(e )-G N

Buta glance at the physical diagram in Figure .5 shows that (x" — x) will aiways be
a negative quintn: thus it is mare Loavenizm &0 change all signs in ¢quation (.45)
and simplify itz ——
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In f - In {l — r - .-‘-."!J = gt (9.3
wid ther LI peeloaning, we obain
P S RS PV PR AT
—_— e L= P L3
T | = Tiw -« LafZgar:

wh R ens P sl toschatituty Tord T/ T an (9,30,
Thz coertinnty reilaleon [eguithon 09.29] pur in temae gf 3 perfocs 234 beoenes

,_'_‘ = Sl 19 Y

By fepcrithmic Literentiason fake ti2 nateresl logasithn asd then deiteonsiae ) st
that

W . Al LET o (0.14
— ——— = — = H
poM 2T S
Ve cam intreduce ogualion (9.33) to eliminate 77T, with the resuluthat
d A Ll + [ =120
Hemm B M) (9.36)

P M2 T [l — 1327

which can be wsed to subslitute for 2/ @ im (9.30).

Blaks the indicated substitutions for dpfpand a7 /T in the momentum equation,
reglect the potential teem, and fheww that sguadien (3,30} can be pulinee the Bpllowing
funn:

de dih +(iy — 172107} AT 2 s

B, 1+[iy - Lis2Je [YERRI Y

1od{l [y — 2™

Ty L (s = 1M 9.37)
The las: termn can be scrphbed For integration by nosine thal
1 &[] wEly — 13/2]M7) - IJ:;LF
p M4 [0y = Df2iMT T I M1
iy =l Sy - /2] M 238}

2y P+ iy — 1303]Ad-

The momentum equation ¢an anw ke wrillen as

LTI




i wop 170+ KPR YN T TL Y BT | T .
i — — . i-l' — —— o —— e — 1939
i, 2 [+ ey = 1122000 w A Jyo Al

Fopzasian (9. 39 is restrctad 1 slely, ong-imensiona 1w af aperfect gas. with o

heur or sork freaades comsledr ared, and ngslinbls petential changes. We can now

o

Giagrals thes eyaalian between La o prinds i e Do and abtzin

fives od oyt e — D 2IWS
—_— PP = - [ _— —_.;_‘
o, 2y Tl =1 20
I ! AR N T
(- S B ol Pl (9.30)
oA Mo T M-

Nore that in pecforming the mizgraion w2 hasz nold th2 fowtion factor ¢anstant,
Srre comiments wil: be made on this in a l2er sacion [F you Rave foegoien s
concean of equivalent dizmetan you may want @ foiew e st pan of Segtion 33
and aquation (3.61).

4.5 REFEREWMCE STATE AND FANNOTABLE

The equations developed in Section 9.4 provide the meuns of computing the proper-
Hes a8 ane location in weems of those given 20 seme aber lacation. The key toproblem
solution is predicling (e Mach numbee adths dew location thraugh the use of rqua.
tion (9.40). The sofotion of this equation for the usknown My presents a Messy task,
as no explicit relation is possible. Thus we o 0 a rachnique similar 1o thal used
with isentropic flow in Chapeer,

We intraduce aaaier ® reforence sate. which is defined in the same manner A3
Befare (e, “hat thermodyname state which would exist if the (uid reached 1 hach
number of unity by a percicelar process”]. I RiS cle we imagine that we continue
by Fanma fow (1., murs duct iz 2dded) el the valacity reaches Mach 1. Figure 5.5
shows a phvsical syst2m wogsther with its T-5 dagram far & subseni¢ Fanno flow.
We know that §F we continue along the Fanna line (femember it we Always mose
to the rightd, we will eventually reach e liemling poin whers sonic velnoity eviils.
The dashed lines show 2 hyvpolhetival duct of saficient length 1o eaabls the flow 1o
lraverse the remaining portion of the wpper dranzh and reach lhe tumit point. This is
the * reference point for Faano fiow.

The isentropic " refererce points have also been included on the T -5 diagram K
emphasize the fact that the Fanno © reference is a tozlly differsent thermadynamic
stare. One ather fact showld be mentionzd. If there is any entropy differencs betwesn
tag points {such as points | aad 2, their isenuopic © reference conditions are nat
the same and we have always taken great ¢ase 0 label them separately as \“and 27,
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Figure %5 The " tefarence for Fanng ow.

However, proveedins from either point I oor point 2 &y Furee fow will vlamatel v
lead 60 the s3me place when Mach [ is reached. Thus we do nert have togalk of 17 or
2" but merels " in the case of Fanmo flow. Incidentally, why are all three * reference
poirts shuwn on the same hoarirantal ling in Figure 9.3 (Yoo Flay need 1o review
Secrign 4.6

Vo Ao rewriis the working equations in terms of e Fanna flow = referency
cendition. Cansider Ery

I b+ly -y
Y e

92
Let point 2 Be an arbitrary poial in the fgw sysiean and |2y s Fapne * condition be
point 1, Then

=T M= M (any vzlue)
=7 M=




anal eaalian (2.2 begamas

r {» - 1H2
—_— —- —_— = FiM e (94l
T [+ Ly =~ 037210
We g nat Tod- = FIM .o p and we cin gosily ¢onslens a ribie giviing valees of
trostend 1oa siritar Frstion,

700 wersus M Geraperiecular ., Eguetion 1923 can e

[ this cose

fa=p Ma=+ M (anw salue
o, o= E M=

am 2quation (9.15) berands

) 1 o e 1.2

ARV R S R ;
The densily ratic g0 be abiainad as a fuaction of Alach number and > from

cquaton {9.24y. Tals 4 particularly us=iu] sinze 1t alst represanis 4 veincaLy ralio

Why
gVt (s + [y — n;z].-u!)'-': ,
o - = fiM. ¥ 9.43)
5TV T MNT Grrbd ST i
Apply the sams 12chnigues o equation (9,23} and show that -
b1 {L4fy - Dy r
== — M.} IEREY)
P, rrf( v+ 02 ) Judy
We now perform the same type of transformation on pquarion {9,400 that 15 let
Er = X Ay = M [any valug)
B = at Moo=l
wiath the following result:
Fig — o' (}-'+1‘ [ (]-!-—'[UJ— l|,-’3'|.'I-.I':J
= = n| —————
b, 2y ) (v + 112
L 1 ¥+ ] .
L ad LR & g 43)
Y (M' ) (34 [“

Bu¢ a glance at the physizal diageam ir Figure 9.5 shows 1hat {x7 — x] will always be

a pegative quanltity; hws it 1s move con vement to change ald signs in equation [9.45)
i,

and simglify 1t




Fiat -5y I)J-( liy = 132 o }
T S RN I EI TR TEY S

I | .
= | —= _ = Fi{M, L
(u: Q Ay

e

The qunnnly 107 — oy oepresenes (e amesnt of Cuct et v’ S fos s e Be ol ind
I vaaie the Bow Lo reach the Faena * reference cundilioa, B oae aitemang s be
wiew sd o e asimne duce lenziin then may e sdded wtk o char iy sane Bos
canditen Thus e 2vpression
Jr[.".‘ - vl ..r-‘[-m...'.

. L lsgalzd

‘r'}.l" D:

aral iz Hsted i able alonyg with ihe othyr Fanns Row parameters: 77777, PN
VoV and moip 7 Teothe nest aecior we shall see how this tohie areatiy simipf s
the solution of Fanng fow problems. e st some wands aboot iz Jeterminsian
of friction Tamoars.

[Mmensional aralysic vl the Euid Aow probizm shows that e frizhoe Boar car
D2 enprawged gs

f= fiRz 00 19,47

where B2 as ke Reveolds number,

pyD
KB

Re n 19 43

and

EfD = relative rokghners

Typical values of £, the absefnte roughdess or averaze heizht of wall imegularmies,
are shicrwm in Toble 9.2

The reizlionskis among f, Re aod £/ 0 is datermined exparimantaliv and ploted
on u chart similar w0 Figure 8.6, which is called a Moods diayram
IFthe flow rale 1s Encwn tnesther with the duct size and

Table 9.2 Ahsplute Koughness of Common Materials

Malsral ¥ i)
G, brass, copper, fead smoeth = 0001
Seed, weosshe mon G063
Galvanized jron DS

Casl 1ron LR EE g
Bavered seel 0.0
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Figure 36 Mowdy disgram far ic 2tion Fenoe o geroalar ot

matzzial, the Rexnolds number and relative rgughness can pasily b caloulatzd arhd
the value of 1ke friction Eactor is wkan from b diagesn. The ture 1o the laminar
Bow region can b represented by

== (%49}

For nancicodlar ¢ross seclians the equivelear diamerer as described in Section 3.5
can b wied.

44
b, = — 1461
=g { 1

This equivalent dinmeter may be used in the detemMination of relalve roughness and
Revnolds number, and hence che focian factar. However, care must be wken (o wock
with the aerus! average velocity in all computalions, Expenence bas show e that the
use of an equivalent diameter works quite well in the tyrbotent zonz In the lamipar
How reginn this concept 13 ool sufficient and consideration mus? abso be given o the
dap=at rario of the duct.

In some problems the fow rate is not known and thus 2 (rial-asd-emar solulion
eesalts. Az lonz as the duk size is given, the problem is not oo diffcult; an excellent
agprovimaton to the fviion Tacior saa b2 made by taking tie value carrzspanding
10 where the £/ B curve bagins to fevel off This converges rapidly 10 the final answer,
as most snginesring problems are well into the turbulent range.

8.6 APPLICATIONS

The fallowing steps are recommmended w develop gaod profilem-so]ving wehaque:




i Shewch e phesizal situation Ginclhalie s e kypothelics * refereroe aird
Do Laheb sevtions whare fonditions se hnaan ar desired.

3o Lisral! given onformation wth uni,.

+ Compuaes e zguivadent dameize rzlaisz raeehngss, and Reveolds munbe,
<

Fiad e dristive Faotor frae the Mecdy doagram

&, Lretzreing tiw unknown Mach numbe:,

- Ralzulae thr aldfrienal propeiges deweed

The provedars dbova may have (o be 3ered feneading on wha Lo wl infenma
vonis piven and acousionally, wial-and-eres salotions are requised. Yoo shoeld fass
no &l invorpocanng these Features onoe toe bosic atrgive vl sodativn has
boen mizaterel [n camiplezated Bow srslems tai mvoly 2 imare 1940 just Farng e
@ T—5 deagram i feesjuent!y hebpbul jin sl eroblerms.

For the ivdlow ing sxampies we ace dealing with the steady one-dimensianal o
ofwiriy = T4y, which can be treated as & perfzel ps. Assume that 0 = W, = (and
neglipible poteaiial changes. The ceoss-sectanad aren of the duct remains consianl,
Figire B9 1 is commaon ta Examples 9.0 threush 903,

[ER Y] Lo

- ax Ll Limn_"-'—'—"

——— N

Figure E2.1

Frample 7.1 Given M|, = L8, py =40 paia.2ad by = 120, find poand A
Sonee Both Slavk nuimbers are knowa, we ean ol immedsste|y Foz

pr e ) 1 )
N = —— —_ . — - ?
£ o p1 o= (0304 ( IO (407 = 7.8 pala

Check Figurs ES.§ tu see that

Far _fLirr_u::__ P
L I /1 o

=029 - 00236 = 0204

Erample 82 Guen M1 = 0%, T =400 B and 72 — 350 K, find AF) and pa /e,
T detennine conditions zt secrian € in Figurs £49. 1. we must ¢ sablish 1he ratin




rL_TLL. {'m R 11655
T_—?:'T_— T‘G]/\]l RS- R I L
- A

I - = Brer Fanno taole o W20 0w

Cireesn,
Lewas 23 £/ 77 = LRSS i e Paane weble and detarnting 1 af; = L3335
Thus
paoor ' A= ] -
Lo - =i 0745 (———1 w1 33
A o, -._3 A

Nnice el Ao ennples SonAm pres ol slaie Ents SOACEMmInD AlRIC predirne
sranges 1 sahsonic Aow the SIXiE prosiuse dewrasss, whereas in yapeisonic flow
the static Erosaurs arogses Lomprte the sbagnatior presiirz raid and shaw that the
Frictiro Josies SUlet @, - [ Gecrzase 10 each odse.

Fir Example B 1 .

£

fel

= {poafpe =470

1

Faor Example ¥

— = ':,f".':r'l,lt:'.':l = 0.611]
2
Exomple 9.3 Air fows in a G-in-diameter, iniulaed, galvaaized iron dust. Tnitil conditions
are pp o= 20 paia, Ty = WK and ¥ = 06 Fuies, Afler 7§ R, deizmine the fieal Mach
purmber, empcrature. and prossure,
Sinct the ducl is choelar we 90 nat have (o compuls 2n equisslent diamersr. Erom Table
9.7 fhe apsalule rovghness & is 00003 Thas the relaive roughasss

'3 0.0

L

— = [L0OL L
5= o5 " i/
W comauie the By polds member at seclicn 1 [Fizure E9.17 singe this is the only kxation
whers infommmation (s knowa,
21 S K
L LT e—e = i :':Il_ﬂj |yt
T TR i
W; = 3% = [0~ thfosepdfs { A peaprics mabts
This
¥ 8, 0, 1023 40600
:F~'J,.‘|='r"I ! = { il 51-:[.69![”" L‘*r‘-" .I'III':"- .

B (3.8 = 10-T)(322)

From the Meody dagram a0 Rz = 169 x 10° and &/0 = 0801, we
derrerine that the frction fagtor is § = QL0188 To wse the Fanrd 1uble (or squaticns), we

need information an hlach numibece.




@O bR KT s [0 35 R T R PR R TR
I I
I'Ir.'=__ _'_.—l-.l-'h'l
I LIz

Foone ke Fanna mikge ar A= DR wor find tegr

e R R - R P r Y,
s T- il
The bes oo vt Aleting the praplam 1y 05 eufanlishiag the Mach novter ac the ourkA, 2 i
sedone ek e friciian EUEILS
L T T

—_= o - = 21:_

£1 R

Lowealie ab the amsaeg! sherod p ST ne Foamd P s Coviad st tha

or .
"'—D—*—‘ = T ”—;—l =350 - 27T = o

Yoz enter the Fanno table with thes Facmiag lzngth and find thy

Mea06 Eopmn Bl 5
pl -
Thus
s . [ .
Pr= J'? ;.:-pi = {1.8%33) (3—-—- -ﬁ) 30y = 11.23 psia
and
rr- l
e == T =111 — .= {33 = 304
_E?._ T, ] 36}(1.!691’){”&} 3R

[n the exarnple above, the friction factor was assumed eonstam. Tn Fact. this ag
SUMPiGN was made when Euarion (3.39) was iniegrated 1o ghtain (5400, and wich
the inroduction of the * referance stale, this brcane equation (9465, which is Jisted
in the Farino table, Is this a reasonable assurmoion? Frciion fictors ars funesons of
Eeynolds numbers, which inmm depend on vzlocio: and deniity- ‘both of which can
charge quite eapidly o Fanao fow. Caleulste the velucity at the cutlet in Evampie
9 ¥ and compare o wilh that a0 the inlze. (1 = &34 flsee anid Fy = $0f fisec

Bul don't despaic. From Sontinuily wi know that the predudt of oV s abways o
cwrnsianl, and thus the only varable jn Reynalds number is the viscasity Exiremely
large emperature variations are required 1o chanye the viizosity of a gas significanidy,
and thus variations in the Reynoldy pumber are small Bor any goven problem, We ane
aiso fortunate in that most engineering problems are well into the turbulesd range
where the friction facior is refatively insznsitive 1o Reynolds number, A greater =i
tential ereor is invebved in the estimation of the duet roughness, which bts 1 mope
significant effecc on the friction factor.




Example #4 A coerging-disersing raztls vl anan ratio pb 5042 eonneck. teaa E-H-
lang consiant-aren resrangolor duct N B 232 The ducken 8 = b inL 00 vess s telion
aml sk 2 Faston fector of f o= 002, Whit e mitenam slagnaion peesure freding Ihe
ezl 18 e Puse s sgpersocew throoeho s e 270 duvt and 1 exhausts us [4.7 pr1a”

- n—————— A F B —————

P BT
P ™ L% pun

i

| i
:/—;—\I _'.=|:||:|:
L i

Figare E9.4
34 e 3N o
L, = ;-— X =33}31In
Fa LRI F R
Far _fl ' 0
L LRSS

T be supersonic with Afd: = 343 M1 = 326 mipy = BOLES, pyrpt = 01901 and
fﬁL!mL':."'-D = 03381,

= 15342 — D.3a = 01952

Flimi Sy S _ far
n

p 0
E
Thus
Mo= 1673 md 2 aps2al
?

gl
fe Fra Fa & 0 ) ( ! ) - y
oo PR e —— s ——— 1T =223
P e e et “iams& ' A e Al pata

Any pressure above 2E2 psiz will maintin &2 Ham syscam as specified bul with expansicn
waves pusids 1he duct (Recall 2n understzanfed nozzie. b Can you envision what waull
happen if g inle! sdgaarion pressurs fell belos 252 pii” iRocall the aperaten of 2n des
expanded Rezzle]

8.7 CORRELATION WIiTH SHOCKS

As you have praogressed theough this chaplar you may have poticed some similaniics
betwean Fanno flow and nomnal shocks. Let us sumamanze somé pertingnt infaor-
natian.




Al L Ao

Ficore 0.7 Va0l Ao e i Fan B,

The poins jons Tef o2 208 after 2 ne ol shoch spres2nt statgs with the siomee mas,
Pims perurdt arcy, one cams CNRETERL P pl':.;'\q:., a0 tie same 132120000 2itnglgy,
These facis are dhe reac afagalying the basie surceptsof cozinuity, moreatnn, and
EnerpY Wrany arhitoan Nuy This analesic resulied in Sulations (6.2, (6.3), and (6 3.

A Faneo hng r220052008 5tales widk the s3me ass R pec une acea and the s1me
Stagnation enthzlps Toos s confirmed By euarivns (9.7) and £2.5). To move edumg
a Fanng line require. factien. At the er ol 3eciinn 9.3 [sce equalica (D7) 0t weus
puinted out thar it i e ey Friviion which cauies the value of p 4 e¥iiz
change,

The varatien of the auareity Forplite alang a Fannu ling is quite interesting.
Such 3 plot i shown Figure 9.7, You wifl nutice tha far eVErY point on the super.
soni¢ branch of the Farao ling ther= is 1 cerespanding poind on the subsonic branch
withhs sane Yalue ol p + o V3ig.. Thusthese two pawnts sarisfy alt three corditions
for the end points of » nontal shock and could be connected by such a shock.

Now we £2n imagine a supersonic Eanan flow deading inte a nsrmal shock. I this
i Pollpwed by addioeal duct, subsonic Fanno flow wotuld Gecwre Such a situation i3
shown in Figure 9 82, Note i the shook mersly cavses the fow 10 jumnp frary |he
Supersonic branch to fe subsonic beaneh of e sante Fanng line. [See Figure 9540

L Mol shack !
T : I
: I

1
T_‘—"' Ar | A F
I Farma flow Fandw flaw 1

@

Figure 2.8+ Combizating ul Faanw fow and nessael shock [Fhysical sysrem),
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Fignee 8.8 Cornbinzlion o1 Fatno Muw and avomal Foo

Exauple 8.3 A large chanber conteins it 2 3 geinpersiure of 300 K and 1 aeessure of &

araby (Figers B9OS) T airenters a ComverEIng —dive r2iag moazdle woph g red ealio o 2 4
A conatant-2rea dudd is 2ttched b e nozzle and a nommat shick <taeds o dhe exic STERT
Ruceiver pressure 4 3 bar abs. Aisems she enoes Sy i 1 b adiabeniy and oegleoe: fection o
the merzle, Catipule the § &g £ for the duer,

¥

Figurm ED.5




For g shock el = weciBad, e degt B e by LU TE VT, T P T E TR
Ikz nozpie o vaesaling wroiss bl orgeen Foonl The inlel condwien. g rosnle area ja
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9.8 FRICTION CHOKING

In Chapier 5 we discussed the aperation of noazizs thar werz fal by consLune Adina-
tivg: inled conditons (see Figurss 5.6 and 3,95 We (ound thin a3 the receiver pressure
wis lowered, the fow theoogh the nozsle increassd. When the Operaiag proffions
ratic reached 2 coamin value, ibe secion af minimum aea devaloped a Mach number
of unity. The uozde was then s2id t be choked. Funther redustion iz she pressurs
ratio id ot inceedse the fow rate. Thus was an cxample of wrea choking.

-

Suppiv ar
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Figure .8 Coowerping norelz and consaant-ares duct eombination.
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Figure 300 75 dhzgram fur anrele dust goarhiaution.

The subsonic Fanno Aow situatian is quits similar. Figure 2.9 shows & 2ivén femeth
af duct Fed by a large tank and converging nozile. If the receiver prassure is below
the vank pressure, Aow will oocue producing a T - diagram shown as path 1-2-3
Fizure 9. 10, Note that we have isantropic flow at the caliaase o the deet and then wz
move along 4 Fanno ling. As the receiver pressure is lowerad still mare, the Bow rete
angd exit Mach number continue 1o increase while the ¢y item moves b Fanno lines of
higher mass velositics [shown as path 1-2-3). It is imponant W recognize that the
receiver pressure (of more properly. e aperating pressure ratiod is cortialling the
Aaw This is Because in subsonic fiow the pressiee at the duct exit must equal that af
e receiver

Eventuallv, when 3 c2eain pressure rah is reached. the Mach sumber at the duct
exit will ke vnity (show it as patk 1-27-37} This is called frictign chaxing tnd any
further reduction in receiver prassura would pot affect the flow coaditions imride ha
svstern, What would oveur as the fow lzaved lhe duct and esnters i ragion of eaduced
pressure”?

Let us considar this 1as1 case of chaksd Row wilh the exit pressuit equal to the
[eceiver PrEsalie Naw SKPRESe TRaf Mg receisr presiuss ir mainrafred ar this valug
but moee duct 18 added 1o ke system. (Nathing can physically preveni us from, doing
this.] What happens? We kngw thal we cannol move around e Fanto fins, yel
somehsw we musi reflect the added Friction loases. This is dome by meing L d new
Eanno Line ut 3 decreased Bow rate. The T -1 diagram For this is shown as path 1-2"—
3"~ 4 in Figure 9.1 1. Note that pressure equilibrium is still modntained at the exit but
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the Svaiem ii no longesr choked, alibougt the Mow rate has decredsed. What woulil
oecur if the rzcciver presaare were now Lo ered?

In suemenary, wher a sabsgsic Finno flow hay beoome friciion choked and more
el iy aaded to e sy siem, the fow cate gt decredss Just how much il dacresyey
and whether or not the et veloeity e maias sonie depends on bow mack duect is added
and the receiy o pressurs imposed on the sysiem.

Mope supposc thal we are dealing with supersonic Fanno flow that is fricrign
cheked. In this case the addiion of moree dust canses a normal shock to Foom Dnside
the duct, The resulting subsenic flow can accemmadale the increased duct length al
the zame flow rate. For example. Figure 9,12 shows ¢ Mach 2,12 flow that has an
SLpad/ D value of 0.356. If a nermal shoek were ta ovcur at this point, the Mach
number afier the shock would be™Mout 0.550, which comesponds te an ../ 0
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valur 00,728, Thus, in this case, the eppearance ol e shack permits over bwic2 the
duct length L the choke point. This difference bevomes cuen gralies @5 higher dlach
numbers are reached.

The shock localion is datermined by the amouni af duct added. A3 more duct i
acded, the shock moeves upstream and pecurs at a highar Mach pumber. Eventually,
the shock will move into that portion oF the system that precedzs the coastant-ared
drct, CvIost Hkelv. 8 converging—diverging nozzle was used to produce the supersonic
flow. } i suficient friction lenzth is added, the entire system will become subsanic aod
than the fow rate will deceease. Whether or not the it velogity réfmains sonic wili
apain depend on the recaiver pressure.

0.9, WHEN IS NOT EQUAL TG 1.4

a5 imdizared earlien tha Yanno Aow (adle ks for = 1.4, The behavaar
af FLuand D tha frictkan function. is given in Fagure 9. 15 for y = 113, 1.4, and LEY
for Mach aurnbers up 0 Af = 5. Hers we can see thal the dependence ot p 1 rathes
noticeatle for M = 1.4, Thus, below this Maeh number the whulaticen in fannag mblz
may be used with [iltle ervor for any » . This means that for subrsonic foas, whers moss
Fanna flow problems occur, there is little difference berween the varkous pases. The
desiced accucacy of resuits will gavern how far you wand (o camy this approsimation
izfa the supersanie region.

Strictly speaking, these curves are anly represenintive for cases wheee VAMLONS
are megligible wirhin the flow. However, they offer hims as 1o what migenitude of
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the systern is o longzr choked, althougb the fow rite kes decrezsed, SWhar wanli
Goir if the receivar pressurs were now lowera?

It 3ummary, when a subsemc Fanna Bow has becoms friction cheked and mere
ductis added do tha sviem, the Bow rne mics? decrease, Tus? ko s if decroages
ared whether or not the eadt velocity remaing somic depends or how much dust is adided
and the eceiver pressure imposed on the system,

Now suppase that we are deating with supersonic Fanno flow that is fricrion
vhgked. In this case the addition of more duet £auses o normal shock to form inside
the duet. The resulting subsonic flow can accommodate the increased duct length at
the same flow rate. For example, Figure 9.12 shows a Mack 2,128 Bow that has an
SLmaa/ D value of 0.356. 17 & nommal shock ware o ocewr al this pain, the Mach
number after the shock would be abewsr 0,550, which cormespands woan LD
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The answer af M = 05327 1y congisiang with that obmised in Example 9.3, We tan now
proceed b calculuts the eequisd -abs prsparties, bt this will b left ac an exapcisd for the
rrailer -

911 SUMMKMARY

We have analyzed Alow in a constan-area doct with {eiction but without beat rransfer.
The faid properties change in a prediztzble manner dependent on the Aaw regime as
shovwn in Tabde 9.3, The property vanations in subsgnic Fanao flow Rellow anintuilive
paitern bul wa nocs that the sopesanic fow behavioe ts complately differsne. Taz

Tahle 2.3 Fluid Properr Mariation for Fanmg Flow

Frosey Scbuaniz Sumersonic
Yilpomy [nogeaads Diecreazes
pfach normbsr [noreases Cracreases
Endhulpy” Decreases Encreases
S1az ration sonhalpe Constint Constint
Presiuare Devreases Tncreases
Density Crercraases Incrrases
Alagnalion pregsune Dhegreases Decreases

* Alsn temperaium U5 2ind is @ perfect g2
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DL G T DO UTTER G B Ihe decscuse w s ian pressure, whish o ndivasive
0 1oz 1oy

Parzap- 22t signiBeint eyatiore are tvse deat apple ta all faids

Voo = e {92

h, = b ~ - = ORI 1.5

Adnng vl equatians i should Keep ie m120: the anpeasance of Faana nes in
e di- s cnd vl agians e Figuees 8 [and 9 2, Reromvher that each Fanno Dize
repreieris sodnliowith the same nass velocits TG and siignatinn enrhalps £, and
# normal SR S0h AR SONNECE LAO puinls o0 oppasitz branches of o Fenno Las whick
bar iz vamesatueof pov pV=7gl Fumifres of Faoae Tizes could repracen;

Lo Tiereni vatuez; oF & foc ke same M [such as M in Figure 9190, or
2. The sane & For Jifferent values of /, tzoe Problem 1017,

Dztail22 vworking wquations wers developed far peciz2n swses, and the nodaction
af 8 7 e2fzregie poine enabled the construction af @ Fanao rable which simpifes
problecn solutivn The ™ condition for Fanno faw has no cebation to the o= used
previaus!h i ientrapic Aow {encepd in geneea! definition?. Al Fapno Bows pracesd
eewward a limiting pointof Mach {, Friction chrkirg of a flow Passdge i3 possinle in
Fapno fuew fust as area ehaking eocurs in varving-area Hmantropic Bow. An A5 {o
T-s1diazram is of graat help in the analysis of o complicated fiow systerm. Ger i
ri,'_e ALhir of drwing these diagrams,

PHOBLEMS

I the zrabtern; thar falluw rou may assuse that all svstems 1re complote by adiabatic. Also, o
dicts arg of curylank area unless orhe pwise indiceoed. You may neglaet friction in the visving.
red sectund. YU sndy Al assume (hae the fnoton Faclar shown jn chams apples

13 B0 rsla oy sechiahy whan e equiralenr dlameter SNt s wisd and the Mow o
turhulen

P
:rr‘g'./]r,/'\':\'.l-'!d'.'il-'k}l':} di b eairince woaduclare A = 3 0and o) = 8 x 107 Nied oape- o
serin lngth the Aow has reached My = LS Detesonine prand F A0y = 1

({.{1 ‘A Ao ol nitroger is discharged from, g ducr with =10 83, T2 = 300°R, and p. =
/33 piid. The demperature 2 the inlet is SG0°R. Compute the prossare at the inlet aad
the mas; vetocity ().

Q3. Air dalers a cecolar dugt with 2 sach number of 316, The frction factor is .04

Ll How lony 2 doge (measured in doamecars) is requised 1o seduce e Mach oumbes
oy 2007 —=
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(M) What s the pervemage chunze m ixmperdune, prevaess_2nd Jepn ' . {ﬂ LI

191 Dxoenining dhe enarnny Ecreass of [he s

id] Assume the snng kengrh of duct & compaed w pan {35 bu ke il Madh
nuinies is 1 5. Compute the percentage change 1 eempeslure. pieeers dansdy.
and ke cnorapy werteae Bor this iz, Comparedbe chanyein the .ante e iby Jusr
for subapnic amd suoersinic Ho.

Yo OnpEen entes a Geindidmener duct wath ¥po=: BCR, g = S pasoanl Vo= (0]
furse: The Friclian factos is f =001
() What is b eracimem kenglin of deor pemniesd thil wel? pod erange an of the
conditenas of the inlet?
(b1 Dreterming Te pe.and Y for the mmaoem delt [4egih Fendin pa s
, ) . .

é/;:'*.".ar Bows i on $-cm-imaide dizmeter pipe than i & e Tong, The aif entery il o Math
Auenper @t ih-ad and a erperancyy of 350 k.
(ay What friction foziar wousld cosse senw welodiny an e exie?

k] IFehe pipe is made of cast inon. eslimnsis the inlel presauie.

«.\ 0.6, Aramasecian 30 a constant-arew dees the ilagnaion prassurd i3 66 5 6z 194 the Mk
. number 7+ 080, AL ancthe! setion the peesser is &0 zaia and (he remperziers i5 120°F.
{a) Computs fe remperature at the first tection and the Mack aumbe: 2t the secoad
sectian if the Auid 15 air
(B} Which way is the air fowing T

L~ tch Wha v the Friction lengeh {F Ae s B0 of the dusr?
(r"!ij/;\ 50 x 50 cmduct s L0 min length. Nitrogen entees at M, = 3.8 and leaves al My =

17.wih T =280 K and ps =7 = 0" imt. -..,
{a) Find the siacie and stagnation conditions B (he eatmnce.
{b) What i5 the friciion Fuctoe of the duct? k

0.5, A ductof 2t = | f1eross sevvion is mads of rivewsd steel and is 500 B lang Adr enters
with a velocity of 174 fsec, gy = 30 pia. and Ty = 100°F
{a) Trwmine the temperatues, prassurs, and veloginy at the exit,
(b} Campule the preswsre drop assumune the Aow o b2 incompoessible, Lue the en-
tericg conditions and equanion [1.2%). Note that equatign [3.64) can e=sly be inte-
graved v grvalyate '

R
Tids = JIT.E_;;
f AT

(g3 How da the cosuls of padts (30 and () compareT Did you expect thi?
9 Nirenters 3 duct with 2 mas; fow rate of 38 tbedee ot T = S20°R 24d 7y = W psid
The duct is sguare and has an area of (&4 F°, The gutlet Mich numser 15 ority.
{2} Compute the empasawes and presseee at the oulle
(&) Fing the f=ngth of the duck if it b5 made of xteel.

.10, Consider the Bow of a perfect gas along a Fanne e, Show that the perssue ot the
refesence stale is given by the relation
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I3 Armpiear ais at 60°F ang 11 Tpsia
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13 Foid e it 2uand SEAE Al e raigie and orEasee fareack cnlCanzs vondinan,

iy Ansurming e surmennding 2o he g
Rev2efarz by wel arsliear air inro e J_ - T
Wk RO

o prtaare, Bow pmeh Fsrzeponesr 1
vach dwe™ oy M2V Easurae s
liaegan ghe
oolsrade E=rnxsali int g | 2o djamerer Ludd
Afler 100t the dusrransians ane an % w 5 g Suard acben whery [he Mach auinber
5SS Neelaon 2l feiana, effecti eepr ok :n_azvh .J.l"‘"l UL.-_t fhh-:r: F =00
r.'x} Crererming re Aach nomiber ap thae )
by What ars the bemperanies and presspre o ks 39l zre £ N ?
€} How miuch 8 % &in. fyuare duct could te add<d befare she flow whodz
that § = DUk fon this duct alwnd

dunz ..r"'.".:'1..«.

A7 L Assme

wirpsen with gr = 7w 105 & At and' T = 10K enpers 4 feictionless convergng..
duerging noszle having an area rutio of 2401 Ths rkzle discharges stpersanically
B3 eoRnlanedrea duot dhay has g !'me?:\n fencth f A& = 0335 Determine ke
» BIMPRLLGE dnd pressues 30 the enit of che duet

endutiars before a normal shoek e A dom =47 psiacaad T = THPR. This
ts follewed by a leagth of Fanna £ ndf a 2on erping aozzie 3% shown i Feaure P9 15

The arsa chamge is suck thar the 5y51em i, cavsed Iris alas known that g, = p,, . =
147 qaia,
/ SRk
1
r 1
. e L] - . I‘\“-‘-‘—‘_‘-:-
Camiant 3mey ; . 14 7 aua :
Friuon b ! .
e !
O &
i - :_5 M, =10
F‘.. T 67 poiz Pa " fums
T. = THO7R
—m  Figure P93
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Py WAzt revetet prasatns would Cause supesoniz e thracghout t du s Witk no
Fhircia wozi e an ez 1or alfler the dudl 2ein?

Pt Mshe nhet ™ samilan o Bigne 6.3 show ing The przssdre desznbutin fae e vanon-

R

Crerating panes o puards 121 and £, §
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\\_‘__ : fFroans 2 )
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Y
£ 90T, For u hurriz—duct 53 stem similyr 6 that of Problem 9.18, the aozzle is designed 1o

4

produge a Mack nember of LE with p = b4 The intet condiions are gy = ilbar and
Ty = 310 E. The duct 15 & diameters in lepgth, but Lhe dust friction Fawtas 14 unkaoan.
The pecrises peessuee is Gxed 30 3 bar and o normal shock fas Formed =t theduet &ii,

fal Sketch a T dizgram fer the syssem,
th) Drerermire the fiction factor of the duet.
lc) ™hat Ls ahe toad] change 1 entragy for the syslen”

ey
ﬂ.lg"‘p\ large chamber conlaing dir 34 8% bar peessurs and 300 K. The air passes tuouzh a

canverging-oaly norele amd then int 2 coastant-area dust. The frictian lengh of the
ductas [ Sy £ = 1067 and o Mach oumber 4t the duct 2ait & Qaa,

[a) Dieaw z} -3 diagram for the systwm

Ity Determine conditiane of e duct enirznase

(€] Whal is the pressore in the peagives? (Hnr How ag thos crloded 10 the duct eait

sl o

Pl . .
_ﬂﬁf-@lf:hez length of the dust is doabled and the claeber and rzoeiver eonditions remain

—

"=~ weichanged, what a2 the new Mach numbers at the emtrance and exit of the duce?

2.19, "‘;ﬁ.. coastant-ares duct is fed by a converging-only nozzle as shawn in Figure P9.19. The

nozEe receises uaygen from a large chamber at p = 100 psia and Ty = 1000°R. The
Sugs has 2 friction lepgeh of 3.3 and it i3 choked at the exit. The receiver pressure B

= £racily the st a3 the pesssiere arthe duot esit.
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Cal Wh2ria Ry presanra 20 G 20 ot e Sa!

bt Fowmfimhe ol the duesl e reomeved CT R g d ef thee Joce 5 oo an 33 The el ambes
el P nian Sanar e tusidlhan e Noaw bl o

[ N LR B I EPE rr
pitsanrg ot dhe owlr of ehe gogr?

1e1 Skerch both of th Cages aDove on he same Fog diazme

2,20, {23 Piod i Fuii bne tor scale anooie T—¢ plesie for aiv entering a duct with 2 Mach

e of O 20 aditiv pressure of 200 peia, 2l @ stetio temperalore of $90°R,
Indficate dhe Mach pumber ol variows poinds alang rha cupee

thy Dn the same diagram. plot ancthzr Eanng koe for o flow with the sume takl
enlsalpy, the sure enlering eatsopy, but dockle the masi velogiy,

A2 Which, of anx, of e ratios rabulared in the Fanao rable (777, pros, BAp e

cowld alea B2 Tistad it the Tientropic tabic with the sag numencal valees?

B3I A CoarlIIos i3 f CONnest un & supply From 3 cantprossor to test appantog 21 foaway.

The exat diameter of the compressor is 2 ia. and thz aniranes 1 fhe =3t quipmeat
has & l-in-dusaeter pipe. The rentrcer has the choice of pulling a reduger an the
sompreisor [ailowsd By 1-in, whing ar using 2-in. tobing and pulling the eeduecer at the
enlrance [o ke test equipment. $ince sealler whing s cheager angd bess obuusive, the
corEeror is [raning keward 1he first possibilicy, bt just 6 e sure, he sends the prablam
1o the enginsering prisangl. The air voming ol of iRe compressur i3 af 320°R and the
pressirris 20 psia. The flow cate i 0.7 rafsec, Conader thagaeh sizs efwhing kas 1n
effzctive f o= 0LIFE What would e the corditions a the entrunce o the sl equipnient
for each wibing fize? 1Yo may asiume isznerspic At @venvowhers borba the 20 ftof
tuksine |

B2 Opieeal) T2y Jareaduze the * reference conditivn indo 2quatiae 29 271 20d deseloz an

Crproasioz for fsT — 5108

(b} W= a coraguter program forthe e<prgsiion develdped nopart {23 and compete 3
ranke of {37 — #1378 veesus Slach nomber Also anclude ather catnes of (e Faana
takie.

CHECKTEST

You should be able to comnplecedhis test withoot refesenos 1 makenal in the chapier.
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8,1, Shenrha Faena e o ihe -1 e Include 2ao vk ed it {fommate S Reossrs
1y Ipcats the stnis poies 2nd Taen idertiy fhe regiats al sbavnic a2l suzemen flow,

0.1 Tl in the Blanks in Teble ©79 Y indioie whether o gueafines 1orsir. daonmi e, 07
FeeribiE Cowgrer 10 IR ©dee oF Fise A

Table L7192 Analrsis of Fannn Flos

Prapery

Futean.e Beehoe

Supratio Ravme

¥olngiry
Tepogerulers
Fraasurs
Thrst Femc o
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9.3, 1% the 34 stem <howr i Figor: CT9.3 e P Terg b oF U et Lop A = 12An0
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