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Flight Dynamics and Control
Dr.Emad N. Abdulwahab

1- Introduction to Aircraft Stability and Control

1.1 The Freedom of Motion of Aircraft-Basic Axes

Alirplane performance 1s governed by forces along and perpendicular to the flight
path. The translational motion of the airplane is a response to these forces. In con-
trast, airplane stability and control are governed by moments about the center of
gravity, and the rotational motion of the plane is a response to these moments.

Figure 1 shows a rectangular right-handed coordinate system attached to the
aircraft. The origin of the axes is at the aircraft's center of gravity. The x axis is
along the fuselage, the v axis is along the wingspan, and the 7 axis points downward.

The aircraft’s translational motion is given by the velocity components U, V,
and W along the axes. Thus, the net velocity of the aircraft is the vector sum of
these three velocity components. The rotational motion is given by the angular
velocity components (b, #,4:) about the x, y, and 7 axes.

In summary. the nomenclature associated with rotational motion is as follows:

B xaxis: roll axis, L” = rolling moment, ¢ = rolling velocity.
B v axis: pitch axis, M = pitching moment, ¢/ = pitching velocity.
B 7 axis: yaw axis, N = yawing moment, J» = yawing velocity.

Fig.1 Definition of airplane's axes system

A classic airplane has three basic controls: ailerons, elevator, and rudder.
They are designed to change and control the moments about the roll, pitch, and

yaw axes. These control surfaces are flaplike surfaces that can be deflected back
and forth at the command of the pilot.



A downward deflection of a control surface will increase the lift, since this
makes the airfoil shape of the wing or tail “more bent downward” (in aeronauti-
cal jargon, it has a larger camber) and thus produces more lift. An increase or
decrease of the deflection will change the moment and thus will result in a rota-
tion about an axis.

B Holling. The ailerons control the roll or lateral motion and are therefore
often called the lateral controls.
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B Fitching. The elevator controls pitch or the longitudinal motion and thus is
often called the longitudinal control.

Elevator up
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B Yowing The rudder controls yaw or the directional motion and thus is
called the directional control.
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2 | AIRPLANE STABILITY

Static Stability

Static stability can be visualized by a ball (or any object) on a surface. Initially

the ball is in equilibrium. The ball is then displaced from the equilibrium posi-
tion, and its initial behavior is observed.

B Sratically stable. If the forces and moments on the body caused by a
disturbance tend initially to return the body toward its equilibrium
position, the body is statically stable.

B Statically unstable. If the forces and moments are such that the body
continues to move away from its equilibrium position after being
disturbed, the body is statically unstable.

Dynamic Stability

Dynamic stability deals with the time history of the vehicle’s motion after it ini-
tially responds to its static stability.

Consider an airplane flying at an angle of attack {ADA) «, such that the
moments about the center of gravity (cg) are zero. The aircraft is therefore in equi-
librium at ¢, and is said to be irimmed, and «v, is called the trim angle of attack.

Now imagine that a wind gust disturbs the airplane and changes its angle of
attack to some new value «v. Hence, the plane was pitched through a displace-
ment «« — r¢,. The plane’s behavior could be as shown in Figure 2.

Figure 2 | Dynamically stable behavior.
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It is important to note that static stability
does not imply dynamic stability, as Figure 3 shows. The plane is dynamically
unstable but still statically stable.

Figure 3 | Dynamically unstable behavior.

Time

Displacement




Moment on an Aircraft

Having leoked at a wing only, we can now consider a complete airplane, as
shown in Figure 4 In examining a whole aircraft, the pitching moment about
the center of gravity (center of mass) is of interest. The moment coefficient about
cg is defined analogous to the moment coefficient about the ac:

M.

Crpog = ——
M—‘:'S I:?L'\; SC

Figure 4 | Contributions to the moment acting about the centsr of gravity.

ATTAINING AIRCRAFT
3- LONGITUDINAL STATIC STABILITY

vonsider an airplane with fixed control surfaces. Wind tunnel testing may
reveal the following behavior (see Figure 5 The plot is almost linear and
shows the value of the Cyy ., versus angle of attack «. The slope of the curve is
dCyy v, and is sometimes denoted with the letter “a.” (A partial derivative rather
than a total derivative is used since the coefficient does not depend on « alone.)
The value of €, ., at an angle of attack equal to zero is denoted by €y, . The angle

at which the moment coefficient is zero is, of course, the trim angle of attack.

Figure 5 | The moment coefiicient about the center of gravity as
a function of angle of attack for a longitudinally stable aircraft.
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criteria for longitudinal static stability and balance as
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Useful calculation and Example

Now consider an idealized wing-tail configuration in steady, level flight
such as shown in Figure 6 . The wing and the tail are set at incidence angles i,
and i,, respectively, with respect to the longitudinal aircraft axis. The relative
wind V_ comes in at an angle «,, with respect to the wing. The relative wind V.,
comes in at an angle «, with respect to the tail.

Figure 6 Geometry of a wing-tail combination

The tail angle of attack can be computed as follows:
a, =, — &+t i, i,
where & is the downwash. Its value can be computed from the following equation:
E = g,
where g, = 0.3 to 0.5. This allows us to rewrite the equation for «, as
ar = (1 —e,)a, + i — iy

When the airplane is trimmed, the moments about the cg are zero. From this
we can find the trim condition. The coefficients of lift for the wing and for the
tail and the angle of attack can be defined as the product of the slope of the
moment coefficient.

Cpy = a,a,
Cr,=aja,(l —e&,) +i, —i,]
After several steps and a few simplifying assumptions, the trim condition can be

(?M.cg Xa _ A;.Ir;ﬂr
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The first term in brackets is the sensitivity to the angle of attack. Consider again
the situation where a wind gust disturbs a plane flying in trim and causes it to
pitch up. For the plane to be stable, the moment coefficient €y, . (which was
0) has to be negative in order for the plane to pitch down. For stability we can
then write

Cues _ Yo Ada

(1- &)

“ra
day ¢ Ayca,

In designing your LTA vehicle, you can place the cg (and thus set the value
of x,) such that the vehicle is stable, using the above inequality. In the limiting
case, when the cg is as far back as possible,

X Ala
(_ﬂ) = #{1 - &,)
c max Aw":aw l

The cg is said to be at the neutral point.
The trim angle of attack can be written as

CM.au/aw + [A r"i.rar./{(AwC‘?w)]“w - fr)

(Xa/ C)max — Xaf €

(“w}trim =

For lift generation, a,, << 0, Cyy ,. < 0, (usually), and i,,—i, > 0. Also, L, may
have to be negative.

4 LATERAL STATIC STABILITY

Lateral static stability 1s concerned with the ability of the aircraft to mantain wings
level equilibrium in the roll sense. Wing dihedral is the most visible parameter which
confers lateral static stability on an aircraft although there are many other contri-
butions, some of which are destabilising. Since all awrcraft are required to fly with
their wings level in the steady trim state lateral static stability is designed in from the
outset. Dihedral is the easiest parameter to adjust in the design process in order to
“tune” the degree of stability to an acceptable level. Remember that too much lateral
static stability will result in an aircraft that is reluctant to manoeuvre laterally, so it 1s
important to obtain the correct degree of stability.

The effect of dihedral as a means for providing lateral static stability 1s easily
appreciated by considering the situation depicted in Fig. 7 Following a small
lateral disturbance in roll ¢ the aircraft will commence to slide “downhill” sideways
with a sideslip velocity v. Consider the resulting change in the aerodynamic conditions



on the leading wing which has dihedral angle I. Since the wing has dihedral the
sideslip velocity has a small component v' resolved perpendicular to the plane of the
wing panel where

vV =vsinl”
The velocity component v' combines with the axial velocity component U, to increase

the angle of attack of the leading wing by o'. Since v/ == U} the change in angle of
attack ' is small and the total disturbed axial velocity component U7 = U,. The
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Figure 7  Dihedral effect.
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increase in angle of attack on the leading wing gives rise to an increase in lift which
in turn gives rise to a restoring rolling moment —L. The corresponding aerodynamic
change on the wing trailing into the sideslip results in a small decrease in lift which



also produces a restoring rolling moment. The net effect therefore is to create a
negative rolling moment which causes the airci:aft to recover its zero sideslip wings
level equilibrium. Thus, the condition for an ai reraft to be laterallv stable is that the
rolling moment resulfing from a posifive disturbance in roll attitude must be negative,
or in mathematical terms:

E <0

dep

where C} 1s the rolling moment coefficient. This is shown graphically in Fig. 8

5 DIRECTIONAL STATIC STABILITY

Directional static stability is concerned with the ability of the aircraft to vaw or
weathercock into wind in order to maintain directional equilibrium. Since all aircraft
are required to fly with zero sideslip in the vaw sense, positive directional stability
15 designed in from the outset. The fin is the most visible contributor to directional
static stability although, as in the case of lateral stability, there are many other con-
tributions, some of which are destabilising.

The yawing moment is stabilising since it causes the aircraft to vaw to
the right until the sideslip angle is reduced to zero. Thus, the condition for an aircraft
to be directionally stable is readily established and is

dC dC
—2 <0 oo equivalently, — -0

dulr dpg

where Cy is the vawing moment coeflicient.

O Perturbation variables

The motion of the aircraft is described in terms of force, moment, linear and angular
velocities and attitude resolved into components with respect to the chosen aircraft
fixed axis system. For convenience it 1s preferable to assume a generalised body axis
system in the first instance. Thus initially, the aircraft is assumed to be in steady
rectilinear, but not necessarily level, flight when the bodyv incidence 1s @, and the
steady velocity Fy resolves into components U, ¥, and W, as indicated in Fig.

In steady non-accelerating flight the aircraft is in equilibrium and the forces and

moments acting on the airframe are in balance and sum to zero. This initial condition
1s usually referred to as trimmed equilibrium.

Table .1 shows the summery of motion variables
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Table 1 Summary of motion variables
Trimmed equilibrium Perturbed
Adrcraft axis ax ay oz ox ay oz
Force 0 0 0 X Y zZ
Moment 0 0 0 L M N
Linear velocity U, V. W, U v W
Angular velocity 0 0 P q r
Attitude 0 Be ] e & W

7 THE EQUATIONS OF MOTION OF A RIGID SYMMETRIC AIRCRAFT

The object is to realise Newton’s secod law of motion for each of the six degrees of
freedom which simply states that,

mass ¥ acceleration = disturbing force (1)

. . The components
of velocity and turce along the axes ox, ov and oz are denoted (U, V, W) and (X, ¥, Z)
respectively. The components of angular velocity and moment about the same axes are
denoted (p, g. 7y and (L, M, N') respectively. The point p is an arbitrarily chosen point
within the body with coordinates (x, v, z). The local components of velocity and accel-
eration at p relative to the body axes are denoted (u, v, w) and (ax. ay, az) respectively.

The velocity components at p(x, v, z) relative to o are given by

W =x—rv+gz
v=Vv—pztmx €2
W =ZI—gx-+py
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Figure 1 Mation referved to generalised body axes.
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Figure 2 Telocity terms due fo rotary motion.

It will be seen that the velocity components each comprise a linear term and two
additional terms due to rotary motion. The origin of the terms due to rotary motion
in the component u, for example, is illustrated in Fig. 2. Both —ry and gz represent
tangential velociry components acting along a line through p(x, v, z) parallel to the
ax axis. The rotary terms in the remaining two components of velocity are determined
in a similar way. Now, since the generalised body shown in Fig. | represents the
aircraft which is assumed to be rigid then

x=yp=z=0 w3
and equations {  2) reduce to

W =gz—rv

v =1rx—pz 4

W= py — gx
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Ficure 3} Acceleration terms due to rotary motion

The corresponding components of acceleration at p(x, v, z) relative to o are given by
dy = U — v+ gw
ay = v—pw+ru (- 3)
a; = W —gu+ pv

By superimposing the velocity components ot the g (L, ¥, W ) on to the local
relocity components (i, v, w) the absolute, or inertial, velocity components (i, v/, w')
»f the point p{x, v, z) are obtained. Thus

W =U4+u=U—ry4gz

vV =F4+v=F—pz+m 6)
w =W4+w=W_—g+pv

vhere the expressions for (&, v, w) are substituted from equations { 4). Similarly, the
:omponents of inertial acceleration (aj, a}, a) at the point p(x, v, z) are obtained

amply by substituting the expressions for (u', v/, w"), equations ( 6), in place of
w, v, w) in equations (- 5). Whence

ay =i —n/ +qn
a, =v —pw +rl )
ai, =w —gqu +p



Differentiate equations {  6) with respect to time and note that since a rigid body is
assumed equation { 3} applies then

i =U—iv4gz
.

Vo=V — pr4ix )]

& F

W= W — g+ py

Thus, by substituting from equations { 6)and ( 3} into equations {  7) the inertial
acceleration components of the point p(x, v, z) in the rigid body are obtained which,
after some rearrangement, may be written,

a. = U —rV 4 qW —x(g* + )+ vpg — ) +z(pr+§)
d, =V —pW +rU +x(pg + #) — y(p* + %) + z(qr — ) 9)
a, = W —qU 4 pV +xipr — §) + Wgr + p) — z(p* + ¢°)



Example

A pilot in an aerobatic aircraft performs a loop in 20 s at a steady velocity of
100 m/s. His seat is located 5 m ahead of, and | m above the cg. What total normal
load factor does he experience at the top and at the bottom of the loop?

Assuming the motion is in the plane of symmetry only, then I'=p=p=r=>0and
since the pilot’s seat is also in the plane of symmetry y = 0 and the expression for
normal acceleration is, from equations { J):

a, = W —gqU + x4 —zqz

Since the manoeuvre is steady, the further simplification can be made W =g =0 and
the expression for the normal acceleration at the pilots seat reduces to

a, = —qU —zqz

Naow,
2m
= = 0.314rad/'s

7= 0

U = 100 m/s

¥x=15m

z = —1 m (above cg hence negative)
whence al =—31.30 m/s”. Now, by definition, the corresponding incremental normal

load factor due to the manoeuvre is given by

|
b
1
faa
e

B 30
n=—= =13.19

The total nermal load factor n comprises that due to the manoeuvren” plus that due to
gravity ng. Atthe top of the loop ny = — 1, thus the total normal load factor is a given by

u=ur—|—ug=_-‘:.19— | =219

and at the bottom of the loop n, =1 and in this case the total normal load factor is
given by

:1=11F-|—:zg=3.19—|— | =4.19

It is interesting to note that the normal acceleration measured by an accelerome-
ter mounted at the pilots seat corresponds with the total normal load factor. The
accelerometer would therefore give the following readings:

at the top of the loop a: =ng =2.19 x 9.8] = 21.48 m/s’
at the hottam of the loon  a- = ne = 4.19 % 9.81 = 4110 m/s2



Therefore the resultant components of total force acting on the rigid bodv are
given by

m(U —rV +gW)y=X
mi V— pW 4 rl)=Y
mi W — gl +pVy=2

where m is the total mass of the body.

Thus the moment equations simplify to the following:

Lp — (L — Elgr — Lzipg +7) =L
Lg 4+ — Lpr + Ip? —rH =M
I — (I — fr_v g + Iezlqgr —p) =N

Bringing together the total force and moment equations they may be written to
include these contributions as follow

m(U — vV +alW) = Xa+ X + X+ 5 + Xy
m(V —pW 4+rU) = Yo+ Yo+ Yo+ Yo+ ¥y 10
m( W — gl +pV)y =2, _|_Zg + 7. +ZP 17

Ip — {{]: —Lygr —Iclpg+7) = Lo+ J‘I—g + L+ f—p + Ly
Lig + (I — Lpr + Iee(p* — r%) = My + Mg + M. + M, + My
Li — (s — y)pg + Ie(qr — p) = Na+ Ny + Ne + Np + Ng

11

After linearization the equation of motion in terms of stability derivatives can be
written as follow

a =] o

mi — Xyu — Xgw — Xyw — (% —m I-T?"f) g+ mgfcost, = .13,;.:; + .ir

o

— Zyu 4+ (m — Z,;-) W — Lypw — (Zq + mU@) g+ mgtisinte = Zyn + Zr 1

— Myu — My — Myw + g — Myg = Myn+ M,z

12



Stability derivatives used in equations of equations.
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Example

Ly = —=Vr5a—=7—
3P5T do dor
A I d d
W — T & £
My = — =—Vr=a—= iq
EpSEZ T o o
X, -
= 2Tk
n %prl:lzs S-'h" Lrd2
ZD Sr
Z ! ==
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M, Sl
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Longitudinal derivative and other data for the McDonnell F-4C Phantom aeroplane
was obtained from Heffley and Jewell {1972} for a flight condition of Mach 0.6 at an
altitude of 35000 fi. The original data is presented in impenal units and in a format
preferred in the USA. Normally, it is advisable to work with the equations of motion
and the data in the format and units as given. Otherwise, conversion to another format
can be tedious in the extreme and 1s casily subject to error. However, for the purposes
of illustration, the denvative data has been converted to a form compatible with the
equations developed above and the units have been changed to those of the more
familiar 51 svstem. The data is quite typical, it would normally be supplied in this, or
similar. form by acrodynamicists and as such it represents the starting point in any
flight dynamics analysis:

Flight path angle y, =0° Air density p = 0.38090 kg/m*
Bodv incidence o, =9.47 Wing area § = 49239 m?
Velocity Vo= 1T8m/s Mean aerodynamic

Mass m =17642 kg chord T=4880m
Pitch moment Acceleration due

of inertia I, = 165669kgm® 1o gravity g =981 m's?

Since the flight path angle y.=0 and the body incidence o, is non-zero it may
be deduced that the following derivatives are referred to a body axes system and
that #; = &r. The dimensionless longitudinal derpvatives are given and any missing
aerodynamic derivatives must be assumed insignificant. and hence zero, Onthe other



hand, missing control derivatives may not be assumed insignificant although their
absence will prohibit analysis of response to those controls:

Xu = 0.0076
X, = 0.0483
Xi =0
X, =0
X, = 00618

Ze = —0.7273
Zy=—3.1245
Ziy = —0.3997
Zy =—12109
Zy = —0.3741

My = 0.0340

My, = —0.2169
My, = —0.5910
My = —1.2732
M, = —0.5581

Equations | 12 , are compatible with the data although the dimensional derivatives
rust first be caleulated according to the definitions given ’
Thus the dimensional longitudinal equations of motion, reterred to body

axes, are obtained by substituting the appropriate values into equations

176420 — 12,67 — BO.62w 4+ S12852.94g 4+ 1T07T44.060
1214010 + 17660330 4 5215 44w — J0BB229.7g 4 28266.5078
—2T7T.4Tu 4 132.4Tw + 1770.07Tw 4 1656697 4 S0T98.03g

12 to give

18362320
—111154.41n
—B1088a. 199

where Wz = Vasinfe = 29.07 m/s and Uy = Vo cos 8 = 1 75,61 m/s. Note that angular
variables in the equations of motion have radian units. Clearly, when written like
this the equations of motion are wnwieldy. The equations can be simplified a little
by dividing through by the mass or inertia as appropriate. Thus the first equation is
divided by | 7642, the second equation by | 7660.33 and the third equation by 165669,

After some rearrangement the following rather more convenient version is obtainad:

i
W
i + 0.0008%

0.0007 4+ 0.0046w — 29.0700g — 967538 + 10408,
—0.068T — 0.2953w + 17486805 — 160008 — 6.2940n

0,001 T — 0,01 07w — 0.3066g — 4.8946n



