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Lecture One

1-1 Introduction

control system is essential in any field of engineering and science and it is defined as
a combination of components that act together in such a way that the overall system
behaves automatically in a pre-specified desired manner.

Control system is means by which we can get the desired output. In other words, we
can change the system functioning as per the requirements.

However, the basic components of any control system are (Figure 1): objectives of
control or generally called the inputs; the results are also called outputs; and the
control system which is responsible for controlling the outputs in some prescribed
manner.

Objectives Confrol Results
—— -
system

Figure 1: Basic components of a control system

In studying control engineering, we need to define additional terms that are necessary
to describe control systems.

Plants: a plant may be a piece of equipment, perhaps just a set of machine parts
functioning together, the purpose of which is to perform a particular operation. In this
lecture, we shall call any physical object to be controlled (such as a mechanical device,
a heating furnace, a chemical reactor, or a spacecraft) a plant.

Process: a process to be a natural, progressively continuing operation or development
marked by a series of gradual changes that succeed one another in a relatively fixed
way and lead toward a particular result or end; or an artificial or voluntary,
progressively continuing operation that consists of a series of controlled actions or
movements systematically directed toward a particular result or end.

Systems: a system is a combination of components that act together and perform a
certain objective. A system is not limited to physical ones. The concept of the system
can be applied to abstract, dynamic phenomena such as those encountered in
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economics. The word system should, therefore, be interpreted to imply physical,
biological, economic, and the like, systems.

Disturbances: a disturbance is a signal that tends to adversely affect the value of the

output of a system. If a disturbance is generated within the system, it is called internal,
while an external disturbance is generated outside the system and is an input.

Feedback Control: Feedback control refers to an operation that, in the presence of

disturbances, tends to reduce the difference between the output of a system and some
reference input and does so on the basis of this difference. Here only unpredictable
disturbances are so specified, since predictable or known disturbances can always be
compensated for within the system.

Examples of Control Systems

Here we shall present several examples of control systems:

Speed Control System: The basic principle of a Watt's speed governor for an engine

is illustrated in the schematic diagram of Figure 1-2. The amount of fuel admitted to
the engine is adjusted according to the difference between the desired and the actual
engine speeds.

The sequence of actions may be stated as follows: The speed governor is adjusted such
that, at the desired speed, no pressured oil will flow into either side of the power
cylinder. If the actual speed drops below the desired value due to disturbance, then
the decrease in the centrifugal force of the speed governor causes the control valve to
move downward, supplying more fuel, and the speed of the engine increases until the
desired value is reached.

On the other hand, if the speed of the engine increases above the desired value, then
the increase in the centrifugal force of the governor causes the control valve to move
upward. This decreases the supply of fuel, and the speed of the engine decreases until
the desired value is reached.
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In this speed control system, the plant (controlled system) is the engine and the
controlled variable is the speed of the engine. The difference between the desired

speed and the actual speed is the error signal. The control signal (the amount of fuel)
to be applied to the plant (engine) is the actuating signal. The external input to disturb
the controlled variable is the disturbance. An unexpected change in the load is a
disturbance.

Oilunder ___ _J
pressure. |

Fuel —

Figure 2: Speed Control System

Temperature Control System: Figure 3 shows a schematic diagram of temperature

control of an electric furnace. The temperature in the electric furnace is measured by
a thermometer, which is an analog device. The analog temperature is converted to a
digital temperature by an A/D converter. The digital temperature is fed to a controller
through an interface. This digital temperature is compared with the programmed
input temperature, and if there is any discrepancy (error), the controller sends out a
signal to the heater, through an interface, amplifier, and relay, to bring the furnace
temperature to a desired value.

‘Thermometer

VMﬁ
4 _ ] AD

— converter

—= Interface

11111111
-------

A e

Programmed

Relay |=— Amplifier [« Interface | input

Figure 3: Temperature Control System
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Types of Control System

a. Open loop control system

Is a system in which the output has no effect on the control action, also referred

to as non-feedback system, is a type of continuous control system in which the

output has no influence or effect on the control action of the input signal. In other

words, in an open-loop control system the output is neither measured nor “fed

back” for comparison with the input. Therefore, an open-loop system is expected

to faithfully follow its input command or set point regardless of the final result.

Also, an open-loop system has no knowledge of the output condition so cannot

self-correct any errors it could make when the preset value drifts, even if this

results in large deviations from the preset value.

Control
Signal

Input—» Controller

Process

Open Loop System

* Advantages
1. Simple and economic
2. No stability problem

* Disadvantages
1. Inaccurate

Output —»

2. Affected by system parameter variation and external noise it is insensitive to
disturbances and unable to correct for these disturbances

Examples -
1. Traffic light controller = <
2. Electric washing machir 6 )

3. Bread toaster >
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b- Closed Loop (Feedback) Control System
a system that maintains a set relationship between the output and the reference

input by comparing them and using the difference as a means of control. The main
disadvantages of open-loop systems are insensitive to disturbances and unable to
correct for these disturbances. Thus, to overcome these, closed-loop systems were
introduced (Figure 5). Here, an output transducer (or sensor) is added to the system
to measure the output response and convert it into the form that is utilized by the
controller. An example would be a room temperature control system.

——hput—» Controller |—— Cs?ii?l - Process Output——»

3

Measuring
Element

Closed Loop System

Error

or " .
Disturbance | Disturbance 2

Actuating
signal
Input © + . - Output
s Input + Q g Cootroller + Process + . or
: transducer or Plant Controlled
Reference 5 . ) ;
S . Summing Summing variable
umming junction junction
junction
Output
transducer
or Sensor

« Advantages
» Accurate
» Reduced effect of parameter variation

« Disadvantages
» The system is complex and costly
« Reduced the gain with negative feedback



Mechanical Engineering Department Control Systems Dr. Imad Abdulhussein
Power Plants Eng. Branch

Examples
1. Electriciron
2. DC motor speed control
3. Human respiratory system
4. Autopilot system

(|

Alveoli
,

Brochiole

(T

Intercostal
muscles .

Example:

Temperature Control System, Figure 6 shows a schematic diagram of temperature
control of an electric furnace.

A thermometer is used to measure the temperature in the electric furnace. The
analogue temperature is converted to a digital temperature by an A/D (analogue to
digital) converter. The digital temperature is fed to a controller through an interface.
This digital temperature is compared with the programmed input temperature, and if
there is any error, the controller sends out a signal to the heater, through an interface,
amplifier, and relay, to bring the furnace temperature to a desired value.

Thermometer

y/f////////
/]
Y A/D
/ - . j— -
7 2 | converter [ Interface -
4 . A Controller
4 Electric [
2 fumace [/

7
/] L
o [/
7 [ Programmed
4 pwww ¢ nput

s
7777777 )77

Relay |- Amplifier |==—{ Interface |-+
Heater

Figure 6: Temperature control system
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1-2 Transfer Function

Generally, if the inputs and outputs of systems are considered as functions of time,
then the relationship between the output and input is given by a differential equation.
However, in order to make the control problem easy, a simpler relationship than a
differential equation giving the relationship between input and output for a system is
needed. To overcome this problem, the differential equations have to be transformed
into a more convenient form by using the Laplace transforms. Transfer function, on
the other hand, is used to relate the input Y(s) and output X(s) of a system. Thus, when
we are working with inputs and outputs described as functions of S the transfer
function is defined as

Output  X(s)
Input ~ Y(s)

Transfer Function (T.F) =

The transfer function can be represented by a block diagram with X(s) the input, Y(s)
the output and the transfer function as the operator in the box that converts the input
to the output, as shown in the figure below.

Y(S ) Transfer X (5 )

—> Function — >
F(t) = K x(t)
F(s) =K X(s) K
X(s) _ 1 ()
F(s) K F(1)

F(s) 1 | X6)
K
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1-3 Laplace transform

The Laplace transformis a well-established mathematical technique for solving
differential equations

x(t)e~Stdt

>
—_—
w
S
[l
&
>
—_
—
—
1
O e, S

Example: Find Laplace transform of x(t) =1

X(s)= £L[x(t)] = ]Ex(t)e‘Stdt
0
For X(t)=1

X(s)=£1 = [ et
0

£ X(t) = X(s)
LX) = SX(s) — Xo_g

£ X(t) =82X(s) — SX;—0 — Xi—0o
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HW.1Find the Laplace transform of an exponential function,

x(t) = ke ™ where a & k are constants

X(s) = [x(t)edt = [ke e dt =k[e**dt .
0 0 0 S+a

HW?2. Find the Laplace transform of the following differential equation

X + 3X + 8X = 1 with initial condition at t=0, X=4, X = 0

What Does the Laplace Transform Do?

The main idea behind the Laplace Transformation is that we can solve an equation (or
system of equations) containing differential and integral terms by transforming the
equationin"t-space" toonein "s-space". This makes the problem much easier to solve

f(t) LIf(t)] = F(s) f(t) Cf(1)] = F(s)
1 1 (1) ae®t — beMt 8
ot a—b (s=a)(s—=b)
e £(t) F(s —a) (2) !
!ful
= (s —a)?
Ut —a) (3) '
» tn et n
g Gy
f(t—a)d(t —a) ¢ F(s) (4)
L.
» e 'nl si - pa———
a(t) 1 (5) in kt Goaft i
o(t — tg) e~ e (6) ™ cos kt i _.,'—” —
d"F(s) (F=ayEw
0 (-1 = @) .
ds g
e sinh &kt ————
. : : (.\-ll,"-k"
(1) sF(s) = £(0) (8)
s—a
ot coch ke oA o e
m(t) s"F(s) —s"=f(0)- cosh kt (s —a)? - k2
et N0) ) ¢ sin kt —
' (2 + K2)2
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Lecture Two

2-1 Modelling of mechanical systems
a- Spring:

The stiffness of a system can be represented by a spring. For the spring in the figure
below the extension x(t) is proportional to the applied extending force F(t):

F(t)=Kx (t)
F(s)=Kx(s)
x(s) 1 K
F(s) k v x(1)
F(t)
F(s) 1 | X6)
K
b- damping

damping of a mechanical system can be represented by a dashpot. It typically contains
a piston surrounded by viscous medium, such as oil (see the Figure below). The inward
and outward movement of the piston will force the trapped oil to pass through the
small holes in the piston from one side to the other. The faster the piston is displaced,
the greater the resistance force, which means there is a proportional relation
between the piston velocity and the resistance force. This can be mathematically
represented as follow:

Piston with
holes

Oil

Lower mount
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F(t) = Cx — F(s) = CSX(s)

'—b x(t)

. .

X(s) _ 1

F(s) CS

F(s) 1 X(s)

o R
c- Mass:

» F(1)

Mass is the property of a body, which stores kinetic energy. If a force is applied on a
body having mass M, then it is opposed by an opposing force due to mass. This
opposing force is proportional to the acceleration of the body. Assume elasticity and

friction are negligible.

F(t) =mi — F(s) =mS? X(s)

X(s) _

1

F(s) ms?2

X(s)

ms2

12

m

v x(1)
F(1)
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2-2 Parallel and series elements connection in mechanical systems

a- Parallel element

For parallel elements, the same force F is transmitted through each element
while the total deflection is seen to be the sum of the individual deflections of
each element, as shown:

LI v
_F(s) | F(s) | F(s) %E
X&) =yszt s Tk
F(s) = 7 1 X = C
ms? ' es T K 7 x(0)
F(s) = Z;X(s) F(t) |
X(s) 1
F(s) Zr
F(s) 1 1 1 X
7 m52+§+f i’
F(s) 11 X()
—_— Z ———p
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b- Series element

For series elements, the force F is equal to the summation of the forces acting on
each individual component, and each element experiences the same displacement,
as shown:

= C K
K F(t)}
T (¢
m_]—— () (1)
F(f)l = C
F(s) = (ms?+ Cs + K) X(s)
F(s) =Z; X(s)
X(s) 1
F(s)  Zr
F(s) 1 X(s)
| mSZ+CS+K >
F&) | L] %@
—_— e

14
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Example 2-1:

For the mass-spring-damper combination shown in the Figure below,
determine the equation relating x; and x..

K1 ( Xa(s) = Xa(s) )= ( ms® +Cs +K ) Xx(s)

K1 Xi(s) = ( ms? +Cs +K> + K1 ) X5(s)

X(8) Ky
Xis) (ms? +Cs +K, + K;)

X1(8) K, X2(8)
(ms?2 +Cs +K, + K;)

v

15
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Example 2-2:

For the mass-spring-damper combination shown in the Figure below, determine
the equation relating F and x, the equation relating F and y, and the equation
relating x and y.

Solution:

16
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b) Equation relating Fand y

c) Equation relating x and y

17
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Example 2-3 :

Find T.F for the figure shown.

CS X(s) - CS Xi(s) + K1 Xz(s) - K1 Xi(s) = K2 X1 (s)
(CS + K1) Xa(5) = (CS + K1+ Ky) Xa(s)

X1(s) (€S +Ky)
X,(s)  (CS + K; + K3)

18
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X1(s)
F (s)

Example 2-4 : Find the transfer function ( ) for the system shown in the

figure below.

F — X| —— X7

/ L /
/ %)

b 2
7 —AMWW— m my AWM ;
1 o vV
7 c %
//////////// LSS LSS LSS LTSS S S S /LSS /

Solution:

1- using Grounded-Chair representation.
Steps of solution
1- Draw the ground coordinates at the bottom of the drawing.
2- Draw the coordinate at which the force acts at the top of the drawing.
3- Put all the other coordinates between the ground and force coordinates.
4- Insert each element in its correct orientation with respect to these coordinates, as follow.

F Xi(s) _ 1
: x F(s) Zr
1
lF
I sl
X C =4 ;EKW‘
K
— *xz
i~ -
'Zl =TH152+|E(1 = KB
Zz = CS + Jifz T e o e T e e o e e

Zg = n‘lz._qz + kg

19
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F
¥ N
11,1 %4+
Zoy Zy I3 Zy*+Zs 2
Z]
Lo * L
= Z
T I+ 7, 3
Zr =Zy + Zeg 5 i
Zy * Zy 1 1
Ip=Z, + 2>
. FaZs+ 2125, 2,7,
T Zy+ Z,

2- using the normal series and parallel connection

Z; =m 5 +k,
Z, = bS + k,

Zg - 7”.252 + kg

1 1 1 Z3+Z

Zoy 7o Z3 25+ Zs

Ly *Zs

A =
4 Zi+ 7

Zr =7y + Zoq

Z,* Zy

Zs + Z,

| ZyZ3+ 2,25, 2,2
Z + 2,

T

X(s) 1

F(s) _Zr

—F

—>F
X
1
N4 Zeg
_..F
-
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3- using force equilibrium based on Newton’s second law of motion

Free body diagram of m1

™
F—s k1)
m,

j-: Xye—
171 (%)

Z F =mi;

my¥, =F —kyx; — ky(x; —x,) — C(x; — %3)

ﬂ!ljfl - F — klxl — kle + kzXz — Cxl + C.Xz

my¥, + (ki + ka)xg +cxy = F 4+ kaxs +CXg e e e . (1)

Free body diagram of m2

™

4 4—;;731'2

kz(.xz —xl)-—

C‘(sz —xl)*‘— -
Z F = mx,
MmyX, = —ky(x; — xy) _“f{;‘(ifz — X)) — k3x;
my¥, + (ky + k3)x, + ::;;E:Z = k,x, + :;;F:ll e e e e e e e (2)
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Taking the Laplace transforms for Equation (1) & (2), we obtain:

[myS2 4+ CS + (ky + k3)]X1(5) = (ky +.5)X5(5) + F(5) e ve s e (3)
[m252 4.5 + (kg + k3)Xa(5) = (K + )X () oo (8)
Solving Equation (4) for X2(s):

(ky + CS)
[Mm,S2 +CS + (ky + k3)]

X,(s) = X1(S) e e eve e (5)

Substituting Equation (5) in Equation (3) we get:

(ﬁkziCSﬁ)
[m,S2 +CS + (ky + k3)]

[m;S2 +CS + (k; + k;)]X,(s) = (k, +CS) X,(s)+ F(s).....(6)

(ky +CS)?

[m,52 +CS + (k, + k3)] X1(s) =F(s)

[[mlﬂz +CS+ (ky + k3)] —

X,(s) = F(s)

[m,S% 4+ CS+ (ky + k;,)1[m,S2 +CS + (k, + k3)] — (k, + CS)?
[m,S52 +¢s + (ky + k3)]

X, (s) _ [m,S% + CS+ (ky + k3)]
F(s) [mS2+CS+ (k, +k)Im,S2+ ¢S+ (k, + k3)] — (k, + €S)?
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Exa/ﬂ/?/c' 2-6

My S ek 2 +E

!rp_fzzSL-f' 2. ) ki + m,_s"j

T
MNeS K2 + Kk ' 777

L

_ me S + K2 )<

F () [( - 1 - | . M,SL (s )
7,5 4 I<2 +I<,

.
—

X(s) !
-_—_ —

~G)
o {(m:% <o ) be LJ
- . T 4+ M s

(&
nt .5 +/f7_ -f-k‘
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Lecture four
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L ecture Five

Block Diagram

Control system contains number of component the function of each component can
be represented by diagram call block diagram. Block diagram is a technique used to
give a perspective view of the functioning of a system, showing an overall picture
of the interconnections among various components and subsystems by the direction
of signal flow, which is not available from a purely abstract mathematical
representation.

In control system the transfer function concept is very important; as it describes the
input-output relationships of components and subsystems. The transfer function is
a mathematical model; it does not give any information about the physical nature of
the actual system. However, by knowing the transfer function, the response of the

system when subjected to various inputs can be thoroughly investigated.

5-1 Basic Elements of Block Diagram

The basic elements of a block diagram are a block, the summing point and the take-off
point. Let us consider the block diagram of a closed loop control system as shown in

the following figure to identify these elements.

Summing point Take-off point

R(s) + %(Sl

G(s)

H(s)
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The above block diagram consists of two blocks having transfer functions G(s) and
H(s). It is also having one summing point and one take-off point. Arrows indicate the

direction of the flow of signals. Let us now discuss these elements one by one.
6-1-1 Block

The transfer function of a component is represented by a block. Block has single input
and single output. The following figure shows a block having input X(s), output Y(s)

and the transfer function G(s).

X(s) Y(s)
—_—

Y(s)
Transfer function, G (5) =

=>Y(s) = G(s)X(s)

6-1-2 Summing Point ( comparator)

The summing point is represented with a circle having cross (X) inside it. It has two or
more inputs and single output. It produces the algebraic sum of the inputs. It also
performs the summation or subtraction or combination of summation and subtraction
of the inputs based on the polarity of the inputs. Let us see these three operations one

by one.

The following figure shows the summing point with two inputs (A, B) and one output
(Y). Here, the inputs A and B have a positive sign. So, the summing point produces the
output, Y as sum of A and B.

e, Y=A+B.
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The following figure shows the summing point with two inputs (A, B) and one output
(Y). Here, the inputs A and B are having opposite signs, i.e., A is having positive sign
and B is having negative sign. So, the summing point produces the output Y as the
difference of A and B.

Y=A+(-B)=A-B.

The following figure shows the summing point with three inputs (A, B, C) and one
output (Y). Here, the inputs A and B are having positive signs and C is having a
negative sign. So, the summing point produces the output Y as
Y=A+B+(—C)=A+B—C.
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6-1-3 Take-off Point

The take-off point is a point from which the same input signal can be passed through
more than one branch. That means with the help of take-off point, we can apply the
same input to one or more blocks, summing points.

In the following figure, the take-off point is used to connect the same input, R(s) to two

more blocks.

Take-off point

RN Ca(s)

? P Ga(s) —_— %
Cp(s)
L s | —5

Cc(s)
| Gls) [

In the following figure, the take-off point is used to connect the output C(s), as one of

the inputs to the summing point.

Take-off point

R(s) + V' c(s)
B

G(s)
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6-2 Block Diagram Reduction Rules

Transformation Original Diagram Equivalent Diagram

1- Combining block X X X X X,

ombining blocks i Gs) 2 Gyls) 3 | GGy

in series
+ 7
X, b Gy f— J— )
2- Combining blocks N
+ No— G 6, |—ay,
in parallel ‘
| (a8l
3- Moving a
comparator

after a block

4- Moving a
comparator

before a block

5- Moving a pick-off
point

after a block

¥
=
¥

L
=y
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. X X Xs
6- Moving a take-off X o G %2 > ! > o =
point . X,
hefore a black -— - *
X, + X
e —( > G >
7- Eliminating a g X, G Xy
feedback loop i e 1T GH
C
8- combining of
R >
comparators R-B+C
B
+ R+B R+B-C + R=C R+B-C
9- Changing hetween R R
¥ - -
comparators

Notice:

The comparator cannot jump over a take-off point and the opposite is true.

R(s)

Summing
point
N E(s)

B(s)

Forward Path

v

G(s)

Take-off
point

Cls)

H(s)

' Y

&

Feedback Path
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However, to find the closed-loop transfer function for the above figure the output C(s)

and input R(s) are related as follows:

C(5) = G(S)E(S) vr e e vee v wme e 1

E(5) = R(5) — B(S) v e ver e e e

By substituting equation 2 and 3 in equation 1
C(s) = G(sHR(s) — H(s)C(5)}
C(s) = G(s)R(s) — G(s)H(5)C(s)
C(s){1+ G(s)H(s)} = G(s)R(s)

Thus

C(s) _ G(s)
R(s) 1+ G(s)H(s)

Closed — loop Transfer function =
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Example 5-1: Using reduction techniques, simplify the block diagram shown in the
figure below to a single block with input U(s) and output Y(s), and determine the overall
transfer function Y(s)/U(s).

U(s) @ > 313 )l

e + 7

e |
)
g

N
Y

=

10 &
Solution:
_____ N_ e_galti_vg fjee_dl)alcl_( e Parallel connection
i |
I+ 1 :
U(s) | p > : Y(s)
| : S +3 |
| |
1 |
| I
1 |
| |
| 10 |
| !
Series connection
. T TTTTTT b
\ [T I
s +1
U(s) T > > Y(s)

| |

e e e e e e e e |
s+1

U(s) > > Y(s)
s(s +13)

Thus, the overall transfer function can be easily found as

Y(s)_ s+1

U(s) s(s+13)
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Example 5-2: Simplify the control system shown below and obtain the transfer
function C(s)/R(s).

R(s)—@—| G

Solution:

From the figure it can be noticed that G1 and G2 are in series. Also, H1 and H2 are
consisting a closed-loop system, therefore, they can be reduced using eliminating rule

as shown in the following.

R(s)—@—{ G, G, - C(s)

H,
1+HH, |
GG,
R(s)— .. H |—eC(s)
1+GG: " (i)
!:l:S:}I _ GIGE . G1G2(1 + Hle)
R(s) 14 GiGoHy 1+HH;+G,GH,
1+ H H,
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Example 5-3 : Simplify the block diagram shown in the figure below

+
R(s) —r{;)—o

solution

1 —s(O—s] G|

G,

s

* Yiy)

H,y

5
I

'3

Gy

* Fix}

Gy

Gy

- Fis)
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H |,
Gy
+ A GG
» G > > G - - » Yis)
: gy : |— G3G.H, ‘
.H:u_ e
50 > ¥is)
1= G3G4H, +GyGyH, Ris) GG,G1G,4 ¥is)
e ' *

1= G!G.IH| "'GEG]_H:"'G]G:G]G.H}

Example 5-4 Consider the block diagram shown in the following figure. Let us
simplify (reduce) this block diagram using the block diagram reduction rules.

64
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Step 1 — Use Rule 1 for blocks G; and G. Use Rule 2 for blocks Gsand
G4 The modified block diagram is shown in the following figure.

(Hsle

R(s) + 8
G]_Gz Gg ) G4 -?-’ (_;5 bt
o Y(s)
+
H]_*_
H; |«

Step 2 — Use Rule 3 for blocks G1G, and H1. Use Rule 4 for shifting take-
off point after the block Gs. The modified block diagram is shown in the
following figure.

Hse
R(s) X ' Y(s)
—u® e e G3 + Gy |—| G5 |9
-+ 1+ GleHl
+
H
2 |e
Gs
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Step 3 — Use Rule 1 for blocks ( Gs + G4) and Gs. The modified block
diagram is shown in the following figure.

(Hle
R(s) 616, ' Y(s)
Gz +G4)G 7 W
+.® NG, (63 + G4)Gs
+
H
2 b=
Gs

Step 4 —Use Rule 3 for blocks ( Gs + G4) Gs and Hs. The modified block
diagram is shown in the following figure.

R(S)® £iG (G 3 5,0 ¥(=)
P g r—
+ 1+6162H1 1+(63 +G4)GSH3
I
H
= <
Gs

Step 5 — Use Rule 1 for blocks connected in series. The modified block
diagram is shown in the following figure.
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R(S)8 GG (E; +65) Y(s)
g (1+G1G2H){1 + (G3 + G4)GsH3}
+
H, P
Gs

Step 6 — Use Rule 3 for blocks connected in feedback loop. The modified
block diagram is shown in the following figure. This is the simplified
block diagram.

i) G1G, G5*(G3 + Gy) vie)

(14 G1G2H){1 + (G3 + G4)GsH3}Gs — G1G2Gs(G3 + G4)H»

Therefore, the transfer function of the system is

Y5 _ GGz GE (G3 + Gy)
Xy @+6GGH){1+(G3+ G4)GsH3}Gs — Gy Gy Gs (G3 + G4)H,
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Homework 5-1 Simplify the block diagram shown in the figure below

and obtain the transfer function Y(s)/R(S).

R(i)__ @_»

G
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Lecture seven

Time Response Analysis

If the output of control system for an input varies with respect to time, then it is called the time response of the control
system. The time response consists of two parts.

Transient response

Steady state response

The response of control system in time domain is shown in the following figure.

c(t)
A

Ty

0<—><—>

Transient Steady
State state

Here, both the transient and the steady states are indicated in the figure. The responses corresponding to these states are
known as transient and steady state responses.

Mathematically, we can write the time response c(t) as
c(t) = cir(t) + css(t)
Where,

cr(t) is the transient response

Ces(t) is the steady state response

1- Transient response:
Any system containing energy storing element like inductor, capacitor, mass and inertia

etc. these energy storing element are the part of the control system and cannot be
avoided. If the energy state of the systems is disturbed, then it takes a certain time to
change from one state to another state. This disturbance sometimes occurs at input,
sometime occurs at output and some time at both ends. The time required to change
from one state to another state is known as transient time.
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The part of the time response that remains even after the transient response has zero value for large values of 't’ is known
as steady state response. This means, the transient response will be zero even during the steady state.

Example

Let us find the transient and steady state terms of the time response of the control system c(t) =10+ 5e!

Here, the second term 5e * will be zero as t denotes infinity. So, this is the transient term. And the first term 10 remains

even as t approaches infinity. So, this is the steady state term.

Stander test signal

1- Impulse Input:

It is sudden change input. An impulse is infinite at t=0 and everywhere else.

o (t
O(t)=1 t=0 ®
=0 t+0
In laplase domain we have,
. Lkl =0 e
2- Step signal
*[t represents a constant command such “ U(t)
as position. Like elevator is a step input.
u(t)= A t =0 1
=0 otherwise
L[r(t)]= A/s 0 g
3- Ramp signal
» this represents a linearly increasing r(t)
input command.
or(t) = At t 20,Aslope
=0 otherwise
L[r(t)]= A/s? >
0 t

A= 1then unit ramp
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4- Parabolic signal

*Rate of change of velocity is t
acceleration. Acceleration is a parabolic
function.
* r(t) =At?2/2 t =0
=0 otherwise
Lr(t)]= A/s? t>
Time response of the first order systems
R(s) + i c(s)
= >
sT
C L
(S) sT 1

R(s) 1+ sT+1

The power of s is one in the denominator term. Hence, the above transfer function is of the

first order and the system is said to be the first order system.

We can re-write the above equation as

O(s) = (3T1+ 1) R(s)

Where,

C(s) is the Laplace transform of the output signal c(t),
R(s) is the Laplace transform of the input signal r(t), and

T is the time constant.
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Step Response of First Order System

Consider the unit step signal as an input to first order system.
So, r(t) = u(t)

Apply Laplace transform on both the sides.

Consider the equation, C'(s) = (3T1—|-1) R(s)

Substitute, R(s) = % in the above equation.
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Time response of the second order systems

R(s) E ZE(S) (U;% C(s)

C(s) _ o

R(s) 52+ 2{w,s + w?

This form is called the standard form of the second-order system. Where ¢ is the
damping ratio and wn is the natural frequency. However, the dynamic behaviour of the
second-order system can then be described in terms of two parameters ¢ and wn.

Damping ratio Type of damping Type of denominator
0<{<1 Under damping Complex
(=1 Critical damping Repeated
(>1 Over damping Real
(=0 No damping Real = Complex
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We shall now solve for the response of the system shown in the above figure to a
unit-step input considering the above mentioned cases.

1- For unit step input:

L CG) _ wp
" R(s) s2+42{w,s + w2
R(S) = E
c(s) o
S =
s(s? + 2{w,s + w2)
A- No damping ( = 0):
2 2
wn CUTI
c = I Rt L —
() s(s2 + 2¢w,s + w3) - B 5(5%2 + w3)
s?+w2Z=0 - S12 = Hjwy
w;, K. K. K
C(s)=—>2 =214 2 3

_I_
s(s24+w3) s Ss—jw, S+jw,

K, = o - =1
LT s —jwp) (s +jwn) Slo=o =
2
C‘-}n .

K = * J— s = —

* TS )G gy OO lsen = 5

‘. w3 L _

* T SGJen G ) & IO lsgen = 75

c 11 11
O =5726 e 26 1jay

1
~C)=1— E(e"“nt +e “nt) =1 — cosw,t

e(r)

Undamped
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B- Under damping case (0 << { << 1) (Complex Poles):

c(s) o
5) =— .
5(8%2 + 2lw,s + w?)
K K{a+jb
C(s)= 2+ (@a+/b)
s (824 2{wns + wd)
s+ 2(wps+wi =0 — Compar with s?+2as+(a®2+0b%) =0
2({:2(’7@?1 — ﬂ‘:("mn : ﬁ‘2+b2=wr23_} bE=wg_{2mﬁ

b=wn/(1-0%) = wy4

Comparing with

s=—a+jb

8 = —Cwy +jwn\-' (1-232)

{UZ
. I = = « (52 2
h(ﬂ +jb) - S{:Sz + Z‘Zwus + fﬂ%) (S + Z‘fmns + wr!)lsz_qwn_'_jmn "—I::l—qz}
mz
K(a+jb) = " .
—(wp + jony (1 =07)
PR
|K(a+]b)| = (wn) o,
2 .
‘/(—Ewn)+(]wm/(1 —79)
0 [(1—=¢2) Ja =72
a=tan"t—— fan—l\*'—“ _ tan—lM
Y — 7
|'_’,|J2
. ¥ Sls:ﬂ =1

K, =—
1os(s? + 20w,s + w?)

Comparing with

F(©) == [K(a+jb)| == sin(be + )

_qo e ~1/a-2?)
c(t)=1- =5 sin(wyt + tan : )
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cl1)

I
Underdamped
C- Critical damping case ({ = 1) (Repeated poles):
@y wy
[ = [ =

() 5(52 + 2{@w,s + w2) (s) 5(52 + 2w, s + w?)

03 K, K K
c(s) =—— - C(s)=—+ : 4 2

s(s + w, )2 5 (s+w,)?® (s+w,)
2z 2
. iy . _ 1 tuy a _
I"'J. _m* SI.;?:EI =1 ’ Rz = (1 _ 1}15{3_'_%}3 * (5' + mn) Ia:—mn = iy
1 d w2
K, = + W) gy = —1
TR DidssGra ) T @) o
1 iy o
_— — _ . — _ —. nf _ —I:dn_r
C(s) s Gre)f Gre) ' C(t) =1—aw,te e
2C(t) =1—e “nf (@, t +1)
jo e(1)
|
s=plane
2 -
S,
[}
Crniucally damped

Poles and response of a second-order system when { = 1
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D- Qver damping case ({ = 1) (Real poles):

s(5% 4+ 2w, 5 + w?)

Cls) =

—2{wy £/ (2{@,)* — 4w,
2

24+ 2w, s+wi=0 —= 5=

J(Z":mn}: - 4'&]”: Emn‘d {{2 _ 1]

51,2 = _gmn + 2 = _{mﬁ. t 2

S12 = —(uwy £ wyy/({—1)

Now C(s) can be written as bellow

w2
C(s) = m
S(s + {wp + @py/ T2 — 1)(5 + {w, — @/ {* — 1)
K, K. K
LC(s)=—"+ - + 2
s (5+€mn+mn\l{2_1) (s+{mn_mnv{2_1:}

Assume § =,/{* -1

2

mﬂ
K, = _ s|._
L= G (o T ) F an — wnB) =0
Wy W 1

1

KJ:‘E"‘ z 2 22 2 (72 2y 72 z =
Cag — Cag i + wgf —wpff fihy {";- _ﬁj S _(‘:' _1}

w? .
h: B S(S + ":mﬁ + mnﬁ}(S + ";-_{"-"'n - mnﬁ] (S Tiwn IEulﬂ"ﬁl}|‘3=_"~_"“"r1—'il-'n.l‘i'
K, = wn _ w3
P (Cwy — @ B) (e, — @B+, — 0, B)  (—{ty, — w,B)(—2w,PB)
K. = wy B 1 = 1
T 2wif +20iB 208 +26° RFTTCEY)
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2

mﬂ
K = S+ T + 0nB) (s + G0 — ) T 5 T B )le—tinrane
K, = @ = @
i {_{mn + mnﬁ}(_(mn + ‘{"-'mB + ('wn + mnﬁ} B (_gwn + wnﬁ}{zmnﬁ}
= 1 1i
Ka = = = .n f'.,rz - - @ @@
—2{wif +2wip* —2{F+2p* 2B({ —F)
1 1
C(s}=1+ 2BC+B) 2B —B)
s (s+{w, +w,f) (s+{w, —w,f)
1 1
_1 26((+B)  2B(E—-B)
) = S e r G +A)  Gre.G—A)
1 1
c =14+— —  e-wni{+fr __ "~ -wpl{-f
W=t e+m° 28C—B)°
o o)
—Gw, +w,¢E-1 ¢

\ s=plane

N =T

f
o0, (T -

Overdamped

Poles and response of a second-order system when { = 1
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Example: 1

To improve the transient behaviour of a system a controller with proportional and
derivative action is added, as shown in the figure below. Determine the value of K such
that the resulting system will have {=0.5. Also, what is the response of the resulting
system to a unit step input.

R(s) 25 C(s)
1+ Ks B >
Solution:
C(s) _ 25(1 + Ks)

R(s) s+ (25K +2)s+ 25
s?+ (25K +2)s+25=0 - compare with s?+2(w,s + w2 =0

rad

w2 =25 - wn=5T, 2w, =25K+2 = 2%05%5=25K+2
~ K =0.12
C(s) 25(1 + 0.125) 3s + 25

“R() 2+ (25+0.12+2)s+25 sZ+5s+25

35 + 25 Cy K(a + jb)
- C(s) =—+
s(s? + 55+ 25) s s%2+5s+25

C(s) =
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c 3s + 25 | )

= ¥ gl =

L7 s(sz2+5s+25) °7°

s?+55+25=0 - compare with s?+2as+ (a*+b*) =0

2a=5 - a=2.5; a*+b*=25 - b =433

s=—254433j

, 3s + 25 .
K(a +jb) = 5(s2 + 55 + 25) * (s + 55+ 25)|5=—25+433;
o iy — 3+ (—2.5+4.33))+25 17.5+12.99j
(a+jb) = —25 + 4.33] T 25 +433;
V17.52 + 12.992
IK(a + jb)| = = 4.36
V—2.52 4+ 4.332
1299 433 _
a = tan  +—— — tan = 96.58°
17.5 —2.5
c(t)=1+ + 4,36 * e =25t 5in(4.33t + 96.58)

433
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Example 2

|
rubu.ve. Aekermine LK\

- i Ruls €
T ;& va.\uga.‘ke Cl

For the SijL.eM Showw 1n

and ([%\ Such that the veSPowSC to
Was the form CEY=C ety Cr e

awd Ca 2 C(s)
Res) == ﬁ
oy -k 5 Res) =1
R($) s24 RS+ K
K
% Gl = 2 +/sS+K
ol —4%
v c(h)y= ¢ € +CC /)5/
C?. —
= 4
L) e St a7 )
; S+l3(f+“) = i
shBs+K=e comf- with ( .
= =4 5 P=
3 ({2+55+A)=o = K 7
A C\ + C']_
€Es) = E;;;g;; a0 - S+4
m .. O
S C :_/_-(S+l) = 3
(SN (S+4) S z-|
4
(S+1)(S+4) -~
B S
g C(5) = el B
S+ | 5+L|
-4t

: A st 4
.c(+3=——3-—e ~ =
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Example 3

F}V\cr\ the vesponge &%\Mx{’iov\ For the S econd ovder
v
SGS‘{:CW\ S\/\OQW i F‘ﬁ‘”’e : Py, - Sbstew\ wnder dLO\W\PG

hag a unit 1Mp\~\5 'mpvtj\'?o

=9 B

Sol.

= CG) | Wi . Re) =1
R(SY  S™427WaS ¥
L

w
Sy ———mmmmMmMm
3 St | Wn S + iy

2 2

SL-\-’)_‘(,.J St Wk Comp. with 51-1—2,0(5-\!-{0 +b)
o 2a=27Wn a = ]Ww

R i = b= WV 1-7%

S—_—arb) = —JWnyWnV -T2

< (a-r.jb)
e C(S): SL+2_T“)“S+M)“7.

xu
By (S i
’((O*Jb) i X w2

S 2] W5 Wi s:q%-fju,..,ﬁlz

oo /K(d—h).l))/ = wa
. O

~at
" Cler o Jetasiil] Sin (bt )
b

> —'{“"v\’t
O =2 sin(wet)
/1-1? .
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Lecture eight

8.1 Transient Response Specification

Figure 8.1 shows the plot of C(t) versus t for unit step input and different transient
response specifications have also been pointed.

clt) &
Allowable tolerance
[
"U;.‘-] ﬂ\ Nty l_[_;,.n,ns
1 | N—T - S ——— - / or
| T} P 002
I | 1
g I [ I
| f [ i
I [ i
I [ I
05 t-—4 | | i
[ [ i
] I | ]
o [ I
o [ i
1 | | 1
o | I
] I | 1
0 1 | [l -
f
- Ir' —_—
-q—."p—p-
~ Iy -
Figure 8.1

8.1.1 Delay time tq

It is the required time for the response to reach 50% of the final value in the first
attempt.

C(t)=; at t=T

1+0.5¢

t; =
d Wy

8.1.2 Rise time tr

The time required for the waveform to go from 10% of the final value to 90% of the
final value for overdamped systems and from O to 100% of the final value for
underdamped systems. It can be obtained by equating the time response function of
under damping system to 1.
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unts a-
. €
C(ty) =1 - ———sin(wgqt, + tan_lv—) =1
V@ —=0%) ¢
/(1—¢?
sin(wgt, + tan™t ‘*(;757) =
/ 1— 2
va= tan_l¥ S osin(wgt, +a) =0
Waty + @ =nm wheren =1,2,3, .....
Letn=1 Swgty ta=m
T—a
t =
Wy

8.1.3 Peak time t,

The time required to reach the first, or maximum, peak. It can be found by
differentiating the time response function of under damping system and equating the
derivative to zero, since the peak value occur when the derivative is zero.

i —{wnt _ m
C(t) =1— S—sin(w,t + tan-1 X2
(_ ) m ( d 7 )

C(t)=— (ﬁ (—{wpe~tentsin(wyt + a) + wge~*@nt cos(wyt + a)))
ﬁ( (wpe ™5t sin(wqty + @) — wge ' cos(wqaty + @)) = 0
{wpe~S9ntr sin(waty, + a) — wge n'r cos(wat, + @) = 0
{wpe~$@ntr sin(wgt, + @) — wpy[ (1 — (2)e~S@nty cos(wgt, + @) =0
{sin(wgt, +a) — /(1 — {?) cos(wgqt, +a) =0
VA =7?)

v a=tan” —7 ~sina=4(1-¢%) & cosa=¢

asin(wgt, + @) — sina cos(wyt, + @) =0
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8.1.4 Maximum (percent) overshoot Mp

It is the largest error between reference input and output during the transient period.
The maximum overshoot occurs at the peak time tp.

M, =C(t,) —R(t)=C(t,) — 1

—{wnt

e . ]
G(tp) =1- ﬁsm(_mdtp + a)

—(:w"-_—-—

|
w"\;(l—(z)

=Sl e . l
c(t,) -1 sin(wq -+ @)

\"‘(1_62)

_(n
e

J(1-23)

M, =~ A sin(m + @)
na

8.1.5 Settling time ts

The time required for response to decrease and stay within specified percentage of its
final value (within the tolerance band).

For 2% criterion t = i
"y

For 5% criterion te=——
(wn
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For no damping ({=0) system
8.1.6 Rise time tr

It has established previously that for unit step and no damping

C(t) = 1— coswyt Let C(t)=1 andt=t,
1=1-—coswyt, — COS wyty =0 — Wpty = =
. T

T 2wy,

8.1.7 Peak time tp

dC(ty
C(t) =1— coswyt Let t=t, and T 0
0 = w, sinwy,t, — Wpty, =T
T
t =
8.1.8 Maximum overshoot M;
. T
C(t) =1— coswyt Let t—tp—fp—w—n
_ T
C(t,) = 1 — cos wyty, - C(ty) — 1 = —cos(w, *—)
: w,,
ﬂ‘fp=C(fp)—l=—CGSH scosm=—1
M,=1

8993w
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8.2 Steady state error and response

Consider the figure the following figure

R(s) + E(s) C(s)
K -
System error — E(s) =R(s) —C(s)
e(t) = L71E(s) — e(t) =R(t) —C(t)
Steady sate error — E;,o = E—% sE(s) e, = lim e(t)

t—oo
Steady sate response — Cos = ]iné sC(s)
55—

Css = %1_{23 C(t)

Example 8-1 in the figure below the time T=3 sec and the ratio of torque to inertia ?—

2 N _. ) o
9 kgm Find the natural frequency and damping ratio.
R(s) , _ |1 C(s)
K(Ts+1) ¥ jo >
Solution:
C(s)  K(Ts+1) )
R(s) Js2+K(Ts+1) -/
K 2 2
ces) TJIsHD  (35+9
R(s) 2.K 1) s2+2s42
s+}(Ts+l) st+3s+g
2, 2 : 2 2
s +§S+§=O — Compar with s+ 2(wps +wy =0
2 2 :
Wy = 3 wy, = 0471 rad/s

2 2
2{wp =5 -  20+04l=3  2{=0707
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Example 8-2: Consider the system shown in the figure below, where {=0.6 and wn=>5 rad /s.
Find the rise time tr, peak time tp, maximum overshoot Mp, and settling time ts when the
system is subjected to a unit-step input.

R(s) E(s) C(s)

2
Wy

Solution:

T—a V1 —0.62

Rise time: t, = a=tanl——— = a=0927;

g ’ 0.6

Wq = WpJ1—(2=5%y1-06%=4rad/s

T — 0.927
v t, = — = 0.55 sec
4
) T T
Peak time: tp=—=,= 0.875 sec
OF] 4
—{m —0.6+1

Maximum overshoot: My = ev(1-02) = £J(1-0.6%) — 0,095

The maximum percent overshoot is thus 9.5%.

Settling time t,: For the 2% criterion, the settling time is

t5=€j}n=ﬂ.6$5= 1.33 sec
For the 5% criterion,
3 3
s = 7w, ~06-5 L€C
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Example 8-3: For the system shown in the figure below, determine the values of gain K
and the constant K so that the maximum overshoot in the unit-step response is Mp= 0.2
and the peak time is 1 sec. With these values of K and K}, obtain the rise time and settling
time. Assume that J=1 kg-m? and B=1 N.m.s/ r .

Ri(s) K Cs)
I s(Js+ B+ KK;)

Solution:
K
C(s) K ~ /]
R(s) Js?+Bs+KK,+K ,  (B+KKps K
R e s
] ]
_ = e —{*m
M, = ev(1=¢%) — 02=ev3{) 5 In02=
v1-1¢2
{ = 0456
T T
Peak time: t, = — — l=— — wg = 3.14 rad/sec
Wq Wq
Wy rad
Sy = — =3.53—
\."I]- — {2 s
, (B+KKyp)s K . 5 5
s +f+T=O — Compare with s+ 2{wps +wsp =0
K 5 _
Vol = 7 SK=w;]=125N.m
2 H_(:B+KKR) {—B+KKh
J ] 2JKJ
0.456 = 22kn " K= 0178
T V1251 A
. . m—a _1v1—0.4562
Rise time: t, = ; a=tan T —— = 1.09
Wg 0.456
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t = 0.65
" 3.14
Seftling time t;: For the 2% criterion,

* : 2.48

t = = = .

S~ Zw, 0456353 sec

For the 5% criterion,

3 3 _

te = 1.86 sec

" {w, 0.456+353

Example 10-4: For the system shown below where the input is unit-step:

Determine the following:
1 (The damping ratio {, the natural frequency wn, the damped frequency wq
2 (The time response C(t ) and error e (t).

3) Steady state response (Cs.s) and steady state error (Es.s).

R(S) 25 C(S)
- S(5+3) ;

Solution:

C(s) 25

T.F = =

R(s) s?+3s+25
1)
s2+3s+25=0 — Compar with s+ 20wys +wi=10

rad
& M%ZEE — ‘:‘JHZST;

v 2{wp =3 — 2x5+(=3 - (=03

g =wpf1—02 = fwg=5V1-032=477 %
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2)
When the input i it st C(s) = 25
en the input is unit step s) = SGZ ¥ 357 25)
(=03 . the system is under damping and thus the poles are complex
K K(a +jb)
¢ _?+32 +3s + 25
K 2 1
1= o235+ 25) =0 =
s243s425=0 — Compar with s?+2as+(a®+b% =0
2a=3 —= a=15; 1524+ p2=25 — b=477
s=—-a+jb — s=—-15+477j
, 25 o,
K(a+jb) = S(s2 + 35 + 25) * (8% + 35+ 25)|s——15+477j
K(a+ jb) 2 |K(a + jb)| V(257 5
—1.5+4.77j Vf(_1_5)2 + (4_??)2
tan™? tan-127L _ 7254
a = tan 5E an 1z %
Thus
25
1 -15+477)
c =——
S s s2+3s+25

and comparing with
1
f() = 5 |K(a + jb)| e sin(bt + a)

Will get

c(t)=1- « 5+ ¢ Mlsin(4.77t + 72.54)

4.77

> L oM 477t + 72.54)
177 e sin(4.77t +72.54))

e(t)=R(t)—-C(t)=1—-(1 -

e(t) = 1.04 ¢ **Fsin(4.77t + 72.54)
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3)
£ R Cls 1 25
() =R(©) =) = 5~ 557735 7 28)
Steady sate error — E..= ling SE(s) €5 = gim e(t)
5— oo
Ess = lims - 2 y—1-2 g
ss = 4% (s s(s?+3s+ 25:}':I B 25)
Stea.dbf sate response — Cos = lin& sC(s) Coc = gim C(t)
5 —em
Css = tllﬂé(l + 277 5+ et 5in(4.77t + 72.54)) - (Cgs=1
Homework :

For a system having G(s)= and unity feedback find

25
s(s+10)
1- Mn
2-G
3-t,

4-M,
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Lecture Nine

System Stability

In the previous lectures it has been established that the systems have to pass through a
short, transient period before getting settled. However, to find out whether the system
under analysis will reach to its planned steady state or not the stability analysis has to
be conducted, to explore whether the system is stable or unstable. A control system is
stable if and only if all closed-loop poles lie in the left-half of the s-plane.

9.1 The Routh criterion stability

In this criterion the coefficients are arranged in an array which is known as Routh’s
array. For the characteristic equation

aoS" + aiS" 1+ s+ ass™3+ ..., =0

ao a2

Sn_l ai as

S c 2
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R(s) N(s) C(s)

-
ag* +ay +axs? +as + ag

Table 11-1: Initial layout for Routh table

A ay a» dp
3
5 asj a 0
.S':
|
\ J
0
A)
'i"; dy az iy
'ij a5 i ]
ay a2 dg dp a; 0
< B LEE . B iy 0 _ B a; 0 _
s a, =b —a—=b =0
ay a ay 0 ay 0
! by ba| b 0] by 0]
§ I'J| =0 bl =1 I'?| =)
by b by, 0 b 0
0 ey 0 e 0 e 0
T =d i =0 an =)

Notice:

If the closed-loop transfer function has all poles in the left half of the s-plane, the system
Is stable. Thus, a system is stable if there are no sign changes in the first column of the
Routh table.
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Example 9-1: Examine the stability of the following equation using Routh-
Hurwitz method.

s3+ 6s2+11s + 6=0

Solution:

sl 10 0

_lé 151‘ (6—060)
1= 6 = =

“ls ol _
: _

6

b 0

10 b, =
Since there 1s no sign change in the first column, thus, the system is stable.

Example 9-2: Examine the stability of the following equation using Routh-
Hurwitz method.

s*+ 2534652+ 7s +5=0

Solution:
st 1 6 5 0
s3 2 7 0
s2 |25 5
st 3
s° 5

_‘2 7|
__ 125 5=3

b—i_lé ?|—25 . b —Lé g—5-
Lo et Ty T AT s

2

Since there is no sign change in the first column. thus, the system is stable.
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Example 9-3: Make the Routh table for the system shown in the figure

below.

Solution:

R(5y +

% E(s)

1000

(s

{2+ 205+ 35+ 5)

R(5) 1000 C(s)
-t " % ol
5 + 105° + 315 + 1030
5 1 31
5 W o1 1630 103
1 31 1 0 1 0
§ 1 103_71 0 n_ﬂ 1 0_0
1 - 1 - 1
| 1 103| ‘ 1 0| ’ 1 0‘
0 -72 0 -72 0 -72 0
=103 =0 =0
=72 =72 =72

In the above table there are two sign changes in the first column. The first
sign change occurs from 1 in the s? row to -72 in the s row. The second
occurs from -72 in the st row to 103 in the s° row. Thus, the above system

IS unstable since two poles exist in the right half-plane.
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