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Dr. Qasim Abbas First Lecture Control System 

Introduction: 
Automatic control has played a vital role in the advance of engineering and 

science. In addition to its extreme importance in space-vehicle systems, missile-

guidance systems. Robotic systems, and the like, automatic control has become 

an important and integral part of modern manufacturing and industrial 

processes. For example, automatic control is essential in the numerical control 

of machine tools in the manufacturing industries, in the design of autopilot 

systems in the aerospace industries, and in the design of cars and trucks in the 

automobile industries. It is also essential in such industrial operations as 

controlling pressure, temperature, humidity, viscosity, and flow in the process 

industries. 

Since advances in the theory and practice of automatic control provide the 

means for attaining optimal performance of dynamic systems, improving 

productivity, relieving the drudgery of many routine repetitive manual 

operations, and more, most engineers and scientists must now have a good 

understanding of this field. 

 

Definitions: 

System: is an arrangement of physical components connected in such 

manner as to form act as an entire unit. 

Control system: A system that may include electronic and mechanical 

components, where some type of machine intelligence controls a physical 

process. 

Actuator: The first component in the control system which generates 

physical movement, typically a motor. The actuator gets its instructions directly 

from the controller. Another name for the actuator is the final control element 

١ 
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Controlled Variable and Manipulated Variable: The controlled 

variable is the quantity or condition that is measured and controlled. The 

manipulated variable is the quantity or condition that is measured and 

controlled. The manipulated variable is the quantity or condition that is varied 

by the controller so as to affect the value of the controlled variable. Normally, 

the controlled variable is the output of the system. Control means measuring the 

value of the controlled variable of the system and applying the manipulated 

variable to the system to correct or limit deviation of the measured value from a 

desired value. 

 

Plants: A plant may be a piece of equipment, perhaps just a set of a machine 

parts functioning together, the purpose of which is to perform a particular 

operation. 

Closed-loop control system: A control system that uses feedback. A 

sensor continually monitors the output of the system and sends a signal to the 

controller, which makes adjustments to keep the output within specification. 

Feedback: The signal from the sensor, which is fed back to the controller. 

 

 

 

 

 

Open-loop control system: A control system that does not use feedback. 

The controller sends a measured signal to the actuator, which specifies the 

desired action. This type of system is not self-correcting. 

input 

input 

C.S  output

C.S
output
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Sensor: Part of the control system that monitors the system output, the 

sensor converts the physical output action of the system into an electric signal, 

which is fed back to the controller. 

Transfer Functions: 
Physically, a control system is a collection of components and circuits 

connected together to perform a useful function. Each component in the system 

converts energy from one form to another; for example, we might think of a 

temperature sensor as converting degrees to volts or a motor as converting volts 

to revolutions per minute. To describe the performance of the entire control 

system, we must have some common language so that we can calculate the 

combined effects of the different components in the system. This need is behind 

the transfer function concept.  

A transfer function (TF): is a mathematical relationship between the 

input and output of a control system component. Specifically, the transfer 

function is defined as the output divided by the input, expressed as: 

ࡲࢀ ൌ
࢚࢛࢚࢛
࢚࢛

 

 
Block Diagrams: 
Is pictorial representation of the cause and effect relation-ship between the 

input and output of a physical system. 

 

Example: 
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Laplace Transform 

Introduction: 

 

 

Figure (1) Transient and steady-state periods of time response. 

 

(1) 
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Laplace Transforms: 

 

 

 

Example:         ݂   ሺݐሻ ൌ ݁ି௧

ሻݏሺܨ ൌ £ሾ݁ି௧ሿ ൌ න ݁ି௧݁ି௦௧݀ݐ
ஶ



ൌ න ݁ିሺ௦ାଵሻ௧݀ݐ
ஶ



ൌ
െ1
ݏ  1

݁ିሺ௦ାଵሻ௧ห
ஶ
ൌ

1
ݏ  1

 

ሺݐሻ ൌ

ሻݏሺܨ ൌ £ሾ4ሿ ൌ න 4݁ି௦௧݀ݐ
ஶ



ൌ 4න ݁ି௦௧݀ݐ
ஶ



ൌ
െ4
ݏ

 

Example:    ݂ 4 

݁ି௦௧|ஶ ൌ
4
ݏ

 

 

٦ 
 



Dr. Qasim Abbas Control Second lecture  

Example:    ݂  ሺݐሻ ൌ ݁ିଷ௧

ሻݏሺܨ ൌ න ݁ିଷ௧݁ି௦௧݀ݐ
ஶ



ൌ න ݁ିሺ௦ାଷሻ௧݀ݐ
ஶ



ൌ
െ1
ݏ  3

݁ିሺ௦ାଷሻ௧ห
ஶ
ൌ

1
ݏ  3
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Inverse Transformation: 
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Block Diagram Reduction 

 

 

Figure 1: Single block diagram representation 

 

 

 

 

 

Figure 2: Components of Linear Time Invariant Systems (LTIS) 

 

 

 

 



 

Figure 3: Block diagram components 

 

 

Figure 4: Block diagram of a closed-loop system with a feedback element 

 

 

 

 



BLOCK DIAGRAM SIMPLIFICATIONS 

 

Figure 5: Cascade (Series) Connections 

 

 

 

 

Figure 6: Parallel Connections 

 

 

 

 



Block Diagram Algebra for Summing Junctions 

 

Figure 7: Summing Junctions 

 

 

Block Diagram Algebra for Branch Point 

 

Figure 8: Branch Points 



Block Diagram Reduction Rules 

Table 1: Block Diagram Reduction Rules 

 

 

 

Table 2: Basic rules with block diagram transformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 1: 

 

 

 

 

 



Example 2: 

 

Example 3: 

 

 



Example 4: 

 

 

 



Example5: 
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ROUTH’S STABILITY CRITERION

Consider a closed-loop transfer function

H(s) =
b0s

m + b1s
m−1 + · · ·+ bm−1s + bm

a0sn + a1sn−1 + · · ·+ an−1s + an

=
B(s)

A(s)
(1)

where the ai’s and bi’s are real constants and m ≤ n. An alternative to factoring the
denominator polynomial, Routh’s stability criterion, determines the number of closed-
loop poles in the right-half s plane.

Algorithm for applying Routh’s stability criterion

The algorithm described below, like the stability criterion, requires the order of A(s) to
be finite.

1. Factor out any roots at the origin to obtain the polynomial, and multiply by −1 if
necessary, to obtain

a0s
n + a1s

n−1 + · · ·+ an−1s + an = 0 (2)

where a0 6= 0 and an > 0.

2. If the order of the resulting polynomial is at least two and any coefficient ai is zero
or negative, the polynomial has at least one root with nonnegative real part. To
obtain the precise number of roots with nonnegative real part, proceed as follows.
Arrange the coefficients of the polynomial, and values subsequently calculated from
them as shown below:

sn a0 a2 a4 a6 · · ·
sn−1 a1 a3 a5 a7 · · ·
sn−2 b1 b2 b3 b4 · · ·
sn−3 c1 c2 c3 c4 · · ·
sn−4 d1 d2 d3 d4 · · ·
...

...
...

s2 e1 e2

s1 f1

s0 g0

(3)

where the coefficients bi are

b1 =
a1a2 − a0a3

a1

(4)

b2 =
a1a4 − a0a5

a1

(5)

b3 =
a1a6 − a0a7

a1

(6)

...
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generated until all subsequent coefficients are zero. Similarly, cross multiply the
coefficients of the two previous rows to obtain the ci, di, etc.

c1 =
b1a3 − a1b2

b1

(7)

c2 =
b1a5 − a1b3

b1

(8)

c3 =
b1a7 − a1b4

b1

(9)

...

d1 =
c1b2 − b1c2

c1

(10)

d2 =
c1b3 − b1c3

c1

(11)

...

until the nth row of the array has been completed1 Missing coefficients are replaced
by zeros. The resulting array is called the Routh array. The powers of s are not
considered to be part of the array. We can think of them as labels. The column
beginning with a0 is considered to be the first column of the array.

The Routh array is seen to be triangular. It can be shown that multiplying a row
by a positive number to simplify the calculation of the next row does not affect the
outcome of the application of the Routh criterion.

3. Count the number of sign changes in the first column of the array. It can be shown
that a necessary and sufficient condition for all roots of (2) to be located in the
left-half plane is that all the ai are positive and all of the coefficients in the first
column be positive.

Example: Generic Quadratic Polynomial.

Consider the quadratic polynomial:

a0s
2 + a1s + a2 = 0 (12)

where all the ai are positive. The array of coefficients becomes

s2 a0 a2

s1 a1 0
s0 a2

(13)

1There is one important detail that we have not yet mentioned. If an element of the first column
becomes zero, we must alter the procedure. Since this altered procedure is requires some explanation, we
postpone discussion of it to a pair of subsections below.
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where the coefficient a1 is the result of multiplying a1 by a2 and subtracting a0(0) then
dividing the result by a2. In the case of a second order polynomial, we see that Routh’s
stability criterion reduces to the condition that all ai be positive.

Example: Generic Cubic Polynomial.

Consider the generic cubic polynomial:

a0s
3 + a1s

2 + a2s + a3 = 0 (14)

where all the ai are positive. The Routh array is

s3 a0 a2

s2 a1 a3

s1 a1a2−a0a3

a1

s0 a3

(15)

so the condition that all roots have negative real parts is

a1a2 > a0a3. (16)

Example: A Quartic Polynomial.

Next we consider the fourth-order polynomial:

s4 + 2s3 + 3s2 + 4s + 5 = 0. (17)

Here we illustrate the fact that multiplying a row by a positive constant does not change
the result. One possible Routh array is given at left, and an alternative is given at right,

s4 1 3 5
s3 2 4 0

s2 1 5
s1 −6
s0 5

s4 1 3 5
s3 6 2 6 4 6 0 Divide this row by two to get

1 2 0
s2 1 5
s1 −3
s0 5

In this example, the sign changes twice in the first column so the polynomial equation
A(s) = 0 has two roots with positive real parts.

Necessity of all coefficients being positive.

In stating the algorithm above, we did not justify the stated conditions. Here we show
that all coefficients being positive is necessary for all roots to be located in the left half-
plane. It can be shown that any polynomial in s, all of whose coefficients are real, can
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be factored into a product of a maximal number linear and quadratic factors also having
real coefficients. Clearly a linear factor (s + a) has nonnegative real root iff a is positive.
For both roots of a quadratic factor (s2 + bs + c) to have negative real parts both b and
c must be positive. (If c is negative, the square root of b2 − 4c is real and the quadratic
factor can be factored into two linear factors so the number of factors was not maximal.)
It is easy to see that if all coefficients of the factors are positive, those of the original
polynomial must be as well. To see that the condition is not sufficient, we can refer to
several examples above.

Example: Determining Acceptable Gain Values

So far we have discussed only one possible application of the Routh criterion, namely
determining the number of roots with nonnegative real parts. In fact, it can be used to
determine limits on design parameters, as shown below.

Consider a system whose closed-loop transfer function is

H(s) =
K

s(s2 + s + 1)(s + 2) + K
. (18)

The characteristic equation is

s4 + 3s3 + 3s2 + 2s4 + K = 0. (19)

The Routh array is
s4 1 3 K
s3 3 2 0
s2 7/3 K
s1 2− 9K/7
s0 K

(20)

so the s1 row yields the condition that, for stability,

14/9 > K > 0. (21)

Special Case: Zero First-Column Element.

If the first term in a row is zero, but the remaining terms are not, the zero is replaced by
a small, positive value of ε and the calculation continues as described above. Here’s an
example:

s3 + 2s2 + s + 2 = 0 (22)

has Routh array
s3 1 1
s2 2 2
s1 0 ∼= ε
s0 2

(23)



ECE 680 Modern Automatic Control Routh’s Stability Criterion June 13, 2007 5

where the last element of the first column is equal 2 = (ε2− 0)/ε. In counting changes of
sign, the row beginning with ε is not counted.

If the elements above and below the ε in the first column have the same sign, a pair
of imaginary roots is indicated. Here, for example, (22) has two roots at s = ±j.

On the other hand, if the elements above and below the ε have opposite signs, this
counts as a sign change. For example,

s3 − 3s + 2 = (s2 − 1)(s + 2) = 0 (24)

has Routh array
s3 1 −3
s2 0 ∼= ε 2
s1 −3− 2/ε
s0 2

(25)

with two sign changes in the first column.

Special Case: Zero Row. If all the coefficients in a row are zero, a pair of roots of
equal magnitude and opposite sign is indicated. These could be two real roots with equal
magnitudes and opposite signs or two conjugate imaginary roots. The zero row is replaced
by taking the coefficients of dP (s)/ds, where P (s), called the auxiliary polynomial, is
obtained from the values in the row above the zero row. The pair of roots can be found
by solving dP (s)/ds = 0.

Note that the auxiliary polynomial always has even degree. It can be shown that an
auxiliary polynomial of degree 2n has n pairs of roots of equal magnitude and opposite
sign.

Example: Use of Auxiliary Polynomial

Consider the quintic equation A(s) = 0 where A(s) is

s5 + 2s4 + 24s3 + 48s2 − 50. (26)

The Routh array starts off as

s5 1 24 −25
s4 2 48 −50 ←− auxiliary polynomial P (s)
s3 0 0

(27)

The auxiliary polynomial P (s) is

P (s) = 2s4 + 48s2 − 50 (28)

which indicates that A(s) = 0 must have two pairs of roots of equal magnitude and
opposite sign, which are also roots of the auxiliary polynomial equation P (s) = 0. Taking
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the derivative of P (s) with respect to s we obtain

dP (s)

ds
= 8s3 + 96s. (29)

so the s3 row is as shown below and the Routh array is

s5 1 24 −25
s4 2 48 −50
s3 8 96 ←− Coefficients of dP (s)/ds
s2 24 −50
s1 112.7 0
s0 −50

(30)

There is a single change of sign in the first column of the resulting array, indicating that
there A(s) = 0 has one root with positive real part. Solving the auxiliary polynomial
equation,

2s4 + 48s2 − 50 = 0 (31)

yields the remaining roots, namely, from

s2 = 1, s2 = −25, (32)

s = ±1, s = ±j5. (33)

so the original equation can be factored as

(s + 1)(s− 1)(s + j5)(s− j5)(s + 2) = 0. (34)

Relative stability analysis. Routh’s stability criterion provides the answer to the
question of absolute stability. This, in many practical cases, is not sufficient. We usually
require information about the relative stability of the system. A useful approach for ex-
amining relative stability is to shift the s-plane axis and apply Routh’s stability criterion.
Namely, we substitute s = z − σ (σ = constant) into the characteristic equation of the
system, write the polynomial in terms of z, and apply Routh’s stability criterion to the
new polynomial in z. The number of changes of sign in the first column of the array
developed for the polynomial in z is equal to the number of roots which are located to the
right of the vertical line s = −σ. Thus, this test reveals the number of roots which lie to
the right of the vertical line s = −σ. 2

2This italicized text and most of the numerical examples are from Section 6-6 of Ogata, Katsuhiko,
Modern Control Engineering, Englewood Cliffs, NJ: Prentice-Hall, 1970, pp. 252–258. The rest of the
text, including the descriptions of the examples is mine.



Similarly, the  program for  the  fourth-order transfer function approximation with 
T = 0.1 sec is 

[num,denl = pade(0.1, 4); 
printsys(num, den, 's t )  

numlden = 

sA4 - 2O0sA3 + 1 80O0sA2 - 840000~ + 16800000 

sA4 + 200sA3 + 1 8000sA2 + 840000s + 16800000 

Notice that the pade approximation depends on  the dead time T and  the desired order 
for the  approximating transfer function. 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-6-1. Sketch the root loci for the system shown in Figure 6-39(a). (The gain K is assumed to be posi- 
tive.) Observe that for small or large values of K the system is overdamped and for medium val- 
ues of K it is underdamped. 

Solution. The procedure for plotting the root loci is as follows: 

1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative 
real axis between 0 and -1 and between -2 and -3. 

2. The number of open-loop poles and that of finite zeros are the same.This means that there 
are no asymptotes in the complex region of the s plane. 

(2) 

Figure 6-39 
(a) Control system; (b) root-locus plot. 
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3. Determine the breakaway and break-in points.The characteristic equation for the system IS 

The breakaway and break-in points are determined from 

d K  (2s  + l ) ( s  + 2 ) ( s  + 3 )  - s(s + 1 ) ( 2 >  + 5 )  
- - - - 
rls [ ( s  + 2 ) ( s  + 3)12 

as follows: 

Notice that both points are on root loci. Therefore, they are actual breakaway or break-in 
points. At point s = -0.634, the value of K is 

Similarly, at s = -2.36h, 

(Because points = -0.634 lies between two poles,it is a breakaway point, and because point 
s = -2.366 lies between two zeros, it is a break-in point.) 

4. Determine a sufficient number of points t h d  satisfy the angle condition. (It can he found 
that the root loci involve a circle with center at -1.5 that passes through the breakaway and 
break-in points.) The root-locus plot for this system is shown in Figure 6-3Y(h). 

Note that this system is stable for m y  positive value of K since all the root loci lie in the left- 
half s plane. 

Small kalues of I*: (0 c K < 0.0718) correspond to an overdampcd system. Medium value\ 
01' I< (0.0718 .-: K .; 14) correspond to an underdamped system. Finally. large values ol 
K ( 14 = K )  correspond to an overdamped systern. With a large value of K ,  the steady state can 
be I-eachcd in much shorter time than with a \mall value o f  I<. 

The value of K should be adjusted so thal system performance is optimum according to ;I 
given performance index. 

Example Problems and Solutions 385 



A-6-2. Sketch the root loci of the control system shown in Figure 6-40(a). 

Solution. The open-loop poles are located at s = 0, s = -3 + j4, and s = -3 - j4. A root locus 
branch exists on the real axis between the origin and -oo.There are three asymptotes for the root 
1oci.The angles of asymptotes are 

&18O0(2k + 1) 
Angles of asymptotes = 

3 
= 60°, -60°, 180" 

Referring to Equation (6-13), the intersection of the asymptotes and the real axis is obtained as 

Next we check the breakaway and break-in points. For this system we have 

K = -s(s2 + 6s + 25) 

Now we set 

which yields 

Figure 6-40 
(a) Control system; (b) root-locus plot. 
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Notice that at points s = -2 * ~2.0817 the ang!e condition is not satisfied. Hence, they are nei- 
ther breakaway nor break-in points. In fact, if we calculate the value of K,  we obtain 

(To be an actual breakaway or break-in point, the corresponding value of K must be real and 
positive.) 

The angle of departure from the complex pole in the upper half s plane is 

The points where root-locus branches cross the imaginary axis may be found by substituting 
s = j w  into the characteristic equation and solving the equation for w and K as follows: Noting 
that the characteristic equation is 

we have 

which yields 

Root-locus branches cross the imaginary axis at w = 5 and w = -S.The value of gain K at the 
crossing points is 150. Also, the root-locus branch on the real axis touches the imaginary axis at 
w = 0. Figure 6-40(b) shows a root-locus plot for the svstern. 

It is noted that if the order of the numerator of G ( s ) H ( s )  is lower than that of the denomi- 
nator by two or more, and if some of the closed-loop poles move on the root locus toward the right 
as gain K is increased, then other closed-loop poles must move toward the left as gain K is in- 
creased.This fact can be seen clearly in this problem. If the gain K is increased from K = 34 to 
K = 68, the complex-conjugate closed-loop poles are moved from s = -2 + 13.65 to s = -1 + j4: 
the third pole is moved from s = -2 (which corresponds to K = 34) to s = -4 (which corre- 
sponds to K = 68).Thus, the movements of two complex-conjugate closed-loop poles to the right 
by one unit cause the remaining closed-loop pole (real pole in this case) to move to the left by two 
units. 

A-6-3. Consider the system shown in Figure 6-41(a). Sketch the root loci for the system. Observe that 
for small or large values of K the system is underdamped and for medium values of K it is 
overdamped. 

Solution. A root locus exists on the real axis between the origin and -m. The angles of asymp- 
totes of the root-locus branches are obtained as 

+180°(2k + 1) 
Angles of asymptotes = 

3 
= 60°, -60°, -180" 

The intersection of the asymptotes and the real axis is located on the real axis at 

Example Problems and Solutions 



Figure 6-41 
(a) Control system; 
(bj root-locus plot. (b) 

The breakaway and break-in points are found from dK/ds  = 0. Since the characteristic equation is 

s3 + 49' + 5s + K = 0 
we have 

K = -( s3 + 4s2 + 5s)  . 

Now we set 

which yields 
s = -1, s = -1.6667 

Since these points are on root loci, they are actual breakaway or break-in points. (At points = -1, 
the value of K is 2, and at point s = -1.6667, the value of K is 1.852.) 

The angle of departure from a complex pole in the upper half s plane is obtained from 

e = 1800 - 153.430 - go0 
or 

6 = -63.43" 

The root-locus branch from the complex pole in the upper half s plane breaks into the real axis 
at s = -1.6667. 

Next we determine the points where root-locus branches cross the imaginary axis. By substi- 
tuting s = jw into the characteristic equation, we have 

( j ~ ) ~  + 4(jw)' + 5 ( j w )  + K = 0 
or 

( K  - 4w2) + jo(5 - w2) = 0 

from which we obtain 

w = r t f l ,  K = 2 0  or w = O ,  K = O  
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Root-locus branches cross the imaginary axis at w = fi and w = -fl. The root-locus branch 
on the real axis touches the jw axis at w = 0. A sketch of the root loci for the system is shown in 
Figure 641(b). 

Note that since this system is of third order, there are three closed-loop poles. The nature of 
the system response to a given input depends on the locations of the closed-loop poles. 

For 0 < K < 1.852, there are a set of complex-conjugate closed-loop poles and a real closed- 
loop pole. For 1.852 5 K < 2 ,  there are three real closed-loop poles. For example, the closed- 
loop poles are located at 

s = -1.667, s = -1.667, s = -0.667, for K = 1.852 

s = -1, s = - 1 ,  s = -2, for K = 2 

For 2 < K ,  there are a set of complex-conjugate closed-loop poles and a real closed-loop pole 
Thus, small values of K ( 0  < K < 1.852) correspond to an underdamped system. (Since the real 
closed-loop pole dominates, only a small ripple may show up in the transient response.) Medium 
values of K (1.852 5 K < 2 )  correspond to an overdamped system. Large values of K ( 2  < K )  
correspond to an underdamped system. With a large value of K ,  the system responds much faster 
than with a smaller value of K .  

Sketch the root loci for the system shown in Figure 6-42(a). 

Solution. The open-loop poles are located at s = 0 ,  s = -1, s = -2 + j3, and s = -2 - j3. A root 
locus exists on the real axis between points s = 0 and s = -1. The angles of the asymptotes are 
found as follows: 

+180°(2k + 1 )  
Angles of asymptotes = = 45", -4j0, 135", 

4 

(4 

Figure 6-42 
(a) Control system; (b) root-locus plot. 
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The intersection of the asymptotes and the real axis is found from 

The breakaway and break-in points are found from dK/ds  = 0. Noting that 

K = -s(s  + l ) ( s 2  + 4s + 13) = -(s4 + 5s3 + 17s2 + 13s) 

we have 

dK = -(4s3 + 15s2 + 34s + 13) = 0 
ds 

from which we get 

Point s = -0.467 is on  a root locus.Tl~erefore, it is an actual breakaway point.The gain values K 
corresponding to points s = -1.642 f 12.067 are complex quantities. Since the gain values are 
not real positive, these points are neither breakaway nor break-in points. 

The angle of departure from the complex pole in the upper half s plane is 

Next we shall find the points where root loci may cross the jw axis. Since the characteristic 
equation is 

by substituting s = jw into it we obtain 

from which we obtain 

w = f 1.6125, K = 37.44 or  w = 0, K = 0 

The root-locus branches that extend to the right-half s plane cross the imaginary axis at 
w = 11.6125. Also, the root-locus branch on  the real axis touches the imaginary axis at w = 0. Fig- 
ure 6-42(b) shows a sketch of the root loci for the system. Notice that each root-locus branch that 
extends to  the right half s plane crosses its own asymptote. 
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Ad-5. Sketch the root loci for the system shown in Figure 6-43(a). 

Solution. A root locus exists on the real axis between points s = -1 and s = -3.6. The asymp- 
totes can be determined as follows: 

+180°(2k + 1)  
Angles of asymptotes = = 90°, -90" 

3 - 1  

The intersection of the asymptotes and the real axis is found from 

Since the characteristic equation is 

we have 

The breakaway and break-in points are found from 

dK (3s' + 7.2s)(s + 1) - ( s3  + 3.6s') 
- = 0 

ds ( S  + 

Figure 6-43 
(a) Control system; (b) root-locus plot. 
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from which we get 

Point s = 0 corresponds to the actual breakaway point. But points s = 1.65 f j0.9367 are neither 
breakaway nor break-in points, because the corresponding gain values K become complex 
quantities. 

To check the points where root-locus branches may cross the imaginary axis, substitute s = jw 
into the characteristic equation, yielding. 

( j ~ ) ~  + 3 . 6 ( j ~ ) ~  + Kjw + K = 0 

Notice that this equation can be satisfied only if w = 0, K = 0. Because of the presence of a dou- 
ble pole at the origin, the root locus is tangent to the jw axis at o = 0. The root-locus branches do 
not cross the jw axis. Figure 6-43(b) is a sketch of the root loci for this system. 

A-6-6. Sketch the root loci for the system shown in Figure 6-44(a). 

Solution. A root locus exists on the real axis between point s = -0.4 and s = -3.6. The angles of 
asymptotes can be found as follows: 

*180°(2k + 1)  
Angles of asymptotes = = 90°, -90" 

3 - 1  

Figure 6-44 
(a) Control system; (b) root-locus plot. 
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The intersection of the asymptotes and the real axis is obtained from 

Next we shall find the breakaway points. Since the characteristic equation is 

we have 

The breakaway and break-in points are found from 

from which we get 

Thus, the breakaway or break-in points are at  s = 0 and s = -1.2. Note that s = -1.2 is a double 
root. When a double root occurs in dK/ds = 0 at point s = -1.2, d2K/(ds2) = 0 at this point.The 
value of gain K at point s = -1.2 is 

This means that with K = 4.32 the characteristic equation has a triple root a t  points = -1.2.This 
can be easily verified as follows: 

Hence, three root-locus branches meet a t  point s = -1.2. The angles of departures at point 
s = -1.2 of the root locus branches that approach the asymptotes are f 180°/3, that is, 60" and 
-60". (See Problem A-6-7.) 

Finally, we shall examine if root-locus branches cross the imaginary axis. By substituting s = jw 

into the characteristic equation, we have 

This equation can be satisfied only if w = 0, K = 0. At  point w = 0, the root locus is tangent to 
the j o  axis because of the presence of a double pole at the origin. There are no points that root- 
locus branches cross the imaginary axis. 

A sketch of the root loci for this system is shown in Figure 6-44(b). 
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A-6-7. Referring to Problem A-6-6, obtain the equations for the root-locus branches for the system 
shown in Figure 6-44(a). Show that the root-locus branches cross the real axis at the breakaway 
point at angles f 60". 

Solution. The equations for the root-locus branches can be obtained from the angle condition 

which can be rewritten as 

/ s  + 0.4 - 2b - /s + 3.6 = *180°(2k + 1) 

By substituting s = u + jw, we obtain 

By rearranging, we have 

W 
tan-' (-) - tan-' (:) = tan-' (:) + tan-' (L) *l8O0(2k + 1 )  

u + 0.4 u + 3.6 

Taking tangents of both sides of this last equation, and noting that 

we obtain 

which can be simplified to 

which can be further simplified to 

For u f -1.6, we may write this last equation as 
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which gives the equations for the root-locus as follows: 

w = o  

The equation w = 0 represents the real axis. The root locus for 0 5 K 5 co is between points 
s = -0.4 and s = -3.6. (The real axis other than this line segment and the origin s = 0 corre- 
sponds to the root locus for -w 5 K < 0.)  

The equations 

represent the complex branches for 0 5 K 5 m. These two branches lie between a = -1.6 and 
u = 0. [See Figure 6-44(b).] The slopes of the complex root-locus branches at the breakaway 
point ( a  = -1.2) can be found by evaluating d o l d a  of Equation (6-21) at point a = -1.2. 

Since tan-' a = 60°, the root-locus branches intersect the real axis with angles +60° 

A-6-8. Consider the system shown in Figure 6-45(a), which has an unstable feedforward transfer func- 
tion. Sketch the root-locus plot and locate the closed-loop poles. Show that, although the closed- 
loop poles lie on the negative real axis and the system is not oscillatory, the unit-step response curve 
will exhibit overshoot. 

Solution. The root-locus plot for this system is shown in Figure 6-45(b).The closed-loop poles are 
located at s = -2 and s = -5. 

The closed-loop transfer function becomes 

(a) 
Figure 6-45 
:a) Control system; (b) root-locus plot 
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Figure 6-46 
Unit-step response 
curve for the system 
shown in Figure 
6-45 (a). 

The unit-step response of this system is 

The inverse Laplace transform of C ( s )  gives 

c(t) = 1 + 1 .666~-~ '  - 2.666e-", fort  2 0 

The unit-step response curve is shown in Figure 6-46. Although the system is not oscillatory, the 
unit-step response curve exhibits overshoot. (This is due to the presence of a zero at s = -1.) 

A-6-9. Sketch the root loci of the control system shown in Figure &47(a). Determine the range of gain 
K for stability. 

Solution. Open-loop poles are located at s = 1, s = -2 + j d ,  and s = -2 - j d .  A root locus 
exists on the real axis between points s = 1 and s = -03. The asymptotes of the root-locus 
branches are found as follows: 

*180°(2k + 1 )  
Angles of asymptotes = 

3 
= 60°, -60°, 180" 

The intersection of the asymptotes and the real axis is obtained as 

The breakaway and break-in points can be located from d K / d s  = 0. Since 

K = -( r - l ) ( s 2  + 4s + 7) = -(s3 + 3s2 + 3s - 7) 

we have 

which yields 

(s + I ) ~  = 0 
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(a) 

Figure 6-47 
(a) Control system; (b) root-locus plot. 

Thus the equation dK/ds  = 0 has a double root at 3 = -1. (This means that the characteristic 
equation has a triple root at s  = -1.) The breakaway point is located at s = -1. Three root-locus 
branches meet at this breakaway point.The angles of departure of the branches at the breakaway 
point are ilX0°/3, that is. 60" and -60". 

We shall next determine the points where root-locus branches may cross the imaginary axis. 
Noting that the characteristic equation is 

(.r - l)(.s2 + 4s + 7 )  + K = 0 

or 

.r + 3 , ~ ~  + 3 . ~  - 7 + K = o 
we substitute s = j w  into it and obtain 

(jw)' + 3 ( j ~ ) ~  + 3 ( jw )  - 7 + K - O 

By rewriting this last equation, we have 

( K  - 7 - 3w2) + ,043 - w2)  = 0 

This equation is satisfied when 

= K = 7 + 3 w " l 6  or w = 0 ,  
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The root-locus branches cross the imaginary axis a t  w  = h d  (where K = 16) and w  = 0  (where 
K = 7). Since the value of gain K at the origin is 7, the range of gain value K for stability is 

Figure 6-47(b) shows a sketch of the root loci for the system. Notice that all branches consist of 
parts of straight lines. 

The fact that the root-locus branches consist of straight lines can be verified as follows: Since 
the angle condition is 

we have 

-1s - 1  - / s  + 2  + j f l -  /s + 2  - j d = h 1 8 0 ° ( 2 k  + 1 )  

By substituting s  = a + jw into this last equation, 

/u  + 2 + j(w + d) + / a  + 2  + j(w - d) = - / a  - 1  + jw f 180°(2k + 1 )  

which can be rewritten as 

w + a  w - v 3  
t a n  ( )  + t )  = -tan-'(*) * L W ( 2 k  + 1 )  

Taking tangents of both sides of this last equation, we obtain 

2 w ( u  + 2 )  w  
- 

q 2 + 4 C T + 4 - w 2 + 3  a - 1  

which can be simplified to  

2 w ( u  + 2 ) ( u  - 1 )  = -w(a2 + 4 a  + 7 - W 2 )  

or  

w(3a2 + 6 u  + 3 - w2) = 0 

Further simplification of this last equation yields 

which defines three lines: 
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Thus the root-locus branches consist of three lines. Note that the root loci for K > 0 consist of 
portions of the straight lines as shown in Figure 6-47(b). (Note that each straight line starts from 
an open-loop pole and extends to infinity in the direction of 180°, 60°, or -60" measured from the 
real axis.) The remaining portion of each straight line corresponds to K < 0. 

A-6-10. Consider the system shown in Figure 6-48(a). Sketch the root loci 

Solution. The open-loop zeros of the system are located at s = f j. The open-loop poles are lo- 
cated at s = 0 and s = -2. This system involves two poles and two zeros. Hence, there is a possi- 
bility that a circular root-locus branch exists. In fact, such a circular root locus exists in this case, 
as shown in the following. The angle condition is 

By substituting s = u + jw into this last equation, we obtain 

Taking tangents of both sides of this equation and noting that 

Figure 6-48 
(a) Control system; (b) root-locus plot. 
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we obtain 

which is equivalent to 

These two equations are equations for the root 1oci.The first equation corresponds to the root locus 
on the real axis. (The segment between s = 0 and s = -2 corresponds to the root locus for 
0 5 K < m. The remaining parts of the real axis correspond to the root locus for K < 0.) The 
second equation is an equation for a circle. Thus, there exists a circular root locus with center at 
u = i ,  w = 0 and the radius equal to a / 2 .  The root loci are sketched in Figure 6-48(b). [That 
part of the circular locus to the left of the imaginary zeros corresponds to K > 0. The portion of 
the circular locus not shown in Figure 6-48(b) corresponds to K < 0.1 

A-6-11. Consider the control system shown in Figure 6-49. Plot the root loci with MATLAB. 

Solution. MATLAB Program 6-11 generates a root-locus plot as shown in Figure 6-50.The root 
loci must be symmetric about the real axis. However, Figure 6-50 shows otherwise. 

MATLAB supplies its own set of gain values that are used to calculate a root-locus plot. It does 
so by an internal adaptive step-size routine. However, in certain systems, very small changes in the 
gain cause drastic changes in root locations within a certain range of gains.Thus,MATLAB takes too 
big a jump in its gain values when calculating the roots, and root locations change by a relatively large 
amount. When plotting, MATLAB connects these points and causes a strange-looking graph at the 
location of sensitive gains. Such erroneous root-locus plots typically occur when the loci approach a 
double pole (or triple or higher pole), since the locus is very sensitive to small gain changes. 

MATLAB Program 6-1 1 

Figure 6 4 9  
Control system. 

num = [O 0 1 0.41; 
den = [ I  3.6 0 01; 
rlocus(num,den); 
v = [-5 1 -3 31; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K(s + 0.4)/[sA2(s + 3.6))') 
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Figure (is0 
Root-locus  lot. 

Root-Locus Plot of G(s) = K(s+0.4)/[s2(s+3.6)] 

Real Axis 

In the problem considered here, the critical region of gain K is between 4.2 and 4.4.Thus we 
need to set the step size small enough in this region. We may divide the region for K as tollows: 

Entering MATLAB Program 6-12 into the computer, we obrain the plot as shown in Figure 6-51, 
If we change the plot command plot(r,'o') in MATLAB P r ~ g r a m  6-12 to plot(r,'-'1, we obtain Fig- 
ure 6-52. Figures 6-51 and 6-52 respectively, show satisfa~tc~ry root-locus plots. 

MATLAB Program 6-1 2 

"A, - - - - - . - - - - Root-locus plot ---------- 

num = [O 0 I 0.41; 
den = [ I  3.6 0 01; 
K1 = [0:0.2:4.21; 
K2 = [4.2:0.002:4.4]; 
K3 = [4.4:0.2:10]; 
K4 = [ I  0:5:200]; 
K = [KI K2 K3 K4]; 
r = rlocus(num,den,K); 
plot(r,'ol) 
v = [-5 1 -5 51; axis(v) 
grid 
titIe('Root-Locus Plot of G(s) = K(s + 0.4)/[sA2(s 
xlabel('Rea1 Axis') 
ylabel('lmag Axis') 
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Figure 6 5 1  
Root-locus plot. 

Figure 6 5 2  
Root-locus plot. 

Root-Locus Plot o f  G(s) = K(s+O 4)/[s2(s+3.6)] 
5 

0 

-5 1 6 

0 

-5 -4 -3 -2 - 1  0 
Real A X I S  

Root-Locus Plot of G(s) = K(s+0.4)/[s2(s+3.6)] 

Real Axis 

A-6-12. Consider the system whose open-loop transfer function G ( s ) H ( s )  is given by 

Using MATLAB, plot root loci and their asymptotes. 

Solution. We shall plot the root loci and asymptotes on one diagram. Since the open-loop trans- 
fer function is given by 

G ( s ) H ( s )  = - 
K 

s ( s  + l ) ( s  + 2 )  

- - K 
s3 + 3s2 + 2s 

the equation for the asymptotes may be obtained as follows: Noting that 

lim 
K 

= lim 
K K =- 

3+m s3 + 3~~ + 2~ S-'m S~ + 3 ~ 2  + 3~ + 1 ( S  + q3 
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the equation for the asymptotes may be given by 

num = [O O O 11 
den = [ I  3 2 01 

and for the asymptotes, 
numa = [O O O 11 
dena = [ I  3 3 11 

In using the following root-locus and plot commands 

the number of rows of r and that of a must be the same. To ensure this, we include the gain con- 
stant K in the commands. For example, 

MATLAB Program 6-1 3 

num = [O O O I ] ;  
den = [ I  3 2 01; 
numa = [O 0 0 1 I ;  
dena = [ I  3 3 1 I ;  
K1 = 0:0.1:0.3; 
K2 = 0.3:0.005:0.5; 
K3 = 0.5:0.5:10; 
K4 = 1O:S:I 00; 
K = [Kl K2 K3 K4]; 
r = rlocus(num,den,K); 
a = rlocus(numa,dena,K); 
y = [r a]; 
plot(y,'-'1 
v = [-4 4 -4 41; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K/[s(s + 1 )(s + 2)) and Asymptotes') 
xlabel('Rea1 Axis') 
ylabeU1lmag Axis') 

***** Manually draw open-loop poles in the hard copy ***** 
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Root-Locus Plot of G(s) = Ki[(.s(s+l)(s+2)] and Asymptotes 

Figure 6-53 
Root-locus plot. Real Axis 

Including gain K in rlocus command ensures that the r matrix and a matrix have the same number of 
rows. MATLAB Program 6-13 will generate a plot of root loci and their asymptotes. See Figure 6-53. 

Drawing two or more plots in one diagram can also be accomplished by using the hold com- 
mand. MATLAB Program 6-14 uses the hold command. The resulting root-locus plot is shown 
in Figure 6-54. 

MATLAB Program 6-1 4 

01~ - - - - - - - - - - - - Root-Locus Plots ------------ 

num = [O 0 0 1 I; 
den = [ I  3 2 01; 
numa = [O 0 0 11; 
dena = (1 3 3 1 I; 
K1 = 0:0.1:0.3; 
K2 = 0.3:O.OOS:O.S; 
K3 = O.5:0.5:10; 
K4 = 10:5:100; 
K = [ K l  K2 K3 K4]; 
r = rlocus(num,den,K); 
a = rlocus(numa,dena,K); 
plot(r,'ol) 
hold 
Current plot held 
plot(a,'-'1 
v = [-4 4 -4 41; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K/[s(s+l )(s+2)1 and Asymptotes') 
xlabel('Rea1 Axis') 
ylabel('lmag Axis') 
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Root-Locus Plot of G(s) = Ki[.s(s+l)(s+2)] and Aysmptotes 

Figure 6-54 
Root-locus plot. Real Axis 

Consider a unity-feedback system with the following feedforward transfer function G ( s ) :  

K ( s  + 2)' 
C ( s )  = - 

(s' + 4 ) ( s  + 5)' 

Plot root loci for the system with MATLAB. 
Solution. A MATLAB program to plot the root loci is given as MATLAB Program 6-15. The 
resulting root-locus plot is shown in Figure 6-55. 

Notice that this is a special case where no root locus exists on the real axis.This means that 
for any value of K > 0 the closed-loop poles of the system are two sets of complex-conjugate 
poles. (No  real closed-loop poles exist.) For example, with K = 25, the characteristic equation 
for the system becomes 

s4 + 10s' + 54s' + 140s + 200 

= ( sL  + 4s + 10)(s2 + 6s + 20) 

= (S + 2 + j2.4495)(s + 2 - j2.44!X)(s + 3 + ;3.3166)(s + 3 - j3.3166) 

MATLAB Program 6-1 5 

% - - - - - - - - - - - - Root-Locus Plot ------------ 

num = [O 0 1 4 41; 
den = [ I  10 29 40 1001; 
r = rlocus(nurn,den); 
plot(r,'ol) 
hold 
current plot held 
plot(r,'-'1 
v = [-8 4 -6 61; axis(v); axis('squarel) 
grid 
title('Root-Locus Plot of G(s) = (s + 2)"2/[(sA2 + 4)(s  + 5)"211) 
xlabel('Rea1 Axis') 
ylabel('lmag Axis') 
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Root-Locus Plot of G(s) = ( ~ + 2 ) ~ / [ ( ~ ~ + 4 ) ( s + 5 ) * ]  

Figure 6-55 
Root-locus plot. Real Axis 

Since no closed-loop poles exist in the right-half s plane, the system is stable for all values of 
K > 0. 

A-6-14. Consider a unity-feedback control system with the following feedforward transfer function: 

Plot a root-locus diagram with MATLAB. Superimpose on the s plane constant 5 lines and con- 
stant w ,  circles. 

Solution. MATLAB Program 6-16 produces the desired plot as shown in Figure 6-56. 

- -  - 

MATLAB Program 6-1 6 

num = [0 0 1 21; 
den = [ I  9 8 01; 
K = 0:0.2:200; 
rlocus(num,den,K) 
v = [ -1 0 2 -6 61; axis(v1; axis('squarel) 
sgrid 
title('Root-Locus Plot with Constant \zeta Lines and Constant \omega-n Circles') 
gtext('\zeta = 0.9') 
gtext('0.7') 
gtext('0.5') 
gtext('0.3') 
gtext('\omega-n = 10') 
gtext('8') 
gtext('6') 
gtext('4') 
gtext('2') 
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Root-Locus Plot with Constant ( Lines and Constant on Circles 

Figure 6-56 
Root-locus plot with 
constant 6 lilies and 
constant w,, c:ircles. Real Axis 

A-6-15. Consider a unity-feedback control system with the following feedforward transfer function: 

Plot root loci for the system with MATLAB. Show that the system is stable for all values of K > 0. 

Solution. MATLAB Program 6-17 gives a plot of root loci as shown in Figure 6-57. Since the root 
loci are entirely in the left-half s plane, the system is stable for all K > 0. 

MATLAB Program 6-1 7 

num = [O 1 0 25 01; 
den = [ I  0 404 0 16001; 
K = 0:0.4:1000; 
rlocus(num,den,K) 
v = [-30 20 -25 251; axis(v); axis('square') 
grid 
title('Root-Locus Plot of G(s) = K(sA2 + 25)s/(sA4 + 404sA2 + 1600)') 

A-6-16. A simplified form of the open-loop transfer function of an airplane with an autopilot in the lon- 
gitudinal mode is 

Such a system involving an open-loop pole in the right-half s plane may be conditionally stable. 
Sketch the root loci when a = b = 1, (' = 0.5, and w,, = 4. Find the range of gain K for stability. 
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Root-Locus Plot of G(s) = ~ ( s ~  + 25)s/(s4 + 404s2 + 1600) 

Figure 6-57 
Root-locus plot. Real Axis 

Solution. The open-loop transfer function for the system is 

To sketch the root loci, we follow this procedure: 

1. Locate the open-loop poles and zero in the complex plane. Root loci exist on the real axis 
between 1 and 0 and between -1 and -m. 

2. Determine the asymptotes of the root loci.There are three asymptotes whose angles can be 
determined as 

180°(2k + 1) 
Angles of asymptotes = = 60°, -60°, 180" 

4 - 1  

Referring to Equation (6-13), the abscissa of the intersection of the asymptotes and the real 
axis is 

3. Determine the breakaway and break-in points. Since the characteristic equation is 

we obtain 

By differentiating K with respect to s, we get 
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The numerator can be factored as follows: 

3s4 + 10s3 + 21s2 + 24s - 16 

Points s = 0.45 and s = -2.26 are on root loci on the real axis. Hence, these points are actu- 
al breakaway and break-in points, respectively. Points s = -0.76 f 12.16 d o  not satisfy the 
angle condition. Hence, they are neither breakawav nor break-in points. 

4. Using Routh's stability criterion, determine the value of K at which the root loci cross the 
imaginary axis. Since the characteristic equation is 

the Routh array becomes 

The values of K that make the s' term in the first column equal zero are  K = 35.7 and 
K = 23.3. 

The crossing points on the imaginary axis can be found by solving the auxiliary equation 
obtained from the s2 row, that is, by solving the following equation for s: 

The results are 

s = kj2.56, for K = 35.7 

s = ij1.56, for K = 23.3 

The crossing points on  the imaginary axis are thus s = ~t j2 .56  and s = ij1.56. 

5. Find the angles of departure of the root loci from the complex poles. For the open-loop pole 
at s = -2 + j 2 d ,  the angle of departure 8 is 

o r  

H = -54.5" 

(The angle of departure from the open-loop pole at s = -2 - 12f l  is 54S0.) 

6.  Choose a test point in the broad neighborhood of the jw axis and the origin, and apply the 
angle condition. If the test point does not satisfy the angle condition, select another test point 
until it does. Continue the same process and locate a sufficient number of points that satisfy 
the angle condition. 

Example Problems and Solutions 409 



Figure 6-58 
Root-locus plot. 

Figure 6-58 shows the root loci for this system. From step 4, the system is stable for 
23.3 < K < 35.7. Otherwise, it is unstable.Thus, the system is conditionally stable. 

Consider the system shown in Figure 6-59, where the dead time T is 1 sec. Suppose that we ap- 
proximate the dead time by the second-order pade approximation. The expression for this ap- 
proximation can be obtained with MATLAB as follows: 

[num,den] = pade(1, 2); 
printsys(num, den) 
numlden = 

s"2 - 6s + 12 

Hence 

Using this approximation, determine the critical value of K (where K > 0) for stability. 

Solution. Since the characteristic equation for the system is 

s + 1 + Ke-" = 0 
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Figure 6-59 
A control system 
with dead time. 

by substituting Equation (6-22) into this characteristic equation, we obtain 

Applying the Routh stability criterion, we get the Routh table as follows: 

Hence, for stability we require 

-6K2 - 36K + 114 > 0 

which can be written as 

( K  + 8.2915)(K - 2.2915) < 0 

or 

K < 2.2915 

Since K must be positive, the range of K for stability is 

0 < K < 2.2915 

Notice that according to the present analysis, the upper limit of K for stability is 2.2915.This 
value is greater than the exact upper limit of K. (Earlier, we obtained the exact upper limit of K 
to be 2, as shown in Figure 6-38.) This is because we approximated e-" by the second-order pade 
approximation. A higher-order pade approximation will improve the accuracy. However, the com- 
putations involved increase considerably. 

A-6-18. Consider the system shown in Figure 6-60.The plant involves the dead time of T sec. Design a suit- 
able controller G,(s) for the system. 

Solution. We shall present the Smith predictor approach to design a controller. The first step to 
design the controller G,(s)  is to design a suitable controller G, ( s )  when the system has no dead 
time. Otto J. M. Smith designed an innovative controller scheme, now called the "Smith predictor," 
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Then the closed-loop transfer function C ( s ) / R ( s )  can be given by 

Figure 6-62 
Step-response 
curves. 

Hence, the block diagram of Figure 6-61(a) can be modified to that of Figure 6-61(b).The closed- 
loop response of the system with dead time e-TJis the same as the response of the system with- 
out dead time c - ~ ' ,  except that the response is delayed by T sec. 

Typical step-response curves of the system without dead time controlled by the controller 
&,(s) and of the system with dead time controlled by the Smith predictor type controller are 
shown in Figure 6-62. 

It is noted that implementing the Smith predictor in digital form is not difficult, because dead 
time can be handled easily in digital control. However, implementing the Smith predictor in an 
analog form creates some difficulty. 

Step Response 

Sm~th  predictor type controller 

1 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (sec) 

PROBLEMS 

B-6-1. Plot the root loci for the closed-loop control system B-6-3. Plot the root loci for the closed-loop control system 
with with 

. . 
B-6-2. Plot the root loci for the closed-loop control system 
with B-6-4. Plot the root loci for the system with 
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B-6-5. Plot the root loci for a system with 

Determine the exact points where the root loci cross the jw 
axis. 

8-64. Show that the root loci for a control system with 

are arcs of the circle centered at the origin with radius equal 
to m. 
8-6-7. Plot the root loci for a closed-loop control system 
with 

B-6-8. Plot the root loci for a closed-loop control system 
with 

B-6-9. Plot the root loci for a closed-loop control system 
with 

Locate the closed-loop poles on the root loci such that the 
dominant closed-loop poles have a damping ratio equal to 
0.5. Determine the corresponding value of gain K. 

B-6-10. Plot the root loci for the system shown in Figure 
6-63. Determine the range of gain K for stability. 

Figure 6-63 
Control system. 

R-6-11. Consider a unity-feedback control system with the 
following feedforward transfer function: 

Plot the root loci for the system. If the value of gain K is set 
equal to 2, where are the closed-loop poles located? 

B-6-12. Consider the system whose open-loop transfer 
function G ( s ) H ( s )  is given by 

Plot a root-locus diagram with MATLAB. 

B-6-13. Consider the system whose open-loop transfer 
function is given by 

Show that the equation for the asymptotes is given by 

Using MATLAB, plot the root loci and asymptotes for 
the svstem. 

B-6-14. Consider the unity-feedback system whose feed- 
forward transfer function is 

The constant-gain locus for the system for a given value of 
K is defined by the following equation: 

Show that the constant-gain loci for 0 5 K 5 co may be 
given by 

Sketch the constant-gain loci for K = 1,2,5,10, and 20 on 
the s plane. 

B-6-15. Consider the system shown in Figure 6-64. Plot the 
root loci with MATLAB. Locate the closed-loop poles when 
the gain K is set equal to 2. 

u 

Figure 6-64 
Control system. 
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B-6-16. Plot root-locus diagrams for the nonminimum- B-6-17. Consider the closed-loop system with transport lag 
phase systems shown in Figures 6-65(a) and (b), respectively. shown in Figure 6-66. Determine the stability range for 

gain K. 

Figure 6-66 
Control system. 

Figure 4-65 
(a) and (b) Nonminimum-phase systems. 

Problems 
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