
Chapter One 
Navier – Stokes Equations 
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1- Navier-Stokes equations: 
          
           The general equations of motion for viscous incompressible, Newtonian fluids may 
be written in the following form: 
 
x- direction: 

-(1)-----  2

2

2

2

2

2

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

z
u

y
u

x
u

x
pg

z
uw

y
uv

x
uu

t
u

x μρρ  

y- direction: 
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 Equations (1) and (2) are called: Navier Stokes equations.  
 
 
2- Steady laminar flow between parallel flat plates: 

 
 
 
 
 
 
 

 
 
 
 
 

 
The fluid moves in the x- direction without acceleration. 
v= 0 , w= 0 , 0=

∂
∂
t

 

the Navier-Stokes equation in the x- direction (eq. 1) reduces to: 
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eq. 3 will be 
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Integration of eq. 4: 
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B.C (Two fixed parallel plates) 
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eq. 5 will be 
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B.C (One plate is fixed and the other plate moves with a constant  
         velocity U) (Couette flow) 
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eq. 5 will be 
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For the case of horizontal parallel plates:  
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eq. 7 will be 
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The location of maximum velocity umax may be found by evaluating 
dy
du and setting it to 

zero. 
The volume flow rate is 
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3- Hydrodynamic lubrication: 
 
Sliding bearing 
       Large forces are developed in small clearance when the surfaces are slightly inclined 
and one is in motion so that fluid is wedged into the decreasing space. Usually the oils 
employed for lubrication are highly viscous and the flow is of laminar nature. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions: 
The acceleration is zero. 
The body force is small and can be neglected. 
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The Navier-Stokes equation in the x-direction (eq. 1) reduces to: 
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The volume flow rate in every section will be constant. 
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** For a constant taper bearing: 
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Sub in eq.(*) and solving for 
dx
dp produces: 
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With these values inserted in eq.(**) we obtain the pressure distribution inside the bearing. 
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The load that the bearing will support per unit width is: 
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4- Laminar flow between concentric rotating cylinders: 
  
         Consider the purely circulatory flow of a fluid contained between two long 
concentric rotating cylinders of radius R1 and R2 at angular velocities ω1 and ω2. 
 
 

 
 
 
In this case the Navier-Stokes equations in cylindrical coordinates are used. 
r- direction: 
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θ- direction: 
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In the above equations: 
ur = 0 
w = 0 
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body force = 0 
 
The equation in θ- direction reduces to: 
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Integration: 
( ) Aru

dr
d

r
=θ

1  

r
BAru +=θ    ---------(i) 

B.C 

( )

( )122
1

2
2

2
2

2
1

122
1

2
2

2
2

1

222

111

         

     

        
        

ωω

ωωω

ω
ω

θ

θ

−
−

−=

−
−

+=⇒

==
==

RR
RRB

RR
RA

RuRr
RuRr

 

 
Sub. in eq.(i) yields: 
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The shear stress may be evaluated by the equation: 
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By using eq.(ii): 
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5- Example: 
 
  1- Using the Navier-Stokes equation in the flow direction, calculate the power required to 
pull (1m × 1m) flat plate at speed (1 m/s) over an inclined surface. The oil between the 
surfaces has (ρ = 900 kg/m3 ,  μ = 0.06 Pa.s).The pressure difference between points 1 and 
2 is (100 kN/m2) . 
 
Solution: 

 

 
 



The Navier-Stokes equation in x- direction 
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We have:    Acceleration =0  , v=0  ,  w=0   ,   2
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The shearing force on the moving plate: 
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1- Using the Navier-Stokes equations, determine the pressure gradient along flow, the 
average velocity, and the discharge for an oil of viscosity 0.02 N.s/m2 flowing between 
two stationary parallel plates 1 m wide maintained 10 mm apart. The velocity midway 
between the plates is 2 m/s.                               [-3200 N/m2 per m ; 1.33 m/s ; 0.0133 m3/s] 
 
 
2- An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates 
as shown in figure. The two plates move in opposite directions with constant velocities U1 
and U2. The pressure gradient in the x-direction is zero. Use the Navier-Stokes equations 
to derive expression for the velocity distribution between the plates. Assume laminar flow.             
                                                                                                                 [ ( ) 221 UUU

b
yu −+= ]              

 
3- Two parallel plates are spaced 2 mm apart, and oil (μ = 0.1 N.s/m2 , S = 0.8) flows at a 
rate of 24×10-4 m3/s per m of width between the plates. What is the pressure gradient in the 
direction of flow if the plates are inclined at 60o with the horizontal and if the flow is 
downward between the plates?                                                                        [-353.2 kPa/m] 
 
  
4- Using the Navier-Stokes equations, find the velocity profile for fully developed flow of 
water (μ = 1.14×10-3 Pa.s) between parallel plates with the upper plate moving as shown in 
figure. Assume the volume flow rate per unit depth for zero pressure gradient between the 
plates is 3.75×10-3 m3/s. Determine: 
a- the velocity of the moving plate. 
b- the shear stress on the lower plate. 
c- the pressure gradient that will give zero shear stress at y = 0.25b.  (b = 2.5 mm) 
d- the adverse pressure gradient that will give zero volume flow rate between the plates.                  
                                                  [3 m/s ; 1.37 N/m2 ; 2.19 kN/m2 per m ; -3.28 kN/m2 per m] 
 
 
5- A vertical shaft passes through a bearing and is lubricated with an oil (μ = 0.2 Pa.s) as 
shown in figure. Estimate the torque required to overcome viscous resistance when the 
shaft is turning at 80 rpm. (Hint: The flow between the shaft and bearing can be treated as 
laminar flow between two flat plates with zero pressure gradient).                    [0.355 N.m] 
  
 
6- Determine the force on the piston of the figure due to shear, and the leakage from the 
pressure chamber for U = 0.                                                        [295.1 N ; 1.636×10-8 m3/s] 
 
 



7- A layer of viscous liquid of thickness b flows steadily down an inclined plane. Show 
that, by using the Navier-Stokes equations that velocity distribution is: 
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μ
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2
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8- A wide moving belt passes through a container of a viscous liquid. The belt moving 
vertically upward with a constant velocity Vo, as illustrated in figure. Because of viscous 
forces the belt picks up a film of fluid of thickness h. Gravity tends to make the fluid drain 
down the belt. Use the Navier-Stokes equations to determine an expression for the average 
velocity vav of the fluid film as it is dragged up the belt. Assume the flow is laminar, 

steady, and uniform.                                                                                       [
μ

γ
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9- Determine the formulas for shear stress on each plate and for the velocity distribution 
for flow in the figure when an adverse pressure gradient exists such that Q = 0. 
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10- A plate 2 mm thick and 1 m wide is pulled between the walls shown in figure at speed 
of 0.4 m/s. The space over and below the plate is filled with glycerin (μ = 0.62 N.s/m2). 
The plate is positioned midway between the walls. Using the Navier-Stokes equations, 
determine the force required to pull the plate at the speed given for zero pressure gradient; 
and the pressure gradient that will give zero volume flow rate.                                                          
                                                                                                            [496 N ; 372 kN/m2.m] 
 
 
11- A slider plate 0.5 m wide constitutes a bearing as shown in figure. Estimate: 
a- the load carrying capacity. 
b- the drag. 
c- the power lost in the bearing. 
d- the maximum pressure in the oil and its location. 
                                                      [739.6 kN ; 348.6 N ; 348.6 W ; 12500 kN/m2 ; 150 mm]  
 
 
 
12- Consider a shaft that turns inside a stationary cylinder, with a lubricating fluid in the 
annular region. Using the Navier-Stokes equation in θ-direction, show that the torque per 

unit length acting on the shaft is given by:     
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Where: ω = angular velocity of the shaft. 
           R1 = radius of the shaft. 
           R2 = radius of the cylinder. 



                                              
           Problem No. 2                                                            Problem No. 4           
   
           

                        
               Problem No. 5                                                         Problem No. 6     
 
 
 

                                                   
                   Problem No. 8                                                        Problem No. 9  
 
 
 

               
                 Problem No. 10                                                   Problem No. 11                                      



 
                                    Chapter Two 
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1- Introduction: 
   
Development of boundary layer on a flat plate         
           The flow of a viscous fluid on a solid surface represents a region in 
which velocity increases from zero at the surface and approaches the 
velocity of the main stream. This region is known as the boundary layer. 
 

 
           
 The figure shows the development of a boundary layer on one side of a 
long flat plate held parallel to the flow direction.  
 
 
 
 
 
 



Velocity distribution in boundary layer 
 

 
 
The velocity gradient will give rise to a large shear stress at the wall τo (or 
τw). 
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As shown in figure: 
the velocity gradient in the turbulent boundary layer is larger than that in 
the laminar boundary layer. 
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The shear stress for a turbulent boundary layer is greater than the shear 
stress for a laminar boundary layer. 
 
Boundary layer thickness (δ) 
        Boundary layer thickness is the distance from the solid surface to the 
point in the flow where  u = 0.99U∞. 
 
Displacement thickness (δ*) 
        Displacement thickness represents the outward displacement of the 
streamlines caused by the viscous effects on the solid surface. 
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Momentum thickness (θ) 
       Momentum thickness, is defined as the thickness of a layer of fluid , 
with velocity U∞ , for which the momentum flux is equal to the deficit of 
momentum flux through the boundary layer. 
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Shape factor (H) 
      H is a velocity profile shape factor. 
 

              
θ
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2- Momentum equation for boundary layer: 
Consider the control volume for flow over one side of a flat plate of width 
b. 
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Fx is the total friction drag on the plate from the leading edge up to x. 
 
 
Assuming that the velocity profiles at various distances along the plate are 
similar to each other. 
 



( )

δ
η

η
δ

y

fyf
U
u

=

=⎟
⎠
⎞

⎜
⎝
⎛=

∞

where  

Equation (*) may be written as: 
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The local wall shear stress is : 

 

 
Equations (1) and (2) are valid for either laminar or turbulent flow in the 
boundary layer. 
 
 
3- Laminar boundary layer: 
 
The wall shear stress: 
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Another expression for shear stress: 
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Where cf = local friction coefficient. 
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The total friction drag is: 

ff

L

of

CLbUF

dxbF

).(
2
1

also

2

0

∞=

= ∫

ρ

τ

 

Where Cf = total friction coefficient 
 
 
The boundary layer thickness: 
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Where Rex = local Reynolds number 
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Blasius solution: 
 
   (α = 0.135 ; β = 1.63) 
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Where ReL = total Reynolds number 
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* The laminar boundary layer will remain laminar up to a value of 
 Rex = 500000 
 
 



4- Turbulent boundary layer: 
     
Velocity profile in turbulent boundary layer: 
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The wall shear stress for the turbulent boundary layer on smooth plate is: 
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The total friction coefficient is calculated form the following relations: 
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Note: equation (**) was obtained from the following pipe equations: 
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5- Friction drag in transition region: 
 

 
 
Ff = Flaminar + Fturbulent 
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6- Effect of pressure gradient: 
 

 
          
Consider the flow over a curved surface as shown in figure. As the fluid is 
deflected round the surface it is accelerated over the left-hand section 
(points A and B) until at point C, the velocity just outside the boundary 
layer is a maximum and the pressure is a minimum. 
         Beyond C, the velocity outside the boundary layer decreases, 
resulting in an increase in pressure. The velocity of the layer close to the 
wall is reduced and finally brought to a stop at D. Now the increasing 
pressure calls for further retardation so the boundary layer separates from 
the wall. At E there is a backflow (reverse flow) next to the wall, driven in 
the direction of decreasing pressure. 
          Down stream from the separation point the flow is characterized by 
irregular turbulent eddies. This disturbed region is called the wake of the 
body. The pressure within the wake remains close to that at the separation 
point. The pressure is always less than the pressure at the forward 
stagnation point. 
 
          An additional drag force is resulted from differences of pressure. 
This force is known as the pressure drag ( or form drag) 
 
** The total drag on a body is the sum of the friction drag and the pressure 
drag. 
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Where      A = projected area of the body perpendicular to the oncoming          
                       flow. 
                CD = total drag coefficient. 



Values of CD for two- and three-dimensional bodies are given in figures (1) 
and (2) respectively. 
 

 

 
 
 
 
 
 



Typical drag coefficients for objects of interest are given in table (1). 
 

  
Table (1) 

 
• Streamlined body: the pressure drag on streamlined body is small 

and the friction drag is the major part of the total drag. 
 

 
 

• Bluff body: the pressure drag on bluff body is much greater than the 
friction drag. 

 



Relative comparison between skin friction drag and pressure drag 
for various aerodynamic shapes 

 
 

 

 
 
 
 
 
 
 



7- Examples: 

1- A smooth flat plate 3 m wide and 30 m long is towed through still 

olution: 

 
  
water (ρ = 998 kg/m3 , ν = 1.007×10-6 m2/s) with speed of 6 m/s. Determine 
the friction drag on one side of the plate and on the first 3 m of the plate. 
 
S

 
 

achute (in the form of a hemi

olution: 

 2- Calculate the diameter of a par spherical 
shell) to be used for dropping a small object of mass 90 kg so that it 
touches the earth at a velocity no greater than 6 m/s. The drag coefficient 
for a hemispherical shell with its concave side upstream is approximately 
1.32 for Re > 103, (ρ = 1.22 kg/m3). 
 
S
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U
u3- If , find the thickness of the boundary layer, the shear 

stress at the trailing edge, and the drag force on one side of the plate 1 m 
long, if it is immersed in water flowing with a velocity of 0.3 m/s               
(ρ = 1000 kg/m3 , μ = 0.001 Pa.s) 
 
Solution:  
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1- Calculate the displacement thickness and momentum thickness for the following 
velocity profiles in the boundary layer: 

a-     ;       b- 
9
1
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∞ δ
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15
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3
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2- Air (ν = 1.8×10-5 m2/s) flows along a flat plate with a velocity of 150 km/hr. How long 
does the plate have to be to obtain a laminar boundary layer thickness of 8 mm.                               
                                                                                                                                 [6.146 m]  
 

3- Assuming that the velocity distribution in the laminar boundary layer: ⎟
⎠
⎞

⎜
⎝
⎛=
δ
π
2

sin y . 
∞U

u

Determine the total friction coefficient in terms of the Reynolds number.         [ LRe/31.1 ] 
 
 
4- A thin plate 2 m wide is placed in a uniform air stream of velocity 100 m/s,             
(ρ = 1.2 kg/m3). If the skin friction drag force is 60 N, calculate the displacement thickness 
of the boundary layer at trailing edge of the plate. Assume that the velocity profile at all 
points in the boundary layer is: f(η) = η1/6.                                                               [3.3 mm] 
 
 
5- A river barge which is 50 m long and 12 m wide has flat bottom; therefore, its 
resistance is similar to one side of a flat plate. If the barge is towed at speed of 3 m/s 
through still water, what towing force is required to overcome viscous resistance and what 
is the boundary layer thickness at mid length? Assume the boundary layer is turbulent for 
the entire length. (ρ = 1000 kg/m3 ; ν = 1.21×10-6 m2/s)                           [5.57 kN ; 0.26 m] 
  
 
6- A uniform free stream of air at 0.8 m/s flows over a flat plate (4 m long × 1 m wide). 
Assuming the boundary layer to be laminar on the plate and the velocity profile is: 

3
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U
u . Find the ratio of the drag force on the front half portion to the drag 

force on the rear half portion of the plate. (ρ = 1.2 kg/m3 ; ν = 1.51×10-5 m2/s)           [2.42] 
 
 
7- Air flows over a horizontal smooth flat plate at speed 14.5 m/s. The plate length is 1.5 
m and its width is 0.8 m. The boundary layer is turbulent from the leading edge. The 

velocity profile is: 
δ

ηη y
U
u

==
∞

     where6
1

. Evaluate the boundary layer thickness and the 

wall shear stress at the trailing edge of the plate. (ρ = 1.21 kg/m3 ; ν = 1.5×10-5 m2/s) 
                                                                                                         [30.75 mm ; 0.447 N/m2]  
 



8- Air (ρ = 1.21 kg/m3) flows over a thin flat plate 1 m long and 0.3 m wide. The flow is 

e and 
irection of the x- component of the force required to hold plate stationary.                        

ate the power required to m  wide in oil             
 920 kg/m3 ; μ .s) at 8 m

                                                                                           [8.5 kW ; 28.55 kW ; 18.05 kW]  

uniform at the leading edge of the plate. Assume the velocity profile in the boundary layer 
wn in is linear, and the free stream velocity is 2.7 m/s. Using control volume (abcd) sho

figure, compute the mass flow rate across surface (ab). Determine the magnitud
d
                                                                                                  [3.9×10-3  kg/s ; -3.5×10-3  N]  
 
9- Estim ove a flat plate 9 m long and 3 m
(ρ =  = 0.067 Pa /s. For the following cases: 
a- the boundary layer is laminar over the surface of the plate. 
b- the boundary layer is turbulent over the surface of the plate from the leading edge. 

5c- transition from laminar to turbulent at Rec = 5×10 . 
Assume the velocity profile for the turbulent boundary layer is f(η) = η1/9). (
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U
u , determine whether the flow ha d 10- For the velocity profile: 
∞

s separate

r not separated or will attach with the surface after separation. 

/
oundary layer and the velocity of the main stream at the outlet end of the straightener. 

   

rce on a 150 mm diameter circular disc held perpendicular to this air stream. 

Compute the overtu
standard atmospheric conditions. (ρ = 1.21 kg/m  ; ν = 15×10  m /s)              [1430 kN.m] 

o
 
 
11- A honeycomb type of flow straightener is formed from perpendicular flat metal strips 
to give 25 mm square passages, 150 mm long. Water of kinematic viscosity 1.21 mm2/s 
pproaches the straightener at 1.8 m s. Calculate the displacement thickness of the a

b
Applying Bernoulli's equation to the main stream, deduce the pressure drop through the 
straightener.                                                                       [0.546 mm ; 1.968 m/s ; 316.5 Pa] 
 
 
12- Air of kinematic viscosity 15 mm2/s and density 1.21 kg/m3 flows past a smooth  

50 mm diameter sphere at 60 m/s. Determine the drag force. What would be the drag 1
of

                                                                                                                              [3 N ; 42 N] 
 
13- The chimney of a boiler house is 50 m tall and has an outside diameter of 3 m. 

rning moment about the base if a 30 m/s wind blows past it at the 
3 -6 2
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Chapter Three 
Potential Flow Theory (Ideal Fluid) 
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1- Introduction 
 
Velocity vector 

kwjviuq ++=          In Cartesian coordinates                    
kwuruq r ++= θθ      In Polar coordinates 
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Continuity equation 
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Vorticity equation 
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If  the flow is called rotational 0≠×∇ q
If  the flow is called irrotational 0=×∇ q
 
 
 
2- Requirements for ideal- fluid flow 
  1- non viscous. 
  2- incompressible. 
  3-  0=⋅∇ q
  4-  0=×∇ q
 
 
 
3- Relationships between stream function (ψ), potential function 
(φ) and velocity component 
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4- Basic flow patterns: 
    
   1- Uniform flow 
a- Uniform flow in the x- direction 
 

 
        
 
b- Uniform flow in the y- direction 
 

 
  
 
c- General uniform flow 
 

 
  



2- Source flow 

 
    
 
3- Sink flow 

 
   
 
4- Doublet flow 

 
   



 5- Free vortex flow 
 

 
 
 
 
 

Stream function and Potential function for Basic flow patterns: 
Type of flow ψ φ 

Uniform flow in the x- direction 
Uniform flow in the y- direction 
General uniform flow 

uy 
-vx 

uy-vx 

ux 
vy 

ux+vy 
Source kθ k ln r 
Sink -kθ -k ln r 
Doublet 

r
θ
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2
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2
 

Free vortex rln
2π
Γ
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π2
Γ  

Note:  k = strength of the source = )
2

(or   
2 ππ

mQ
=  

 
 
 
Definition of circulation (Г): 

 ∫=Γ
c

sdsq

Circulation = vorticity×area 
        Г        =      ωz     ×  A 
 
 
 
 



5- Combination of basic flows: 
     
   1- Uniform flow and a source. 
 

 
 
 
 
The stream function: 
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The velocity components: 
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The dividing streamline (
2
Q

=ψ ) could be replaced by a solid surface of the 

same shape, forming a semi-infinite body (half-body). 
 
    
   
 
 
 
 
 



 
 2- Uniform flow and a source-sink pair. 
 

 
The stream function: 
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The velocity component: 
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The dividing streamline ( 0=ψ ) could be replaced by a solid surface of the 
same shape, forming an oval called a Rankine oval. 
 
     
   3- Uniform flow and a doublet: 
         (Non lifting flow over a cylinder) 
 

 
 



The stream function: 
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The velocity components: 
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The dividing streamline ( 0=ψ ) could be replaced by a solid surface of the 

same shape, forming a circular cylinder with radius
U

R
π
μ

2
= . 

 
The pressure distribution on the cylinder surface is obtained from: 

( )θρ 22 sin41
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The pressure distribution is symmetrical around the cylinder and the 
resultant force developed on the cylinder = zero. 
 
    
 
 
 



 
4- Doublet and free vortex in a uniform flow: 
         (Lifting flow over a cylinder) 
 

 
 
The stream function: 
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The velocity components: 
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The location of the stagnation points is given by: 

⎟
⎠
⎞

⎜
⎝
⎛ Γ−

==
RU

Rr
π

θ
4

sin   ;   

 
 
There are four possible cases: 

a- (Г = 0) 

 
 

 



b- (Г < 4πRU) 

 
 

 
c- (Г = 4πRU) 

 
 

d- (Г > 4πRU) 

 
 

 
The pressure distribution on the cylinder surface is obtained from: 
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The lift force on the cylinder is 
Lift = ρUГL     where L = length of the cylinder 

 

 
 

 
 
 
 
6- Examples: 
 
  1- Does the stream function (ψ = xy) represent a physically possible flow? 
If so, determine the velocity at a point (2,3). 
 
Solution: 

 
  
 
 
 



 
 
2- A velocity potential in two-dimensional flow is given by (φ = y+x2-y2); 
find the stream function for this flow. 
 
Solution: 

 
 
  
3- A stream function in two-dimensional flow is (ψ = 9+6x-4y+7xy); find 
the velocity potential for this flow. 
 
Solution: 
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1- Show that the two-dimensional flow described by the equation 22 22 yxx −+=ψ  is 
irrotational. Find the velocity potential for this flow.                                   [ cxyy +−−= 4φ ] 
 
2- A certain flow field is described by the velocity potential θφ cosln BrrA +=  where        
A and B are positive constants. Determine the corresponding stream function and locate 

any stagnation points in this flow field.                         [ ⎟
⎠
⎞

⎜
⎝
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3- The velocity components in a two-dimensional flow field for an incompressible fluid 

are expressed as:   
3

2  ;   2
3

3
22

3 xyxyvyxxyu −−=−+=  . 

a) show that these functions represents a possible case of irrotational flow. 
b) obtain expressions for the stream function and velocity potential. 
 
 
4- The formula  represent the velocity potential of a two-dimensional 
ideal flow. Evaluate the constants a and b, and calculate the pressure difference between 
the points (0,0) and (3,4)m, if the fluid has density of 1300 kg/m3. 

32304.0 byaxyx ++=φ

 [a = -0.12, b = 0 ; 5.85 kN/m2] 
 
5- The two-dimensional flow of a non-viscous, incompressible fluid in the vicinity of the 
90o corner of figure is described by the stream function θψ 2sin2 2r=  . 
a) determine the corresponding velocity potential. 
b) if the pressure at point(1,0) on the wall is 30kPa, what is the pressure at point (0,0.5) , 
assume ρ = 1000 kg/m3 , and x-y plane is horizontal.                   [  ; 36 kPa] cr += θφ 2cos2 2

 
 
6- The stream function for an incompressible flow filed is given by the equation 

323 tyytx −=ψ . Find the potential function and determine the flow rates across the faces of 
the triangular prism OAB shown in figure having a thickness of 5 units in the z-direction 
at time t = 1.                                                                               [  ; 40; 0; 40] ctxytx +−= 23 3φ

                                           
 
                            Problem No. 5                                       Problem No.6 



7- Prove that for a two-dimensional flow, the vorticity at a point is twice the rotation 
(angular velocity). 
 
8- The pressure far from an irrotational vortex in the atmosphere is zero gage. If the 
velocity at r = 20 m is 20 m/s, find the velocity and pressure at r = 2 m. (ρ = 1.2 kg/m3) 

[200 m/s ; -23.76 kPa] 
 
9- A non viscous incompressible fluid flow between wedge shaped-wall into small 
opening as shown in figure. The velocity potential which described the flow is rln2−=φ  . 
Determine the volume rate of flow (per unit length) in the opening.           [-π/3 m3/s per m] 
 
10- A source with strength 0.2/2π m3/s.m and a vortex with strength 1/2π m2/s are located 
at the origin. Determine the equations for velocity potential and stream function. What are 
the velocity components at x = 1 m , y = 0.5 m?                             [0.0285 m/s ; 0.143 m/s] 
 
11- In an infinite two-dimensional flow filed, a sink of strength 3/2π m3/s.m is located at 
the origin, and another of strength  4/2π m3/s.m at  (2 , 0). What is the magnitude and 
direction of the velocity at point (0 , 2).                                                 [0.429 m/s ; -68.22o] 
 
12- Flow over a plane half-body is studied by utilizing a free-stream at 5 m/s 
superimposed on a source at the origin. The body has a maximum width 2 m. Calculate: 
a) the coordinates of the stagnation point. 
b) the width of the body at the origin. 
c) the velocity at a point (0.5 , π/2).                                             [(0.32 , π) ; 1 m ; 5.93 m/s] 
 
13- The shape of a hill arising from a plain can be approximated with the top section of a 
half-body as is shown in figure. The height of the hill approaches 61 m. When a 18 m/s 
wind blows toward the hill, what is the magnitude of the air velocity at point (2) above the 
origin. What is the elevation of point (2) and what is the difference in pressure between 
point (1) and point (2). (ρair = 1.23 kg/m3)                           [21.34 m/s ; 30.5 m ; 448.83 Pa] 
 
14- A circular cylinder 0.5 m diameter rotates at 600 rpm in a uniform stream of 15 m/s. 
Locate the stagnation points. Calculate the minimum rotational speed for detached 
stagnation point in the same uniform flow.                           [-31.6o and -148.4o ; 1146 rpm] 
 
15- A circular cylinder 20 m long is placed in a uniform stream of 100 m/s (ρ= 0.7 kg/m3). 
The lift force generated by the cylinder is 2100 kN.  The stagnation points are at (-60o and 
-120o). Derive a relationship between the locations of the stagnation points and the 
circulation around the cylinder. Calculate the diameter of the cylinder.                   [2.75 m] 
 

                                   
                  Problem No. 9                                            Problem No. 13  
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