Chapter One

Navier — Stokes Equations
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1- Navier-Stokes equations:

The general equations of motion for viscous incompressible, Newtonian fluids may
be written in the following form:
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Equations (1) and (2) are called: Navier Stokes equations.

2- Steady laminar flow between parallel flat plates:

Fig.25
The fluid moves in the x- direction without acceleration.
v=0,w=0, o_ 0
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the Navier-Stokes equation in the x- direction (eq. 1) reduces to:
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B.C (One plate is fixed and the other plate moves with a constant

velocity U) (Couette flow)
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For the case of horizontal parallel plates:
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eq. 7 will be




The location of maximum velocity u,,x may be found by evaluating g_u and setting it to
y

Zero.
The volume flow rate 1s

3- Hydrodynamic lubrication:

Sliding bearing

Large forces are developed in small clearance when the surfaces are slightly inclined
and one is in motion so that fluid is wedged into the decreasing space. Usually the oils
employed for lubrication are highly viscous and the flow is of laminar nature.
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Assumptions:
The acceleration is zero.
The body force is small and can be neglected.
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The Navier-Stokes equation in the x-direction (eq. 1) reduces to:
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The volume flow rate in every section will be constant.
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** For a constant taper bearing:
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Sub in eq.(*) and solving for 3—5 produces:
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With these values inserted in eq.(**) we obtain the pressure distribution inside the bearing.
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The load that the bearing will support per unit width is:
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4- _aminar flow between concentric rotating cylinders:

Consider the purely circulatory flow of a fluid contained between two long
concentric rotating cylinders of radius R; and R, at angular velocities ®; and w.
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(b) VELOCITY PROFILE

In this case the Navier-Stokes equations in cylindrical coordinates are used.
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In the above equations:
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The equation in 0- direction reduces to:
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Integration:
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Sub. in eq.(1) yields:
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The shear stress may be evaluated by the equation:
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By using eq.(ii):
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5- Example:

1- Using the Navier-Stokes equation in the flow direction, calculate the power required to
pull (Im x 1m) flat plate at speed (1 m/s) over an inclined surface. The oil between the
surfaces has (p = 900 kg/m’ , p = 0.06 Pa.s).The pressure difference between points 1 and

2 is (100 kN/m?) .

Solution:




The Navier-Stokes equation in x- direction
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We have: Acceleration=0 ,v=0 , w=0 ,

The equation reduces to:
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Integration
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The shearing force on the moving plate:
F =7, xarea
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x900x9.81 x sin 30

£ —0.06x1 0.0l (100x103j_ 0.01

0.01 2 1 2
F =-528N
Power =F -U

Power =528 x1=528W (Ans)
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1- Using the Navier-Stokes equations, determine the pressure gradient along flow, the
average velocity, and the discharge for an oil of viscosity 0.02 N.s/m* flowing between
two stationary parallel plates 1 m wide maintained 10 mm apart. The velocity midway
between the plates is 2 m/s. [-3200 N/m* per m ; 1.33 m/s ; 0.0133 m’/s]

2- An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates
as shown in figure. The two plates move in opposite directions with constant velocities U,
and U,. The pressure gradient in the x-direction is zero. Use the Navier-Stokes equations
to derive expression for the velocity distribution between the plates. Assume laminar flow.

[U =%(Ul +U2)—U2]

3- Two parallel plates are spaced 2 mm apart, and oil (= 0.1 N.s/m*, S = 0.8) flows at a
rate of 24x10™ m?/s per m of width between the plates. What is the pressure gradient in the
direction of flow if the plates are inclined at 60° with the horizontal and if the flow is
downward between the plates? [-353.2 kPa/m]

4- Using the Navier-Stokes equations, find the velocity profile for fully developed flow of
water (= 1.14x107 Pa.s) between parallel plates with the upper plate moving as shown in
figure. Assume the volume flow rate per unit depth for zero pressure gradient between the
plates is 3.75x10” m’/s. Determine:
a- the velocity of the moving plate.
b- the shear stress on the lower plate.
c- the pressure gradient that will give zero shear stress at y = 0.25b. (b= 2.5 mm)
d- the adverse pressure gradient that will give zero volume flow rate between the plates.

[3 m/s ; 1.37 N/m* ; 2.19 kN/m” per m ; -3.28 kN/m” per m]

5- A vertical shaft passes through a bearing and is lubricated with an oil (u = 0.2 Pa.s) as
shown in figure. Estimate the torque required to overcome viscous resistance when the
shaft is turning at 80 rpm. (Hint: The flow between the shaft and bearing can be treated as
laminar flow between two flat plates with zero pressure gradient). [0.355 N.m]

6- Determine the force on the piston of the figure due to shear, and the leakage from the
pressure chamber for U = 0. [295.1 N ; 1.636x10° m?/s]




7- A layer of viscous liquid of thickness b flows steadily down an inclined plane. Show
that, by wusing the Navier-Stokes equations that velocity distribution is:

u= ZL(Zby -y’ )sin ¢ and that the discharge per unit width is: Q = 3lb3 sin @
u 7

8- A wide moving belt passes through a container of a viscous liquid. The belt moving
vertically upward with a constant velocity V,, as illustrated in figure. Because of viscous
forces the belt picks up a film of fluid of thickness h. Gravity tends to make the fluid drain
down the belt. Use the Navier-Stokes equations to determine an expression for the average
velocity v,, of the fluid film as it is dragged up the belt. Assume the flow is laminar,

steady, and uniform. [Va =Vo =]

9- Determine the formulas for shear stress on each plate and for the velocity distribution
for flow in the figure when an adverse pressure gradient exists such that Q = 0.

-24J 4uU y’ y
[Ty:0 =T,Ty:b =T,U =3U b_2_2U B]

10- A plate 2 mm thick and 1 m wide is pulled between the walls shown in figure at speed
of 0.4 m/s. The space over and below the plate is filled with glycerin (= 0.62 N.s/m").
The plate is positioned midway between the walls. Using the Navier-Stokes equations,
determine the force required to pull the plate at the speed given for zero pressure gradient;

and the pressure gradient that will give zero volume flow rate.
[496 N ; 372 kN/m”.m]

11- A slider plate 0.5 m wide constitutes a bearing as shown in figure. Estimate:
a- the load carrying capacity.

b- the drag.

c- the power lost in the bearing.

d- the maximum pressure in the oil and its location.
[739.6 kN ; 348.6 N ; 348.6 W ; 12500 kN/m” ; 150 mm]

12- Consider a shaft that turns inside a stationary cylinder, with a lubricating fluid in the
annular region. Using the Navier-Stokes equation in 0-direction, show that the torque per

2
unit length acting on the shaft is given by: T = AmUCR,

Where: o = angular velocity of the shaft.
R, = radius of the shaft.
R, = radius of the cylinder.
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1- Introduction:

Development of boundary layer on a flat plate

The flow of a viscous fluid on a solid surface represents a region in
which velocity increases from zero at the surface and approaches the
velocity of the main stream. This region is known as the boundary layer.
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The figure shows the development of a boundary layer on one side of a
long flat plate held parallel to the flow direction.




Velocity distribution in boundary layer
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The velocity gradient will give rise to a large shear stress at the wall 1, (or

As shown in figure:
the velocity gradient in the turbulent boundary layer is larger than that in
the laminar boundary layer.

d_u (in turbulent BL) ) d_u (in laminar BL)
dy ) _ dy ) _
y=0 y=0

7, (inturbulent BL) )z, (in laminar BL)

(o]

The shear stress for a turbulent boundary layer is greater than the shear
stress for a laminar boundary layer.

Boundary layer thickness (6)
Boundary layer thickness is the distance from the solid surface to the
point in the flow where u = 0.99U.,.

Displacement thickness (5")
Displacement thickness represents the outward displacement of the
streamlines caused by the viscous effects on the solid surface.

Or

o =§j(l— f(7))dn  Where 77=% and f(77)=UL

0 o)




Momentum thickness ()

Momentum thickness, is defined as the thickness of a layer of fluid ,
with velocity U, , for which the momentum flux is equal to the deficit of
momentum flux through the boundary layer.

U u
o= |1t |4
(-

0 © 0
Or
1
0 =3[ t((1- )y
0
Shape factor (H)

H is a velocity profile shape factor.

H =

0

2- Momentum equation for boundary layer:

Consider the control volume for flow over one side of a flat plate of width
b.

— . =
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F,is the total friction drag on the plate from the leading edge up to x.

Assuming that the velocity profiles at various distances along the plate are
similar to each other.
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Equation (*) may be written as:

F,=poUssa  ------ (M

where

a= [t 1ty

The local wall shear stress is :

Equations (1) and (2) are valid for either laminar or turbulent flow in the
boundary layer.

3- Laminar boundary layer:

The wall shear stress:

L
0 ﬂdyy:()

Let g= {%}
77 n=0

Another expression for shear stress:

1
Ty = Epuozocf

Where ¢; = local friction coefficient.




The total friction drag is:
L

F; =b]r,dx
0

also

Fo = PUZGLIC,

Where C; = total friction coefficient

The boundary layer thickness:

5= |2 X
o ,/Re,

Where Re, = local Reynolds number
_ pU_ X
"

Re

Blasius solution:

(@=0.135; B =1.63)

Where Rep = total Reynolds number
_pU L

Re,
u

* The laminar boundary layer will remain laminar up to a value of

Rey = 500000




4- Turbulent boundary layer:

Velocity profile in turbulent boundary layer:

1 1

a=[ - fo)n =f777[1—777jd77 =7lz

The wall shear stress for the turbulent boundary layer on smooth plate is:

U2 H E 3k
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C; = 1
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The total friction coefficient is calculated form the following relations:

- 0.0735

C; - for Re, (10’
(Re, )s

C, :L’Sz_58 for Re, )10’
(log,, Re, )

and

F, =5 PUZGLIC,




Note: equation (**) was obtained from the following pipe equations:
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To transfer to the flat plate :
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5- Friction drag in transition region:
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6- Effect of pressure gradient:

Upp(max)
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Consider the flow over a curved surface as shown in figure. As the fluid is
deflected round the surface it is accelerated over the left-hand section
(points A and B) until at point C, the velocity just outside the boundary
layer is a maximum and the pressure is a minimum.

Beyond C, the velocity outside the boundary layer decreases,
resulting in an increase in pressure. The velocity of the layer close to the
wall is reduced and finally brought to a stop at D. Now the increasing
pressure calls for further retardation so the boundary layer separates from
the wall. At E there is a backflow (reverse flow) next to the wall, driven in
the direction of decreasing pressure.

Down stream from the separation point the flow is characterized by
irregular turbulent eddies. This disturbed region is called the wake of the
body. The pressure within the wake remains close to that at the separation
point. The pressure is always less than the pressure at the forward
stagnation point.

An additional drag force is resulted from differences of pressure.
This force is known as the pressure drag ( or form drag)

** The total drag on a body is the sum of the friction drag and the pressure
drag.
Fo=F +F,

Fo :%pUiACD

Where A = projected area of the body perpendicular to the oncoming
flow.
Cp = total drag coefficient.




Values of Cp for two- and three-dimensional bodies are given in figures (1)

and (2) respectively.
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Typical drag coefficients for objects of interest are given in table (1).

D flici
Shape Reference area Fag.coniiiclent
o
Frontal area
Parachute A =2 1.4
a
Porosity o 0.2 0.5
D Parous Frontal area
paraboelic A=ZEp? — l.42 | 1.20 | 0.82
1 dish 4 —<— | 0.95 | 0.90 | 0.80
Porosity = open area/ltotal area
Standing CpA =9 ft?
Average ol 2
person Sitting CpA =6 ft
Crouching CpA = 2.5 ft?
D Cp
Fluttering - 1 0.07
flag At 5 2 | 012
3 0.15
Empire
!g! State Building Frontal area 1.4
3 r Frontal area 1.8
Six-car passenger train
Bikes
1 2
ﬁc) Upright commuter A=55" 1.1
gﬁ Racing A =391 0.88

M Drafting A =39 #? 0.50
(3=, Streamiined A=5017 0.12

Tractor-trailor tucks
Standard Frontal area 0.96
Fairing
With fairing Frontal area 0.76
Gap seal
Al 1 fairingand Tontalarea ;
CRROO oo gap seal
Tree
U =10 m/s 0.43
" U =20 m/s Frontal area 0.26
U =30 m/s 0.20
4 0.0036 at Re = 6 x 10%
WBM phinz | e Metiadias (flat plate has Cpy, = 0.0031)
’ g Large Frontal area 0.40
birds

Table (1)

e Streamlined body: the pressure drag on streamlined body is small
and the friction drag is the major part of the total drag.

e Bluff body: the pressure drag on bluff body is much greater than the
friction drag.




Relative comparison between skin friction drag and pressure drag
for various aerodynamic shapes

Separation point
Reo 1 Relative
T T
U Flat plate drag force
i - (Broadside)
ﬁ d length=d B]
(a)
Separation point
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( ) diameter |
=d
(b) _ _
Re = 10° Separation point
Streamline
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thickness
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Separation point

Re = 10*
Cylinder
= LA L% diarlnctcr

T 10
Re = 107 @ Separation point
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7- Examples:

1- A smooth flat plate 3 m wide and 30 m long is towed through still
water (p = 998 kg/m’ , v =1.007x10° m?/s) with speed of 6 m/s. Determine
the friction drag on one side of the plate and on the first 3 m of the plate.

Solution:
For #fe on/PﬁA?/f:_
R, = Yeok . _6X30 _ y357x/0° > 5xs0°
¥ o072 X fo-€
Ahe B.L /s Furbulen?
C";= S S = 0.00/96

(/%o A;el)ﬁd‘.&‘
7he a!mf on one side /s i
Fe=55UsAG

Fp= 5% 978%6°% (3%30) % 0.00/96 = 3/69 N (Ans)

For #he /ﬁk;?‘ 3m a/ Hhe /)/4’7/3: /?e,_. = /.?,5’7)(/03 > /o7

Fr=—tx992%x6 % (3%3)g 0455
= [7eg,, ;:;na*)]"’”

FP= 443 N (dns)

2- Calculate the diameter of a parachute (in the form of a hemispherical
shell) to be used for dropping a small object of mass 90 kg so that it
touches the earth at a velocity no greater than 6 m/s. The drag coefficient
for a hemispherical shell with its concave side upstream is approximately
1.32 for Re > 10°, (p = 1.22 kg/m’).

Solution:
T I"—E‘[——A,J
Fo = -—;"5’ Uo A Cp —G | ,'
6!/50
Fo = wewght =m9 —@ e,
= Fo%9. o 22 . 9N
g/ = 882.9 -
u/‘gg @ = c’.;,’gf@"
\ 7 2 76/2
C?‘pz-j - =5 X 127 ¥ 6 '——‘;% ¥ 132

—> o = 6.23 m (Aas)




3.1f
U

o0

stress at the trailing edge, and the drag force on one side of the plate 1 m
long, if it is immersed in water flowing with a velocity of 0.3 m/s
(p=1000 kg/m’ , p.=0.001 Pa.s)

2
= 2% - (%j , find the thickness of the boundary layer, the shear

Solution:

/?91.= SLUo _ fooox1#03

5 5
= = 3 X/0 X /o
o o.0o/f <S5

The Lbw ss Jaminar 5 assume Fhe widd} of e /0/179 = /o
Velocidy profite: A(t) = 27 - 7*
[ (
= = {ﬁ('z)(t- P()) o7 :[z'z-"z‘(f-z'zwg‘)o/'z =2

A =2./33
= { d?ﬂj‘z:o =2

Eaa,,mé,y /4}@- //fcéntss a////‘c‘ 79&//7 Eév( b (1}(: é)

g / 2.3 L S
=< Re,

= Jo mr (ﬂ/ff)

1

Shear ¢tress qf Hle %rm‘/r"n:f c’ée ‘-
Tp - /C/W_C? = oo/ X 0.2 - o Y .ff//ﬂ?z
S o.of (4”5)

=
1l

fhUxsox
Jooo %/ % (0.3) * o0l ¥0./3%

o /2 N (#ns)

1o
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1- Calculate the displacement thickness and momentum thickness for the following
velocity profiles in the boundary layer:

2 il
o Lzzl_(lj b L=(1j9 (L5 25.016. 2 5]
U s \o U, \s 3715 110

2- Air (v = 1.8x10” m?s) flows along a flat plate with a velocity of 150 km/hr. How long
does the plate have to be to obtain a laminar boundary layer thickness of 8 mm.

[6.146 m]
3- Assuming that the velocity distribution in the laminar boundary layer: UL = sin(%j .
Determine the total friction coefficient in terms of the Reynolds number. [1.31/4Re, ]

4- A thin plate 2 m wide is placed in a uniform air stream of velocity 100 m/s,
(p = 1.2 kg/m’). If the skin friction drag force is 60 N, calculate the displacement thickness
of the boundary layer at trailing edge of the plate. Assume that the velocity profile at all
points in the boundary layer is: f() =n"°. [3.3 mm]

5- A river barge which 1s 50 m long and 12 m wide has flat bottom; therefore, its
resistance is similar to one side of a flat plate. If the barge is towed at speed of 3 m/s
through still water, what towing force is required to overcome viscous resistance and what
is the boundary layer thickness at mid length? Assume the boundary layer is turbulent for
the entire length. (p = 1000 kg/m’ ; v=1.21x10"° m%/s) [5.57 kN ; 0.26 m]

6- A uniform free stream of air at 0.8 m/s flows over a flat plate (4 m long x 1 m wide).
Assuming the boundary layer to be laminar on the plate and the velocity profile is:

3
UL :%(%)—%(%j . Find the ratio of the drag force on the front half portion to the drag

force on the rear half portion of the plate. (p = 1.2 kg/m’ ; v=1.51x10" m%/s) [2.42]

7- Air flows over a horizontal smooth flat plate at speed 14.5 m/s. The plate length is 1.5
m and its width is 0.8 m. The boundary layer is turbulent from the leading edge. The

1

velocity profile is: UL: n° where 7 :%. Evaluate the boundary layer thickness and the

wall shear stress at the trailing edge of the plate. (p = 1.21 kg/m’ ; v =1.5x10" m?/s)
[30.75 mm ; 0.447 N/m’]




8- Air (p = 1.21 kg/m’) flows over a thin flat plate 1 m long and 0.3 m wide. The flow is
uniform at the leading edge of the plate. Assume the velocity profile in the boundary layer
is linear, and the free stream velocity is 2.7 m/s. Using control volume (abcd) shown in
figure, compute the mass flow rate across surface (ab). Determine the magnitude and
direction of the x- component of the force required to hold plate stationary.

[3.9x107 kg/s ; -3.5%x107 N]

9- Estimate the power required to move a flat plate 9 m long and 3 m wide in oil

(p =920 kg/m’ ; 1 =0.067 Pa.s) at 8 m/s. For the following cases:

a- the boundary layer is laminar over the surface of the plate.

b- the boundary layer is turbulent over the surface of the plate from the leading edge.

c- transition from laminar to turbulent at Re, = 5x10°.

(Assume the velocity profile for the turbulent boundary layer is f(n) =1
[8.5 kW ; 28.55 kW ; 18.05 kW]

1/9
).

3
10- For the velocity profile: UL = %(%j —%(%j , determine whether the flow has separated

or not separated or will attach with the surface after separation.

o0

11- A honeycomb type of flow straightener is formed from perpendicular flat metal strips
to give 25 mm square passages, 150 mm long. Water of kinematic viscosity 1.21 mm®/s
approaches the straightener at 1.8 m/s. Calculate the displacement thickness of the
boundary layer and the velocity of the main stream at the outlet end of the straightener.
Applying Bernoulli's equation to the main stream, deduce the pressure drop through the
straightener. [0.546 mm ; 1.968 m/s ; 316.5 Pa]

12- Air of kinematic viscosity 15 mm®/s and density 1.21 kg/m’ flows past a smooth
150 mm diameter sphere at 60 m/s. Determine the drag force. What would be the drag
force on a 150 mm diameter circular disc held perpendicular to this air stream.

[3N ;42 N]

13- The chimney of a boiler house is 50 m tall and has an outside diameter of 3 m.
Compute the overturning moment about the base if a 30 m/s wind blows past it at the
standard atmospheric conditions. (p = 1.21 kg/m’ ; v = 15x10"° m*/s) [1430 kN.m]

Problem No. 8




Chapter Three
Potential Flow Theory (Ideal Fluid)

Contents
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7- Problems sheet; No. 3

1- Introduction

Velocity vector
g =ui +vj +wk In Cartesian coordinates
g=u,r+u,d+wk InPolar coordinates

Divergence of g=V-g
_ou ov ow
Vig=—+—+—
ox oy oz

Continuity equation

V.g=0

Or

ou ov ow
+—+—=0

& oz




Curl of g=Vxg

Vorticity equation

_ (am m}‘[?u qu Fw aq_
Vxg=|———i+|——|]+|———
oy oz 0z oX oX oy

V=, +o,]+ok

If vxq =0 the flow is called rotational
If Vxg=0 the flow is called irrotational

2- Requirements for ideal- fluid flow
1- non viscous.
2- incompressible.
3-v-4=0
4- V x dg=0

3- Relationships between stream function (v), potential function
(p) and velocity component

u=0v _99
oy OoX
__Oy _0¢
=T E
In cylindrical coordinates :
_loy _0¢
“roe o
oy 10¢
Sor roe

r

u, =




4- Basic flow patterns:

1- Uniform flow
a- Uniform flow in the x- direction

YA & &,
I ! > W,
|
|’ > [ﬂ3
V:b"k i .| > ¢,
| "
R > ¥
l i
U &

b- Uniform flow in the y- direction

p
tj uf W‘I. {V’ w;
. A A AN
75 B I O O T
——+— + —— T+~
— X
l=o
c- General uniform flow
37T /-2' g
Vd
P
S A
£ & P4 ,/
4 PR ¢
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2- Source flow

3- Sink flow

4- Doublet flow

- shreamlines ({y:(m;{)
o

A
iy = G
] A7r
e : >
: ,-': ?f’firff
v ?\3

S V(/;r.:rff /901'4’11 ft/a./ /f'nz;r
(¢ = cmst)

d Xrs c:/?

Ahe dou 5/:.7/-}
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5- Free vortex flow

\ (;/:'CM‘»/

s frear lin ey

Stream function and Potential function for Basic flow patterns:

Type of flow \J (0]
Uniform flow in the x- direction uy ux
Uniform flow in the y- direction -VX vy
General uniform flow uy-vx ux+vy
Source ko kinr
Sink -k6 -kinr
Doublet —H sin @ M cos o
2r 1 2 r
Free vortex R Ty
2r 2z

Q

Note: k = strength of the source = — or (= )
2r 2r

Definition of circulation (I):
I'= §qsds

Circulation = vorticityxarea
I = , XA




5- Combination of basic flows:

1- Uniform flow and a source.

The stream function:
w =Uy+ké
w =U.rsind +ké

The velocity components:

=la—"’:u.cose+5
r oo r

u

r

and

0, =-Y ~ ysing
or

The dividing streamline (y = %) could be replaced by a solid surface of the

same shape, forming a semi-infinite body (half-body).




2- Uniform flow and a source-sink pair.

The stream function:
w =Uy +ké, — k6,

t//:Uy+ktan_1L—ktan’1L
X+b X-b

The velocity component:
u= 2 =U + K K

R I e

The dividing streamline (y = 0) could be replaced by a solid surface of the
same shape, forming an oval called a Rankine oval.

3- Uniform flow and a doublet:
(Non lifting flow over a cylinder)

C? Leindes )




2
; :la—lﬂ:U S@[I—R—z]
r 060 r
and
2
u, _a_W:_U s1n6?(1+R—2J
or r

The dividing streamline (y = 0) could be replaced by a solid surface of the

same shape, forming a circular cylinder with radiusR = 1/% :

The pressure distribution on the cylinder surface is obtained from:

P, =Po+%pU2(1—4sin26’)

ps"?o
Levut

The pressure distribution is symmetrical around the cylinder and the
resultant force developed on the cylinder = zero.




4- Doublet and free vortex in a uniform flow:
(Lifting flow over a cylinder)

The stream function:

2
7% =U.rsin6’(l—R—2J+Llnr
r 2

The velocity components:
2
u, = Loy _ U.cosH(l —R—zj

r 06 r
and
2
u, —6—W——U sinf| 1+—- L
or r 27

The location of the stagnation points is given by:

r=R; sind= i)
47RU

There are four possible cases:
a- (I'=0)

= A /_\8 e
—_— A = / ,_/"’.__-—b_h_
i, N P e




b- (I' <4nRU)

c- (I = 47RU)

d- (> 47RU)

The pressure distribution on the cylinder surface is obtained from:

1 1 ry
P=P +—pU>—=p| —2U.sinf-——




The lift force on the cylinder is
Lift=pUI'L where L = length of the cylinder

6- Examples:

1- Does the stream function (y = Xy) represent a physically possible flow?
If so, determine the velocity at a point (2,3).

. o /_zf JVE //‘: ;f //r /l//f'w /5 / D55/ //ff - //:’r Con /:.)i Ll 1 // [ Jyre'v-r. r//.' ¥l AP s ,/
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{{/ /.rfff (}, /)) A X L‘
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2- A velocity potential in two-dimensional flow is given by (¢ = y+x*-y°);

find the stream function for this flow.

Solution:
Z d)y—¢-= T+ X == _ir(.
oy 2& 2.
v)( 2 X
QY= 2% 2Y
o= 206y o A (x) — )
7o tad  F(X)
L OIRY . ol
- ‘( e ’J I‘j

-(2Y +.f (x)) =/-2Y
L L
Thus L) =
e K)=m et
sub in ega (*) — W=D XYL N A

3- A stream function in two-dimensional flow is (y =

the velocity potential for this flow.

Solution:
W= 9+6 X —4_5/ - yx:_c]
28 QM iy o 72X

DX 2 Y
= 7) = } }(i + f(” ihleve
7o find # (f)
¢ = T‘{_f,__

= ."1(‘-} .r__.)/'\
A1) = — (6+7Y) = —6-7Y
Alg)e Sy~ 2 y2ie

(f/ e ZI{'X - g’y t- _";_ X S .L|| x ,\" o

= BT
(Ans )

9+6x-4y+7xy); find
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University of Technology Sheet No. 3
Mechanical Engineering Dep. Ideal Fluid Flow
Aerodynamics (3 rd year) 2011/2012

1- Show that the two-dimensional flow described by the equation w =x+2x>-2y* is
irrotational. Find the velocity potential for this flow. [¢=-y—4xy+c]

2- A certain flow field is described by the velocity potential ¢= Alnr+Brcosd where
A and B are positive constants. Determine the corresponding stream function and locate

any stagnation points in this flow field. [w=AO+Brsinf+c ; (goj (%ﬂ'j]

3- The velocity components in a two-dimensional flow field for an incompressible fluid

3 3
are expressed as: u =y?+2x—x2y sV =Xy’ —2y—X? .
a) show that these functions represents a possible case of irrotational flow.

b) obtain expressions for the stream function and velocity potential.

4- The formula ¢ =0.04x’ +axy’ +by’ represent the velocity potential of a two-dimensional
ideal flow. Evaluate the constants a and b, and calculate the pressure difference between
the points (0,0) and (3,4)m, if the fluid has density of 1300 kg/m’.

[a=-0.12,b=0; 5.85 kN/m’]

5- The two-dimensional flow of a non-viscous, incompressible fluid in the vicinity of the
90° corner of figure is described by the stream function y =2r’sin26 .

a) determine the corresponding velocity potential.

b) if the pressure at point(1,0) on the wall is 30kPa, what is the pressure at point (0,0.5) ,
assume p = 1000 kg/m’ , and x-y plane is horizontal. [¢=2r>cos20+c ; 36 kPa]

6- The stream function for an incompressible flow filed is given by the equation
w =3tx*y —ty’. Find the potential function and determine the flow rates across the faces of
the triangular prism OAB shown in figure having a thickness of 5 units in the z-direction

attime t = 1. [¢=1tx=3txy* +c ; 40; 0; 40]
Ya
31‘
T_ B
2 \
g Oz A x
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7- Prove that for a two-dimensional flow, the vorticity at a point is twice the rotation
(angular velocity).

8- The pressure far from an irrotational vortex in the atmosphere is zero gage. If the
velocity at r =20 m is 20 m/s, find the velocity and pressure at r =2 m. (p = 1.2 kg/m’)
[200 m/s ; -23.76 kPa]

9- A non viscous incompressible fluid flow between wedge shaped-wall into small
opening as shown in figure. The velocity potential which described the flow is ¢ = -2Inr .

Determine the volume rate of flow (per unit length) in the opening. [-n/3 m’/s per m]

10- A source with strength 0.2/27 m’/s.m and a vortex with strength 1/21 m*/s are located
at the origin. Determine the equations for velocity potential and stream function. What are
the velocity components atx =1 m,y =0.5 m? [0.0285 m/s ; 0.143 m/s]

11- In an infinite two-dimensional flow filed, a sink of strength 3/2% m*/s.m is located at
the origin, and another of strength 4/2mr m*/s.m at (2 , 0). What is the magnitude and
direction of the velocity at point (0, 2). [0.429 m/s ; -68.22°]

12- Flow over a plane half-body is studied by utilizing a free-stream at 5 m/s
superimposed on a source at the origin. The body has a maximum width 2 m. Calculate:

a) the coordinates of the stagnation point.

b) the width of the body at the origin.

c) the velocity at a point (0.5 , w/2). [(0.32,m); 1 m;5.93 m/s]

13- The shape of a hill arising from a plain can be approximated with the top section of a
half-body as is shown in figure. The height of the hill approaches 61 m. When a 18 m/s
wind blows toward the hill, what is the magnitude of the air velocity at point (2) above the
origin. What is the elevation of point (2) and what is the difference in pressure between
point (1) and point (2). (s = 1.23 kg/m”) [21.34 m/s ; 30.5 m ; 448.83 Pa]

14- A circular cylinder 0.5 m diameter rotates at 600 rpm in a uniform stream of 15 m/s.
Locate the stagnation points. Calculate the minimum rotational speed for detached
stagnation point in the same uniform flow. [-31.6° and -148.4° ; 1146 rpm]

15- A circular cylinder 20 m long is placed in a uniform stream of 100 m/s (p= 0.7 kg/m’).
The lift force generated by the cylinder is 2100 kN. The stagnation points are at (-60° and
-120°). Derive a relationship between the locations of the stagnation points and the
circulation around the cylinder. Calculate the diameter of the cylinder. [2.75 m]

Problem No. 9 Problem No. 13
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